
APPENDIX B

Answers to Selected Exercises

Here we provide answers to selected exercises from Chapters 1–10.

B.1 Answers to selected exercises from Chapter 1

Exercise 1.1. Lewis (1986a, p. 208) assumes that all elements of a possible world are to
“stand in suitable external relations, preferably spatiotemporal”. Somewhat similarly, in
Branching Space-Times any two point events fromOurWorld are linked by appropriately
combined instances of the pre-causal relation < (see the M property, Fact 2.4). Discuss
whether the pre-causal relation (which is formally explained in Chapter 2.1) is a “suitable
external relation” from Lewis’s perspective.

Answer: It is useful to focus on the notion of “spatiotemporal relations”, Lewis’s paradigm
for a relation to be used to draw a distinction between objects that inhabit one world,
and objects that do not inhabit one world. Lewis acknowledges that there is an ambi-
guity in this notion. The exercise asks for an assessment from Lewis’s perspective. This
calls for some familiarity with his metaphysics, as we need to grasp the notion as he
understood it. The central tenet of Lewis’s metaphysics is the reduction of modal claims
to mereological relations obtaining between certain maximal objects called “possible
worlds”. Thus, within a given possible world there are no (non-trivial) modal relations.
On the hypothesis of so-called Humean Supervenience, a world can be identified with
a “Humean mosaic”, which is an ascription of properties (“perfectly natural properties”)
to point-like bearers. A natural option to understand such bearers is to identify them
with spatio-temporal points (this appears to be Lewis’s preferred option). Such points
stand in various spatio-temporal relations. Paradigmatically, a spatio-temporal relation
is identified with some distance between points in space-time. As to the ascription of
properties, each point has exactly one set of jointly instantiable properties assigned. No
property is modal, so that, for example, “possibly going up” is not an admissible property.
Now, the M-property in the form of a real M (rather than just a part of it) relates objects
(idealized to be point-like) that are incompatible; such objects cannot occur together. By
Lewis’s central tenet, these objects cannot inhabit one and the samemosaic. If they could,
they would be related by the spatio-temporal relations that underlie a given mosaic, and
hence they would be compatible. And if they do not belong to one and the same mosaic,
they do not belong to one and the same possible world. Thus, from Lewis’s perspective,
the M-property does not relate inhabitants of one world.
A reflection on this argument shows that it assumes that each mosaic has its own

space-time, its own space-time points, and its own spatio-temporal relations. This make
the argument against the M-property as a demarcation principle fall short. In contrast,
our everyday claims concerning what could happen at a given location at a given time
in an alternative course of events suggests that alternative scenarios share the same
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space-time.That idea of a shared space-time also underlies the mathematical description
of indeterminism in classical physics. On this view, then, spatio-temporal relations relate
incompatible events. Of course, we do notwant to claim that any two incompatible events,
which are spatio-temporally related in the wide sense, belong to our world. But some
such events, like tomorrow’s possible outcomes tails up and heads up of a particular coin
toss do seem to belong to our world. (At least this is the intuition underlying BST.) The
M-property, with the particular shape of the letter “M”, should thus relate objects like the
two incompatible results of a certain toss: these objects are incompatible, and yet they
belong to our single, modally thick world.

B.2 Answers to selected exercises from Chapter 2

Exercise 2.2. Prove the M property (Fact 2.4):
For every pair e1,e5 of point events inW , there are e2,e3,e4 inW such that e1 6 e2, e5 6 e4
and e3 6 e2, e3 6 e4.

Proof. Let e1 ∈ h1 and e5 ∈ h5. ByHistorical Connection (Postulate 2.2), there is e3 ∈ h1∩
h5. Since histories are directed, there is e2 such that e1 6 e2 and e3 6 e2 (via directedness
of h1) and e5 6 e4 and e3 6 e4 (via directedness of h5).
Exercise 2.3. Let ⟨W,<⟩ be a partially ordered set satisfying Postulates 2.1 and 2.2. Prove
that if every history of W is downward directed, then so is W as a whole. (Note that the
assumption is true, for example, if each history is isomorphic to Minkowski space-time.)

