
2
The Foundations of Branching

Space-Times

2.1 The underlying ideas of BST

In this chapter we guide the reader through the construction of the core
theory of Branching Space-Times. This discursive approach culminates in
proposing a set of postulates that a structure of the core theory of Branching
Space-Times (BST) is to satisfy (see Chapter 2.6). The rigorous theory
commences with Postulate 2.1. We begin with an informal gloss, explaining
the main ideas of our construction as clearly as we can.

The fundamental element of the construction is the set W of all point
events, ordered by a certain pre-causal relation <. What postulates hold for
the pre-causal order? For Minkowski space-time, Mundy (1986) describes
the results of Robb (1914, 1936) and gives additional results for the light-
like order. That research, however, does not immediately help here because a
Minkowski space-time does not contain incompatible point events.We shall
need to proceed more slowly. The first postulate is so natural and vital that
without it we would not know what to say next.

Postulate 2.1 (BST Strict Partial Order). Our World W is a nontrivial strict
partial ordering ⟨W,<⟩, i.e.:

1. Nontriviality:W is nonempty.
2. Nonreflexivity: For all e ∈W , e ̸< e.
3. Transitivity: For all e1,e2,e3 ∈W , if e1 < e2 and e2 < e3, then e1 < e3.

We read e1 < e2 as “e2 can occur after e1”. Recall that asymmetry
(i.e., if e1 < e2, then e2 ̸< e1) follows from nonreflexivity and transitivity.
Note that asymmetry incorporates the prohibition of repeatable events.
Transitivity can be motivated by reflecting on how Our World W is
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constructed: if e2 is a future possibility of e1 and e3 is a future possibility of
e2, then e3 is a future possibility of e1.

For convenience, we add the following simple definition of weak partial
ordering:

Definition 2.1 (BST weak companion of strict order). The symbol6 stands
for the companion weak partial ordering: e1 6 e2 if e1 < e2 or e1 = e2. We
also write >, naturally defined as e1 > e2 iff e2 6 e1.

We mark the stronger relation with ‘proper’, as in ‘e1 is properly earlier
than e2’.

In Our World possible point events are related by the pre-causal rela-
tion <; some such events are compatible with others. Here is an idealized
illustration. There is an ideally small event, em, at which a certain electron’s
spin is measured along a certain direction. There are two possible outcomes:
measured spin up or measured spin down. Take a possible point event, eu,
at which it is true to say, ‘It has been measured spin up’, and another, ed , at
which it is true to say ‘It has been measured spin down’. The point events eu

and ed are incompatible, though each is compatible with em. How precisely
can two incompatible point events both fit into Our World? Answer: By
means of the pre-causal order. In the next three paragraphs we explain the
intuition that leads to a criterion of which events are compatible.1

Let e1, e2, and e3 be three events in Our World, with pre-causal ordering
<. How can these three events be ordered, and how are the resulting patterns
of ordering to be interpreted? Here are three paradigms.
Causal dispersion: Causal order can hold between a given point event, e3,
and two space-like separated (space-like related) future point events, e1 and
e2, in a single Minkowski space-time, just as one might expect: e3 < e1 and
e3 < e2. The three events form an “up-fork”.
Causal confluence: Causal order also can hold between two given space-like
related point events, e1 and e2, in a singleMinkowski space-time, and a single
future point event, e3, as one might equally expect: e1 < e3 and e2 < e3. The
three events form a “down-fork”.

1 We say of two or more events that they are compatible or not; the corresponding set of events
is then, accordingly, consistent or not. That is, we use “consistent” as a unary predicate for sets of
entities such as events or histories, and we use “compatible with” for the relation. An alternative for
“compatible with” is “co-possible with”.



26 branching space-times

Causal branching: Causal order can also hold between a given e3 and two
possible future point events e1 and e2 that might be said to be alternative
possibilities: e3 < e1 and e3 < e2. The three events form an “up-fork.”