Proof. Pick any e1,e5 ∈W . If these events share a history, we are done. If not, let us invoke
theM property.There are thus e2,e3,e4 such that e1 6 e2, e5 6 e4 and e3 6 e2, e3 6 e4. Let
e2 ∈ h2 and e4 ∈ h4, so e3 ∈ h2 ∩h4. By the assumption, histories are downward directed,
so there are e6,e7 ∈ h2 ∩h4 that are lower bounds of, respectively, e1,e3 and e3,e5. Since
e6,e7 share a history, they have a lower bound e9. By transitivity of 6, e9 6 e1 and
e9 6 e5.

B.3 Answers to selected exercises from Chapter 3

Exercise 3.2. Prove the following extension of Fact 3.10: For a BST92 structure ⟨W,<⟩
that has neither maximal nor minimal elements, its full transition structure ⟨W ′,<′⟩=df
⟨TRfull(W ),≺⟩ has no maxima nor minima either.

Proof. For no maxima, let τ = e � H ∈ W ′, and let h ∈ H ⊆ He. As W contains no
maxima, h contains no maxima either (Fact 2.1(9)), so there is e1 ∈ h for which e < e1.
Accordingly we have τ ′ =df e1 � Πe1⟨h⟩ ∈ W ′. It is easy to check that τ ≺ τ ′, which
establishes that τ is not maximal inW ′.
For no minima, similarly, let τ = e � H ∈ W ′. As W contains no minima, there is

e1 ∈W for which e1 < e. Let h ∈ He. By downward closure, e1 ∈ h, i.e., h ∈ He1 . So there
is τ ′ =df e1 � Πe1⟨h⟩ ∈W ′, and τ ′ ≺ τ . Thus, τ is not minimal inW ′.
Exercise 3.7. Let ⟨W,<⟩ satisfy Postulates 2.1–2.5. Let l be an upper-bounded chain, and
let e =df suph′(l). Then for every history h ofW containing the chain l, if e lies in h, then
e = suph(l).
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Proof. Suppose that e ∈ h. Since e = suph′(l), by definition e upper-bounds l. Now,
suppose toward a contradiction that e is not the least upper bound of l in h, that is,
suppose that there is some e′ in h such that l 6 e′ < e. By Fact 2.1 (5) histories are
downwards closed, which means that the element e′ also lies in h′, contradicting e =
suph′(l). Therefore there is no such e′ in h, and consequently, e = suph(l).

B.4 Answers to selected exercises from Chapter 4

Exercise 4.4. Prove that the diamond topology of Def. 4.13 and the history-relative
diamond topologies of Def. 4.14 are indeed topologies for both BST92 and BSTNF; that
is, prove that both (1) the base set (W or h, respectively) and (2) the empty set are open,
(3) arbitrary unions of open sets are open, and (4) finite intersections of open sets are
open.
Proof. In both definitions, (1) is explicitly required to hold, and the form of the def-
initions, which is universal, guarantees that (2) and (3) hold as well (note that the
condition is vacuous for the empty set).The only condition that needs a proof is the finite
intersection property, (4). It suffices to prove that the intersection of any two open sets is
open, as the finite case then follows by simple induction.
The proof of (4) is the same for BST92 and for BSTNF, as no instance of a prior choice

principle is needed. We give the proof for T ; the proof for Th is exactly analogous,
replacing the set of chains MC(e) with MCh(e). Let thus Z1,Z2 ∈ T , let Z =df Z1 ∩Z2,
and take some e ∈ Z and t ∈ MC(e). To show that Z is open, we have to find e1,e2 ∈ t
with e1 < e < e2 and such that the diamond De1,e2 ⊆ Z. Now as Zi is open (i = 1.2),
there are ei

1,e
i
2 with ei

1 < e < ei
2 and such that Dei

1,e
i
2
⊆ Zi. Let e1 = max(e1

1,e
2
1) and

e2 = min(e1
1,e

2
1) (note that these elements are comparable as they belong to the same

chain). Then De1,e2 ⊆ Z1 and De1,e2 ⊆ Z2, which implies that De1,e2 ⊆ Z. This shows that
Z is indeed open.

B.5 Answers to selected exercises from Chapter 5

Exercise 5.1. Let O be an outcome chain. Prove that if for all e ∈ cll(O), we have e < O,
then H⟨O⟩ =

∩
e∈cll(O) Πe⟨O⟩.

Proof. For any e ∈ cll(O), e < O implies H⟨O⟩ ⊆ Πe⟨O⟩ (see the proof of Fact 5.4), so
the inclusion “⊆” is straightforward. For the opposite inclusion, we argue indirectly; that
is, we assume for reductio that there is h ∈ Hist such that h ̸∈ H⟨O⟩ but that for every
e ∈ cll(O), h ∈ Πe⟨O⟩. Take some hO ⊇ O. As h ̸∈ H⟨O⟩, we have O ⊆ hO \h, so by PCP92
there is c ∈W such that c < O and h ⊥c hO. By Fact 3.8, h ⊥c H⟨O⟩. Thus, c ∈ cll(O), so
by our assumption: h ∈ Πc⟨O⟩. Since H⟨O⟩ ⊆ Πc⟨O⟩, we get h ≡c H⟨O⟩, which contradicts
h ⊥c H⟨O⟩.

Exercise 5.3. Prove a version of Facts 5.4 and 4.7(2) for Ô a scattered outcome. That is,
prove the following facts:
Let Ô be a scattered outcome. (1) If there is no-MFB, then for all e ∈ cll(Ô), we have e < Ô.
(2) If e < Ô, then there is a unique basic outcome of e that is consistent with H⟨Ô⟩, which
we denote Πe⟨Ô⟩.
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Proof. (1) By no-MFB we know from Fact 5.4 that for each O ∈ Ô, any e ∈ cll(O) is
in the past of O. By the same Fact and by Exercise 5.1, for any O ∈ Ô we have H⟨O⟩ =∩

e∈cll(O) Πe⟨O⟩. Thus, by the definition of H⟨Ô⟩,

H⟨Ô⟩ =

 ∩
O∈Ô

∩
e∈cll(O)

Πe⟨O⟩

 . (B.1)

Let us now suppose for reductio that there is h ∈ Hist and c ∈ W such that h ⊥c H⟨Ô⟩
(i.e., c ∈ cll(Ô)) but c ̸< Ô, which means that for every O ∈ Ô: c ̸< O. Accordingly, c ̸∈∪

O∈Ô cll(O) but c ∈ cll(Ô). Consider now the union of outcomes of c that are consistent
with H⟨Ô⟩, which is H̃ =df

∪
{H ∈ Πc | H∩H⟨Ô⟩ ̸= /0}. Observe next that since h ⊥c H⟨Ô⟩,

we have H⟨Ô⟩ ⊆ Hc, and hence H⟨Ô⟩ ⊆ H̃ . Note also that for every O ∈ Ô and for every
e ∈ cll(O), e < O, so that H⟨O⟩ ⊆ Πe⟨O⟩. Accordingly, for every O ∈ Ô and for every
e ∈ cll(O), we have H⟨Ô⟩ ⊆ H⟨O⟩ ⊆ Πe⟨O⟩. Now consider the following intersection of
sets of histories, H ′:

H ′ =df

 ∩
O∈Ô

∩
e∈cll(O)

Πe⟨O⟩

∩ H̃. (B.2)

By H⟨Ô⟩ ⊆ H̃ and by Eq. (B.1) we have H⟨Ô⟩ = H ′, i.e., ∩
O∈Ô

∩
e∈cll(O)

Πe⟨O⟩

∩ H̃ = H⟨Ô⟩. (B.3)

Since Πc⟨h⟩ ⊆ Hc \ H̃ , Eqs. (B.3) and (B.1) imply ∩
O∈Ô

∩
e∈cll(O)

Πe⟨O⟩

∩Πc⟨h⟩= /0. (B.4)

We now claim that Eq. (B.4) implies that our structure contains an instance of modal
funny business, which contradicts our premise of no-MFB.
Let τc =df (c � Πc⟨h⟩), and consider the following set of transitions, which we claim

is combinatorially consistent (Def. 5.5):

T =df {e � Πe⟨O⟩ | O ∈ Ô, e ∈ cll(O)}∪{τc}.

The subset to the left is combinatorially consistent since it is consistent by Eq. (B.1). So to
check combinatorial consistency, we only need to consider pairs of τc and some τe =(e�
Πe⟨O⟩), for some O ∈ Ô and some e ∈ cll(O). Note that for any h′ ∈ H⟨Ô⟩, {e,c} ⊆ h′. It
follows that if e< c, thenΠc⟨h⟩ ⊆Πe⟨O⟩, and if e,c are incomparable, then they are SLR .
Finally, it cannot happen that c 6 e, since this implies c < Ô, contrary to our assumption
that c ̸< Ô. Thus, T is combinatorially consistent, but inconsistent (by Eq. (B.4)). This
shows that there is CFB in the structure, contrary to the premise of no-MFB. We thus
have established that any element of cll(Ô) is in the past of Ô.
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(2) Let e ∈ cll(Ô) and e < Ô, i.e., there is some O ∈ Ô for which e < O. Then by
Fact 4.7(2), Πe⟨O⟩ is uniquely defined, and we can set Πe⟨Ô⟩ =df Πe⟨O⟩, as H⟨Ô⟩ ⊆
H⟨O⟩ ⊆ Πe⟨O⟩.