Observe that an “up-fork” allows for two interpretations: if you see just
an “up-fork” (i.e., without seeing how it is related to other events), you
can read its upper events either as (incompatible) modal alternatives, or as
(compatible) spatially separated events. It seems to us that the analogous
dichotomy is absent in the case of “down-forks”, at least on the understanding
of point events as concrete, non-disjunctive objects.The distinction between
states and concrete events is highly relevant here: the same state can result
from incompatible starting points, and a state can be repeated, whereas a
concrete event, with its identity being tied to its past, is not repeatable.
(At least this is a plausible and intuitive view; see a relevant caveat below.)
By saying “non-disjunctive” we refer to the second relevant distinction,
that between Lewis’s fragile and non-fragile events (Lewis, 1986b, Ch. 23),
which relates to the question of whether an event might occur in more than
one alternative way. In our basic construction we rely on non-disjunctive
events, that is, those events that cannot occur in more than one alternative
way. In the Lewisian terminology, concrete events are therefore fragile. (In
Chapter 4.1 we study other types of events, including disjunctive events.)

We thus deny backward branching: we deny that incompatible point events
can lie in the past (i.e., that some events could have incompatible ‘incomes’
in the same sense that some have incompatible possible outcomes). To put
it differently, we deny that two events that cannot occur together somehow
combine to have a common future successor. No backward branching is part
of common sense, including that of scientists when speaking of experiments,
measurements, probabilities, some irreversible phenomena, and the like.We
need a caveat, however: some models of the general theory of relativity (GR)
allow for so-called causal loops, which are typically interpreted as involving
repetitions of a concrete event (Hawking and Ellis, 1973). We return to
this topic in Chapter 9.3.6, in which we suggest how to modify BST to
accommodate causal loops of GR.2

The ‘no backward branching’ intuition gives rise to a semi-criterion as
to which events are compatible (co-possible). The fact that a “down-fork”
has a univocal meaning provides a recipe for the criterion of a later witness:
if two events are seen as past from the perspective of some third event,

2 An attempt to generalize BST so that it accommodates causal loops is provided in Placek (2014).
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these two events are compatible. We will later strengthen this recipe to
provide a criterion that will deliver possible histories (as maximal subsets
of compatible events) of Our World.

2.2 Histories

How does one further describe the way that point events fit together in Our
World? The crucial concept is that of a history, which will help us keep track
of the compatibilities and incompatibilities between events in Our World.
In BST, which adds a spatial aspect, we generalize the concept of a history
as defined in Prior’s theory of branching temporal histories, which is often
called “Branching Time” (Prior, 1967; Thomason, 1970). The basic blocks
of this theory are spatially maximal instantaneous objects, somewhat mis-
leadingly called “moments”.3 The theory arranges such moments into a tree
(see Figure 2.1): incompatible moments have a lower bounding moment in
the tree (a feature we will call “historical connection”), but never a common
upper bound (no backward branching). The formal definition of a tree gives
expression to the openness of the future in contrast to the settledness of
the past. A key point to always bear in mind is that in Branching Time,
the entire tree is ‘the world’. In addition there is the concept of a ‘history’,
defined as a maximal chain of moments. Locate yourself at a moment in the
tree, perhaps at the moment at which the spin measurement occurs. You
will easily visualize that in this picture your ‘world’ is unique, whereas you
belong to many ‘histories’. Until and unless branching ceases before your
expiration, there is no such thing as ‘your history’. Of course in Branching

t

h3h1 h2

Figure 2.1 A tree-like structure of Branching Time with three histories.

3 The construction of moments requires a frame-independent simultaneity relation, and for that
reason Branching Time is not a relativity-friendly theory. The terminology “Branching Time” is
doubly misleading, suggesting that moments are just instants of time and that time branches. For a
discussion of what branches (viz., histories rather than time or space-time), see p. 10.
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Time ‘your historical past’ makes perfect sense, in contrast to ‘your entire
history’. Branching Time takes uniqueness to fail when histories are taken
as stretching into the future. Significantly, in this usage a ‘world’ contains
incompatible possibilities, while a ‘history’ does not. A history represents
a choice between incompatible possibilities, a resolution of all disjunctions
unto the end that presumably never comes.

The present development retains Prior’s idea of Our World as involving
many possible histories. A novelty is that a history can be isomorphic to
a relativistic space-time (e.g., to Minkowski space-time),⁴ the latter being
understood as the set of quadruples of reals,R4, together with Minkowskian
ordering <M , defined as follows:

x <M y iff − (x0 − y0)2 +
n−1

∑
i=1

(xi − yi)2 6 0 and x0 < y0. (2.1)

(Here< and6 are, respectively, the strict and weak orderings of reals and it
is assumed that the zero coordinate is temporal. Space-times of dimensions
other than 4 are defined analogously.) Given our aim to accommodate
Minkowski space-time, histories cannot be defined as maximal chains of
point events; the latter are mere paths without a spatial dimension. But, as
we have just seen, there is the notion of a later witness on which we may
base our attempt: if two point events share a later point event, the three
events must be in one history. For this to yield a viable criterion of being
a history in BST, however, we had better have an opposite implication as
well, in the form “if two point events do not have a common later point
event, then they do not share a history”. The geometry of Minkowski space-
time certainly guarantees that this latter implication holds, yet it is easy to
construct a truncatedMinkowski space-time, or amore sophisticated space-
time of general relativity, which violates this implication (cf. Müller, 2014).
Nevertheless, we assume here the strengthened intuition of a later witness
in the form of an equivalence: “two point events have a common later point
event iff they share a history”.⁵

Since the structural feature underlying the later witness intuition has a
name, we will use it: a history must be a ‘directed’ set, defined as follows.

⁴ We mean this as a promissory note; in Section 9.1 we will exhibit BST structures in which all
histories are indeed isomorphic to Minkowski space-time.

⁵ It is possible to work with only a one-way implication in order to properly analyze the truncated
space-times that were just mentioned (Placek, 2011). This approach is, however, too complicated for
the pay-off it might bring.
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Definition 2.2. A subset E of Our World is directed just in case for all e1

and e2 in E there is a point event e3 in E that is their common upper bound:
e3 ∈ E and e1 6 e3 and e2 6 e3.

Not every directed set should be counted as a history; in line with a
respectable tradition, we expect a history to be maximal.⁶

Definition2.3. Asubset h ofOurWorld is a history just in case h is amaximal
directed subset of Our World: h itself is a directed subset of Our World, and
no proper superset of h has this feature.

Histories are a key conceptual tool.⁷ Each history might be a Minkowski
space-time; but typically Our World is no such thing, because a single
Minkowski space-time, unlike Our World, fails to contain any incompatible
possible point events.

Here are some elementary facts about histories.

Fact 2.1. Let W = ⟨W,<⟩ be a partially ordered set satisfying Postulate 2.1.
Then:

1. Every finite set of points contained in a history, h, has an upper
bound in h.

2. Infinite subsets of a history, for example a history itself, need not have a
common upper bound.

3. Every directed subset of W can be extended to a history. In particular,
every chain is a subset of some history, and every point event belongs to
some history.

4. W has at least one history.
5. Histories are closed downward: if e1 6 e2 and e2 ∈ h, then e1 ∈ h.
6. The complements of histories are closed upward: if e1 6 e2 and e1 ∈

W \h, then e2 ∈W \h.
7. No history is a subset of a distinct history.

⁶ Against branching theories, Barnes and Cameron (2011) object that they cannot accommodate
the intuition that it “may be open whether or not reality will continue beyond tonight”. The
intuition, if rendered as a history possibly being a proper segment of another history, contradicts
the maximality of histories. However, one may save this intuition (if one needs to) by drawing a
distinction between a history and “its” space-time and appealing to an assignment of properties to
spatio-temporal points. One may then consider two histories such that none is a segment of the
other, yet the space-time of one is a segment of the space-time of the other, and such that they are
qualitatively the same in the shared segment of space-time.

⁷ Note that the ordinary use of “history” is relational, as in “the history of Pittsburgh”.Themonadic
use appears to be technical. For example, in physics one identifies possible histories with possible
evolutions. A different name for Branching-Time histories is “chronicles”; see Øhrstrøm (2009).
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8. No history, h, is a subset of the union of a finite family, H, of histories
of which it is not a member. Provided H is a finite set of histories, if
h ⊆

∪
H then h ∈ H.