B.6 Answers to selected exercises from Chapter 6

Exercise 6.1. Prove clause (2) of Fact 6.1.

That is, given a transition I � Ô to a scattered outcome Ô, we have to prove cll(I � Ô) =∪
O∈Ô cll(I � O).

Proof. “⊇”: Let O ∈ Ô, and let e ∈ cll(I � O). Then for h ∈ H[I], h ⊥e H⟨O⟩. Since
H⟨Ô⟩ ⊆ H⟨O⟩, we have h ⊥e H⟨Ô⟩, and hence e ∈ cll(I � Ô).
“⊆”: As there is no MFB in W , for every e ∈ cll(I � Ô) we have e < Ô (see

Exercise 5.3). Thus, e ∈ cll(I � Ô) implies that there is O ∈ Ô for which e < O. Let
h′ ∈ H⟨Ô⟩ ⊆ H⟨O⟩, and let h′′ ∈ H⟨O⟩. We have h′ ≡e h′′. As h ⊥e h′ for some h ∈ H[I], it
follows that h ⊥e H⟨O⟩, and hence e ∈ cll(I � O).

Exercise 6.2. Prove clauses (4) and (5) of Fact 6.4.

That is, making no assumptions about the presence or absence of MFB and given
e ∈ cll(I �O∗), (4) forO∗ = Ô a scattered outcome, we have to show that there is some
initial segment O′ of some O ∈ Ô such that for every e′ ∈ O′, we have e 6 e′ or eSLRe′,
and (5) for O∗ = Ŏ a disjunctive outcome, we have to show that there is some Ô ∈ Ŏ
and some initial segment O′ of some O ∈ Ô such that for every e′ ∈ O′, we have e 6 e′ or
eSLRe′,

Proof. (4) Let e ∈ cll(I � Ô). If e ∈ cll(I � O) for some O ∈ Ô, then by clause (3) of
Fact 6.4, for every e′ ∈ O either e < e′ or eSLRe′, so we are done. The other case is that
e ∈ cll(I � Ô) but e ̸∈ cll(I � O) for all O ∈ Ô. Note that cll(I � Ô) is consistent, and
pick someO ∈ Ô such that for some h ∈ H[I]: h∩O = /0; thus by PCP92 there is c < O such
that h ⊥c H⟨O⟩, and hence c ∈ cll(I � O) ⊆ cll(I � Ô). Since elements of cll(I � Ô)
are SLR, we have that (†) eSLRc.
As e ∈ cll(I � Ô), there is some h in H[I] for which h ⊥e H⟨Ô⟩. Pick some hO ∈ H⟨Ô⟩.

Thus, in particular, hO ∈ H⟨O⟩. We have e ∈ hO by h ⊥e H⟨Ô⟩, and as hO ∈ H⟨O⟩, there is
an initial segment O′ ⊆ O such that O ⊆ hO. As c < O, we have c < O, and c ∈ hO holds
by downward closure of histories.The claim then follows: for e ∈ O, we have e,e ∈ hO, so
e and e′ are either comparable or SLR . It cannot be that e 6 e, as from c < e′ we could
conclude c < e, contradicting (†), so either e < e or eSLRe′.
(5) follows immediately from the above by noting that if e ∈ cll(I � Ŏ), then e ∈

cllr(I � Ô)⊆ cll(I � Ô) for some Ô ∈ Ŏ.