9. If e is not maximal in Our World, then neither is e maximal in any
history to which it belongs.

10. If e is maximal inW , then there is exactly one history in W containing
e, and e is the unique maximum of h.

Proof. (1) follows from the definition of a directed subset by finite induction,
starting with a common upper bound for the first two points and then
consecutively constructing the upper bounds with the next points. As a
witness for (2), take for instance the real line with its natural ordering.
For (3), let A be a directed subset of W ; note that any chain, including the
singleton set of a point, is directed. To arrive at a maximal directed set (i.e., a
history) containing A, we apply the Zorn-Kuratowski lemma to the family of
directed supersets of A inW , ordered by set inclusion.⁸ That partial ordering
satisfies the premise of the lemma, as for any chain C of directed subsets of
W , the union

∪
C is a directed subset of W that contains every element of C

as a subset, so that
∪

C is an upper bound ofC. The lemma then implies that
the partial ordering of directed supersets of A contains a maximal element,
which is the sought-for history. (4) follows from (3), as W is non-empty.
(5) follows from the definition of history as a maximal directed subset, and
(6) by taking the contraposition of (5). A maximality of histories suffices
to prove (7). As for (8), let H = {h1, ...,hn} and h ̸= hi for every hi ∈ H .
By (7) h \ hi ̸= /0 for each i = 1, ...,n, so for each i there is xi ∈ h \ hi. The
set {xi | i = 1, ...,n} is a finite subset of h, so by (1), there is y ∈ h upper-
bounding all of the xi. Now, it cannot be that y∈

∪
H , as then y∈ h j for some

h j ∈ H , and hence every xi ∈ h j, including x j ∈ h j, which contradicts the
construction above. As y ∈ h, it follows that h ̸⊆

∪
H . For (9) let us suppose

that e ∈ h and that e < e1.Then {e2 | e2 6 e}∪{e1} is a directed subset and a
proper superset of {e2 | e2 6 e}, so that the latter subset of h is not a history,
so not identical with h, so a proper subset of h. Let e3 ∈ h \ {e2 | e2 6 e}.
Since h is directed, there must be some element e∗ in h that upper-bounds

⁸ For future reference, here are the formulations of the versions of the Axiom of Choice that we
will use: (1) The Axiom of Choice: for every set X of non-empty sets, there exists a choice function
defined on X . (2) The Zorn-Kuratowski lemma: a partially ordered set containing upper bounds
for every chain contains at least one maximal element. (3) Hausdorff ’s maximal principle: in any
partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset.
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both e and e3. The element e∗ is distinct from e (since otherwise e3 < e),
hence e∗ is properly later than e, and thus e is not a maximal element of h.
(10) Let e be maximal in W (i.e., there is no e′ ∈W for which e < e′). Then
the set h =df {x ∈ W | x 6 e} is directed (e being an upper bound for any
two of its members), and e is its unique maximum. To see that h is maximal
directed, suppose for reductio that there is some directed proper superset
h′ ) h and pick some e′ ∈ h′ \ h. Since h′ is directed, there is some element
e′′ that upper-bounds the elements e and e′. Since e is maximal in W , we get
e= e′′.Then e′ 6 e, and thus e′ ∈ h by (5), contradicting that e′ ∈ h′\h.Thus,
h is indeed a maximal directed subset.

Two point events evidently share some history, just in case they have a
common upper bound in Our World. In contrast, two point events fail to
have any history in common just in case they have no commonupper bound.
It would be right to mark such a fundamental matter with a definition.

Definition 2.4. Point events e1 and e2 are compatible if there is some history
to which both belong, and otherwise are incompatible.

One may wonder if BST models, and BST histories in particular, incor-
porate some sense of temporal direction. Much simpler Branching Time
models incorporate it, since they have a form of a tree starting from a single
trunk. With respect to BST, it may have crossed the reader’s mind that
each Minkowski space-time appears the same upside down: each is not only
directed, but also ‘directed downward’ in the following sense.

Definition 2.5. A subset E of Our World is directed downward just in case
for all e1 and e2 in E there is a point event e in E that is their common lower
bound: e ∈ E and e 6 e1 and e 6 e2.

That each Minkowski space-time is an upside-down image of itself is of
course true,⁹ but this should not lead one to think that the way in which we
define a ‘history’ makes no difference. Consider, for instance, the following.
While a Minkowski space-time is indeed downward directed, it would be
truly peculiar if it were maximal downward directed. For it can be proved
that if a subset of a partially ordered set is maximal downward directed, then
it is upward closed (see Exercise 2.1). So, if a historyweremaximal downward
directed, it would be upward closed. And if it were upward closed, then if

⁹ More precisely, ⟨R4,6M⟩ and its image by time-reflection are order-isomorphic.
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there were any incompatible possible point events in the future of any one of
its members, the history would have to contain both of them, which would
run counter to the idea of compatibility.

In this way, the concepts of Branching Space-Times provide a natural,
unforced articulation of the ‘direction of time’ without complicated physics.
They do so by looking beyond the properties of a single history so as to take
account of how distinct histories fit together, something that becomes really
clear only later in the context of further postulates.

A definition and a fact here shift our attention from single to multiple
histories.

Definition 2.6. We write Hist(W ) for the set of all histories in ⟨W,<⟩,1⁰ and
for E ⊆ W , we write H[E] for the set of those histories containing all of E
(i.e.: H[E] =df {h ∈ Hist | E ⊆ h}). We abbreviate H[{e}] as He, i.e., He =df

{h ∈ Hist | e ∈ h}.

Fact 2.2. (1) He is never empty. Also, (2) if e1 6 e2, then He2 ⊆ He1 .

Proof. (1) follows from Fact 2.1(3), while (2) follows from histories being
downward closed; that is, Fact 2.1(5).

One should not generally expect the converse of (2) presented earlier, as
two compatible though incomparable point events may belong to exactly the
same histories.

With the criterion of historicity we are able to carve out histories from
Our World W . Typically W has more than one history, and in that case, if
BST is right, the phrase ‘our history’ or ‘the actual history’ is meaningless.11
Scientists, for instance, no matter how hardheaded and downright empirical
they wish to be, cannot confine their attention to ‘our history’ or to ‘the
actual history’. It is not just that they ought not. Rather it is that if Branching
Space-Times is correct, scientists cannot confine their attention to ‘the actual
history’ for precisely the same reason for which mathematicians cannot
confine their attention to ‘the odd prime number’: there is more than
one odd prime number, and there is more than one history to which we
belong. On the other hand, just as a mathematician can deal with ‘the odd

1⁰ We omit “(W )” if the reference is clear.
11 This remark pertains to the debate on the doctrine that there is a distinguished history (or a

distinguished future): the actual history (future), or our history (future). This doctrine is known
as the “Thin Red Line” view and is defended, e.g., by Malpass and Wawer (2012). For an extended
argument against this view, see Belnap et al. (2001).
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prime numbers’ (plural), so a scientist could manage to deal only with ‘our
histories’ (plural); that is, with the set of all histories to which this indexically
indicated context of utterance belongs.12

With the notion of compatibility in place, we can now define space-like
separation.

Definition 2.7. If e1 and e2 are (i) incomparable by 6 but (ii) compatible,
then they are space-like related (SLR), written as e1 SLRe2. We may also call
the events causal contemporaries (provided we bear in mind the failure of
the transitivity of SLR ).

In this definition, condition (ii) is essential.That is why it was not possible
to become clear on space-like separation without the definitions of this
Section. We can call events that are related by the pre-causal ordering <

“cause-like related”. Such events are compatible because histories are closed
downward. Using this terminology, we can state the following Fact:

Fact 2.3. Incompatible points have neither a cause-like nor a space-like
relation. They are thus with respect to each other neither causally future nor
causally past nor causally contemporaneous.

This fact is a trivial, albeit helpful, consequence of the definitions. Note
that it leaves open the possibility that the spatio-temporal positions of
incompatible point events are spatio-temporally related, given that a notion
of spatio-temporal position of events is available.13 Even if such a spatio-
temporal concept becomes available, however, this does not imply a cause-
like relation, and one cannot infer a spatio-temporal relation between the
spatio-temporal positions of two point events from the mere fact that they
are incompatible. Incompatibility, although defined from the pre-causal
order, is not itself a spatio-temporal relation in this sense.