Exercise 6.6. ProveTheorem 6.3.
Theorem 6.3. (nns for transitions to outcome chains or scattered outcomes in BST92
with MFB) Let O∗ be an outcome chain or a scattered outcome. Then the causae causantes
of I � O∗ satisfy the following inus-related conditions:
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1. joint sufficiency – nns:
∩

e∈cll(I�O∗) He�H̆e⟨H⟨O∗⟩⟩
⊆ HI�O∗ ;

2. joint necessity – nns: H⟨O∗⟩ = H[I]∩HI�O∗ ⊆
∩

e∈cll(I�O∗) He�H̆e⟨H⟨O∗⟩⟩
;

3. non-redundancy – nns: for every (e0 � H̆) ∈CC(I � O∗) and every H̆′ such that
H̆∩ H̆′ = /0, where H̆,H̆′ ⊆ Πe0

either
∪

H̆′∩
∩

e∈cll(I�O∗)\{e0}
(He ∩He�H̆e⟨H⟨O∗⟩⟩

) = /0, or (6.5)

∪
H̆′∩

∩
e∈cll(I�O∗)\{e0}

(He ∩He�H̆e⟨H⟨O∗⟩⟩
) ̸⊆ H[I]∩HI�O∗ . (6.6)

Proof. We give a proof for transitions to scattered outcomes, which can easily be simpli-
fied to cover transitions to outcome chains as well.
(1) If I � O∗ is deterministic, then the theorem holds as then HI�O∗ = Hist. We

thus assume that the transition is indeterministic (i.e., H[I] \H⟨O∗⟩ ̸= /0) and argue for the
contraposition, so we take h ∈ H[I] \H⟨O∗⟩, and hence we get that for some c: h ⊥c H⟨O∗⟩.
Accordingly, c ∈ cll(I � O∗). Further, for every H ∈ H̆c⟨H⟨O∗⟩⟩: h ⊥c H . Thus, for
every H of that sort, h ̸∈ H , and hence h ̸∈

∪
H̆c⟨H⟨O∗⟩⟩. Since h ∈ Hc, it follows that

h ̸∈ Hc�H̆c⟨H⟨O∗⟩⟩
.

(2) Pick an arbitrary h ∈ H⟨O∗⟩ and an arbitrary e ∈ cll(I � O∗). Clearly, as h ∈ He,
h belongs to some H ∈ Πe such that H ∩H⟨O∗⟩ ̸= /0, Thus h ∈

∪
H̆e⟨H⟨O∗⟩⟩, and hence

h ∈ He�H̆e⟨H⟨O∗⟩⟩
.

(3) Since (e0 � H̆) ∈ CC(I � O∗), it must be that H̆ = H̆e0⟨H⟨O∗⟩⟩. Pick then an
arbitrary H̆′ ⊆ Πe0 such that H̆′∩ H̆e0⟨H⟨O∗⟩⟩= /0. Hence (

∪
H̆′)∩ (

∪
H̆e0⟨H⟨O∗⟩⟩) = /0.

By Fact 6.3 we have H⟨O∗⟩ ⊆
∪

H̆e⟨H⟨O∗⟩⟩, which implies (∗)
∪

H̆′ ∩ H⟨O∗⟩ = /0. Let
us abbreviate H− =

∩
e∈cll(I�O∗)\{e0} He ∩ He�H̆e⟨H⟨O∗⟩⟩

and consider two cases: (i)∪
H̆′ ∩ H− = /0 and (ii)

∪
H̆′ ∩ H− ̸= /0. If (i), we are done. If (ii), by (∗) we have

H−∩ (
∪

H̆′)∩H⟨O∗⟩ = /0. Since H⟨O∗⟩ ̸= /0, it follows that H−∩ (
∪

H̆′) ̸⊆ H⟨O∗⟩, which is
Eq. 6.6.

Exercise 6.7. ProveTheorem 6.4.

Theorem 6.4. (nus for transitions to disjunctive outcomes in BST92 with MFB) Let Ŏ =
{Ôγ | γ ∈ Γ} be a disjunctive outcome consisting of more than one scattered outcome. The
set of causae causantes of I � Ŏ, i.e., {CCr(I � Ôγ )}γ∈Γ as well as each CC(I � Ôγ ),
satisfy the following inus-related conditions:

1. eachCCr(I � Ôγ ) is sufficient – nus: for every γ ∈ Γ:∩
e∈cllr(I�Ôγ )

He�H̆e⟨H⟨Ôγ ⟩⟩
⊆ HI�Ŏ;

2. eachCC(I � Ôγ ) is unnecessary – nus: for every γ ∈ Γ:
H⟨Ŏ⟩ = H[I]∩HI�Ŏ ̸⊆

∩
e∈cll(I�Ôγ )

He�H̆e⟨H⟨Ôγ ⟩⟩
.