2.3 Historical connection

What we said thus far leaves open the question of how histories in a BST
structure are to be related. That histories should somehow overlap follows
from the idea of Our World as the totality of events accessible from a given

12 Perhaps physics also considers worlds other than ours, such as those postulated by Lewis
(1986a); it is important to recognize this as an entirely different question.

13 See Chapter 2.5 for some discussion of the introduction of spatio-temporal positions in BST.
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actual event by the pre-causal relation. A history that is completely severed
from the rest of the model is in conflict with this construction. In the same
spirit, in the theory of Branching Time, where histories are chains, one
postulates that every two histories overlap; we call this property ‘historical
connection’.

The property should hold in BST, although the notion of ‘history’ now has
a wider meaning:

Postulate 2.2 (Historical Connection). Every pair of histories has a nonempty
intersection.

In the theory of Branching Time, this would be the equivalent of saying
that every two moments have a lower bound. Here, where the topic is point
events instead of moments, the ‘common lower bound’ principle is not
equivalent to Historical Connection, and is not postulated. For more detail,
see Fact 2.3. Note that Historical Connection, unlike Postulate 2.1, does not
imply the result of replacing < by its converse, and is thus sensitive to the
direction of time. That is, if ⟨W,<⟩ satisfies Postulate 2.1, so does ⟨W,<·⟩,
where <· is the relation on W converse to <, i.e., e <·e′ iff e′ < e. However,
since replacing < by <· can change the set Hist of histories, it may happen
that ⟨W,<⟩ satisfies Postulate 2.2, but ⟨W,<·⟩ does not. A case in point is
depicted in Figure 2.2.1⁴

h1 h2 h′1 h′2 h′3

Figure 2.2 Since h1 ∩ h2 ̸= /0, ⟨W,<⟩ (on the left) satisfies Postulate 2.2, but
⟨W,<· ⟩ (on the right) does not, as h′1 ∩h′3 = /0.

The following consequence of historical connection supplies a good
account of Lewis’s notion of a “suitable external relation”: Our World is
connected by 6, the suitable external relation, since the trip from one point
to another in Our World may be long, but it need not have a complicated
shape:

Fact 2.4 (The M property). Let W satisfy Postulates 2.1 and 2.2. Then every
pair e1,e5 of point events can be connected by a6 />—path nomore complex

1⁴ Thanks to A. Barszcz for this model.
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than the shape of anM, i.e., there are e2,e3,e4 inW such that e1 6 e2, e5 6 e4

and e3 6 e2, e3 6 e4.

Proof. Left as Exercise 2.2.

The M property gives a unity to Our World of really possible events, as we
explained in Section 1.3.

Note that Historical Connection does not generalize to a larger number
of histories. Figure 2.3 provides an illustration: There are three-point events
in each history. You see that each pair of histories overlaps (historical
connection), but that no point event belongs to all three. A later postulate
will rule this out as a possible model, as it will require any finite number of
histories to have an overlap.

x
h1

y
h2

z
h3

e1 e2 e3

Figure 2.3 Historical Connection does not imply the existence of the overlap of
more than two histories.

This observation clearly indicates that a postulate stronger thanHistorical
Connection is needed. The core theory is too frugal to use BST to address
some issues in general philosophy as well as in the philosophy of physics.
In particular, a stronger postulate should govern what the overlap of two
branching histories looks like. This question touches upon a contentious
issue. At the bare minimum, we need a local notion of possibility, like
alternative possibilities open at a junction, but to define it, we need to
decide how to understand “junction” in this context: is it an event, possibly
idealized as a point event, or a specific collection of point events, or some
other structure? Only after deciding this can we define local alternative
possibilities. These should be possibilities open at a junction, in the rele-
vant sense, and should be defined in terms of a suitable partition of the
relevant histories. The technical definition of local alternative possibilities
is crucial for BST: it will later be used to analyze non-local correlations,
singular causation, propensities, Bell’s inequalities, tense, and the question of
determinism in general relativity. Here we can note that the core of BST can
be developed in two different ways. One option leads to the original theory
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of BST92, the other to a new theory providing “new foundations” for BST,
BSTNF. Technically, Historical Connection will be strengthened to one of
two alternative Prior Choice Principles, one defining BST92 and the other
defining BSTNF. We will discuss these two options in detail in Chapter 3. In
the rest of this chapter, we provide a full exposition of the core theory that
is common to both approaches, leading to the definition of a common BST
structure (Def. 2.10).