3. for each γ ∈ Γ, each τ0 = (e0 � H̆) ∈CCr(I � Ôγ ) is non-redundant – nus. That
is, for every H̆′ ⊆ Πe0 such that H̆∩ H̆′ = /0:
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either
∪

H̆′∩
∩

e∈cllr(I�Ôγ )\{e0}

(He ∩He�H̆e⟨H⟨Ôγ ⟩⟩
) = /0, (6.7)

or
∪

H̆′∩
∩

e∈cllr(I�Ôγ )\{e0}

(He ∩He�H̆e⟨H⟨Ôγ ⟩⟩
) ̸⊆ H[I]∩HI�Ôγ

. (6.8)

Proof. (1) This is almost exactly the same proof as for Theorem 6.2(1). Just like in
this proof, from h ̸∈ HÔγ

we arrive at h ⊥e Πe⟨Ôγ ⟩ and get that e ̸∈ DETI�Ŏ since
h ∈ (He ∩H[I]) \H⟨Ŏ⟩, which entails e ∈ cllr(I � Ôγ ). As we allow for MFB, h ̸∈ H⟨Ôγ ⟩
implies h ̸∈ {H ∈ Πe | H ∩H⟨Ôγ ⟩}= H̆e⟨H⟨Ôγ ⟩⟩. Accordingly, h ̸∈ He�H̆e⟨H⟨Ôγ ⟩⟩

. (2) Since

Ŏ has at least two scattered outcomes, there is Ôγ ∈ Ŏ and h ∈ H[I] such that h ̸∈ H⟨Ôγ ⟩.
By Theorem 6.3(1) h ̸∈

∩
e∈cll(I�Ôγ )

He�H̆e⟨H⟨Ôγ ⟩⟩
.

(3) Pick an arbitrary γ ∈ Γ and an arbitrary (e0 � H̆) ∈ CCr(I � Ôγ ), so
cllr(I � Ôγ ) ̸= /0. It must be that H̆ = H̆e0⟨H⟨Ôγ ⟩⟩. Pick then a H̆′ ⊆ Πe0 such
that H̆′ ∩ H̆e0⟨H⟨Ôγ ⟩⟩ = /0. Hence (

∪
H̆′) ∩ (

∪
H̆e0⟨HÔγ

⟩) = /0. By Fact 6.3 we have
H⟨Ôγ ⟩ ⊆

∪
H̆e⟨H⟨Ôγ ⟩⟩, which implies (∗)

∪
H̆′ ∩ H⟨Ôγ ⟩ = /0. Let us abbreviate H− =df∩

e∈cllr(I�O∗)\{e0} He ∩He�H̆e⟨H⟨Ôγ ⟩⟩
and consider two cases: (i)

∪
H̆′ ∩H− = /0 and (ii)∪

H̆′∩H− ̸= /0. If (i), we are done. If (ii), by (∗) we have H−∩ (
∪

H̆′)∩H⟨Ôγ ⟩ = /0. Since
H⟨Ôγ ⟩ ̸= /0, it follows that H−∩ (

∪
H̆′) ̸⊆ H⟨Ôγ ⟩, which is Eq. 6.8.

Exercise 6.9. ProveTheorem 6.5

Theorem 6.5. (nns for transitions to outcome chains or scattered outcomes in BSTNF with
no MFB) Let O∗ be an outcome chain or a scattered outcome. The causae causantes of
I � O∗ satisfy the following inus-related conditions:

1. joint sufficiency – nns:
∩

ë∈cll(I�O∗) Hë�Πë⟨O∗⟩ ⊆ HI�O∗ ;
2. joint necessity – nns: H⟨O∗⟩ = H[I]∩HI�O∗ ⊆

∩
ë∈cll(I�O∗) Hë�Πë⟨O∗⟩;

3. non-redundancy – nns: for every (ë0 � H)∈CC(I �O∗) and every H ′ ∈ Πë0 such
that H ′∩H = /0:

either H ′∩
∩

ë∈cll(I�O∗)\{ë0}
Πë⟨O∗⟩= /0, (6.9)

or H ′∩
∩

ë∈cll(I�O∗)\{ë0}
Πë⟨O∗⟩ ̸⊆ H[I]∩HI�O∗ . (6.10)

Proof. (1) If H[I] = H⟨Ô⟩, then HI�Ô = Hist, and we are done. Let us thus suppose that
there is h ∈ Hist such that h ∈ H[I] but h ̸∈ H⟨Ô⟩. Thus, there is O ∈ Ô s.t h∩O = /0. There
is also h′ ∈ H⟨Ô⟩, which implies h′ ∈ H[I] and h′ ∈ H⟨O⟩. Accordingly, there is O′ ⊆ O
such that O′ ⊆ h′ \ h. By PCPNF there is c̈, with c ∈ c̈ and c 6 O′ such that h ⊥c̈ H⟨O′⟩.
Since H⟨Ô⟩ ⊆ H⟨O⟩ ⊆ H⟨O′⟩, we get h ⊥c̈ H⟨Ô⟩; thus c̈ ∈ cll(I � Ô). On the other hand,
h ∈ Hc̈, and h ⊥c̈ H⟨Ô⟩ implies h ̸∈ Πc̈⟨Ô⟩. For if h ∈ Πc̈⟨Ô⟩, then (since c 6 Ô) h ≡c̈ h1
for every h1 ∈ H⟨Ô⟩, contradicting h ⊥c̈ H⟨Ô⟩. Hence h ̸∈ Hc̈�Πc̈⟨Ô⟩. By simplifying this
proof appropriately, one obtains the argument for transitions to outcome chains.
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(2) Note that H[I] ∩ HI�O∗ = H⟨O∗⟩ and for every c 6 O∗: H⟨O∗⟩ ⊆ Hc ⊆ Πc̈⟨O∗⟩.
Thus, H[I]∩HI�O∗ ⊆ Hc̈�Πc̈⟨O∗⟩.
(3) Pick an arbitrary H ′ such that H ′ ∩ H = /0, where H,H ′ ∈ Πë0 and ë0 �

H ∈ CC(I � Ô). Since H⟨Ô⟩ ⊆ H , (∗) H ′ ∩ H⟨Ô⟩ = /0. Let us next abbreviate:
H− =

∩
ë∈cll(I�Ô)\{ë0} Πë⟨Ô⟩ and consider then two cases: (i) H ′ ∩ H− = /0 and (ii)

H ′ ∩H− ̸= /0. If (i), since it is identical to Eq. 6.9, we are done. In (ii), by (∗) we have
H ′∩H−∩H⟨Ô⟩ = /0. SinceH⟨Ô⟩ ̸= /0, it follows thatH ′∩H− ̸⊆H⟨Ô⟩, which is Eq. 6.10.

B.7 Answers to selected exercises from Chapter 7

Exercise 7.1. Prove Lemma 7.2.

Lemma 7.2. Let the conditions of Def. 7.5 hold for a transition I � Ŏ to a disjunctive
outcome Ŏ, and considerCPS(I � Ŏ) = ⟨S,A , p⟩.That triple is in fact a probability space
satisfying Def. 7.1. That is,CPS(I � Ŏ) is well defined and p is a normalized measure on
A . Furthermore, we have that

p(CC(I � Ôγ )) = µ({T ∈ S |CC(I � Ôγ )⊆ T}) = ∑
T∈S,CC(I�Ôγ )⊆T

µ(T );

p(CC(I � Ŏ)) = ∑
γ∈Γ

p(CC(I � Ôγ )).

Proof. The observation underlying this proof is that T ∈ S iff T ∈ Sγ for some γ such that
Ôγ ∈ Ŏ, and where Sγ is the set of causal alternatives toCC(I � Ôγ ).
We first prove that for every T ∈ S, µ(T ) is defined. If T ∈ S then T ∈ Sγ for some γ

such that Ôγ ∈ Ŏ, so by Def 7.5 and Postulate 7.2, µ(T ) is defined. Thus p(T ) is defined
via Def. 7.4, which induces measure p on the whole A .
We need to show that p is a normalized probability measure. It suffices to show that

the probabilities assigned to the different elements of S sum to one, as then

p(1A ) = ∑
T∈S

p(T ) = 1.

Our proof uses the law of total probability in the form of Postulate 7.3. We thus have to
show that the elements of S partition the set of histories in which the initial I occurs. First,
we have to show that for two different T1,T2 ∈ S, T1 ̸= T2, we have H(T1)∩H(T2) = /0.
If T1,T2 ∈ Sγ , the claim follows immediately since T1,T2 are maximal consistent subsets.
If there is no Ôγ ∈ Ŏ such that T1,T2 ∈∈ Ôγ , the claim follows from the fact that elements
of Ŏ are inconsistent as Ŏ is a disjunctive outcome.
Second, we show H[I] ⊆

∪
T∈S H(T ). In the proof of Lemma 7.1, we already showed

that H[I] ⊆
∪

T∈Sγ H(T ). Since Sγ ⊆ S, the claim follows. With the premises of the law of
total causal probability (Postulate 7.3) satisfied, we therefore have

∑
T∈S

p(T ) = ∑
T∈S

µ(T ) = 1,

showing that the measure p is indeed normalized.
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B.8 Answers to selected exercises from Chapter 8

Exercise 8.3. Prove Fact 8.11.

Proof. Since each T ∈ S is maximal consistent, for any two T1,T2 ∈ S, T1-histories and
T2-histories have to split. Pick T1 ∈ S. If for any other T2 ∈ S, T1-histories split with T2-
histories at members of E only, then {T1}= λ ∈ Ic, and hence T1 ∈

∪
λ . Suppose there

is T2 ∈ S such that T1-histories and T2-histories split at a member of C. If for any other
T3 ∈ S, T3-histories split with T1-histories at E , or T3-histories split with T2-histories at
E , we put {T1,T2}= λ . If not, we consider a triple. Given the finiteness of S, we will find
a maximal subset of S with respect to the defining condition for contextual instruction
sets.

B.9 Answers to selected exercises from Chapter 9

Exercise 9.3. Furnish the detail of the chain construction in the proof of Fact 9.2(2).

Proof. We define a function ‘up’: for a = ⟨a0,a1,a2,a3⟩ ∈ R4, b = ⟨b0,b1,b2,b3⟩ ∈ R4,

we let up(a,b) =df ⟨a0 +(
3
∑
1
(ai −bi)2)1/2, a1,a2,a3⟩ ∈ R4.

The chain E is constructed in the following way:

Step 1. z0 = up(y,x0), z1 = up(z0,x1), and generally, zk+1 = up(zk,xk+1). Note that
xk = T ◦Θ(σk).

Step 2. Suppose ρ is a limit ordinal. DefineAρ := {zm | m < ρ}.Aρ is the part of our chain
we have managed to construct so far. We need to distinguish two cases:

Case 1: Aρ is upper bounded with respect to 6M . Then it has to have ‘vertical’ upper
bounds t0, t1, . . . with spatial coordinates t i

n = zi
0 (i = 1,2,3). In this case, we use the

function T to choose one of the upper bounds of Aρ :

tρ := T ({t ∈ R4 | ∀m < ρ zm 6M t ∧ t i = zi
0(i = 1,2,3)}). (B.5)

Then we put zρ =df up(tρ ,xρ ), arriving at the next element of our chain E .

Case 2: If Aρ is not upper bounded with respect to6M , then nomatter which point inR4

we choose, it is possible to find a point fromAρ above it (since Aρ is time-like).Therefore,
the set

Bρ = {t ∈ Aρ | xρ 6M t} (B.6)

is not empty. We put zρ =df T (Bρ ), arriving at the next element of our chain E .

B.10 Answers to selected exercises from Chapter 10

Exercise 10.2. Prove the strengthened version of identity (∗) from the proof of Fact 10.1,
which restricts cll of e to those lying in the past of e (i.e., prove Fact 10.11):
For any e ∈W ,

He =
∩
{Πc̈⟨He⟩ | c̈ ∈ cll(e)∧∃c ∈ c̈ [c 6 e]}. (*)
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Proof. For the “⊆” direction, since c 6 e, He ⊆ Hc, and Hc is identical to Πc̈⟨He⟩, hence
He ⊆ Πc̈⟨He⟩.
For the “⊇” direction, let us assume for reductio that there is (†) h ∈

∩
{Πc̈⟨He⟩ | c̈ ∈

cll(e)∧∃c ∈ c̈ c 6 e}, but h ̸∈ He. Take some h′ ∈ He. As e ∈ h′ \ h, by PCPNF there
is a choice set c̈ at which h ⊥c̈ h′, and c ∈ c̈ such that c 6 e. From the last relations
h ⊥c̈ He follows, so that c̈ ∈ cll(e). Since h ⊥c̈ He, we get h ̸∈ Πc̈⟨He⟩, and hence
h ̸∈

∩
c̈∈cll(e) Πc̈⟨He⟩, which contradicts (†).
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