2.4 Density and continuity

In this section we reflect further on the pre-causal relation <. As of now,
we postulated that W = ⟨W,<⟩ is a non-trivial strict partial ordering
(Postulate 2.1). The next three postulates come from our desire to arrive at
histories that are somewhat similar to space-times of physics. A world-line
of a spatially non-extended object is naturally modeled in BST as a maximal
chain. To be in accordance with the physics of space and time, maximal
chains should be dense and continuous. Hence our next postulates:

Postulate 2.3 (Density). If e1 < e2, then there is a point event properly
between them.

Wewill discuss continuity in the sense of the existence of infima (maximal
lower bounds) and suprema (suitable minimal upper bounds). Each of our
respective postulates implies Dedekind continuity; see Appendix A.1. Here
are the formal definitions of infima and suprema:

Definition 2.8. For E ⊆W , where ⟨W,<⟩ is a partial order, a lower bound
for E is a point e such that e 6 e1 for every e1 ∈ E . A maximal lower bound
for E is a lower bound for E such that no lower bound for E is strictly above
it. If there is a lower bound e for E such that e1 6 e for every lower bound
e1 of E , it will be unique. One calls it infE , the infimum of E . Similarly for
upper bound, for minimal upper bound, and for supremum, written ‘supE ’
when it exists.

We postulate the existence of infima for lower bounded chains:

Postulate 2.4 (Existence of infima for chains). Every nonempty lower
bounded chain of point events has an infimum.

It can be shown that the infima postulate does not decide the question of
suprema for upper bounded chains in BST (see Exercise 2.4). We therefore
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need yet another postulate. In formulating the suprema postulate, we cannot
just use the mirror image of Postulate 2.4, because an upper bounded chain
may end in different ways depending on the history that one considers.
As a supremum has to be unique, we do not postulate the existence of
suprema, but rather of history-relative suprema. This shows how temporal
directedness is modally grounded: a BST structure with just one history
allows for unique suprema, but once there is more than one history (i.e.,
once there is indeterminism), the different behavior of infima and suprema
signals temporal asymmetry.

Postulate 2.5 (Existence of history-relative suprema for chains). Each non-
empty upper bounded chain l has a supremum suph l in each history h such
that l ⊆ h, where suph l is characterized by the following three conditions:
(1) suph l ∈ h; (2) e1 6 suph l for every e1 ∈ l, and (3) if e2 ∈ h and e1 6 e2

for every e1 ∈ l, then suph l 6 e2.

Note that a corresponding reformulation of the infima postulate would
change nothing, as by the downward closure of histories, any lower bound
of a lower-bounded chain belongs to all histories to which the chain belongs.

The definition of history thus entails that infima of lower bounded chains
exist independently of histories, while suprema of upper bounded chains
exist only relative to a history.These features are essential features of Branch-
ing Space-Times. Take a ‘process’ as represented by a bounded causal interval
without a first or last point event, and interpret the following tenses from the
standpoint of a point event within it. ‘How this process will end’ (i.e., the
supremum of the process) is historically contingent, depending as it does on
(perhaps metaphorical) choices made in the neighborhood of the process.
‘How this process began’ (i.e., the infimum of the process) is, in contrast,
independent of histories.

2.5 Weiner’s postulate and spatio-temporal locations

There is one further postulate, suggested by M. Weiner, that needs to be
added to the core theory of BST in order to exclude unwanted structures.1⁵

1⁵ Weiner’s postulate (see also Def. 2.10(6)), which was not included in early BST papers such as
Belnap (1992), was added later as it was found to be necessary to develop a useful probability theory
in BST92; see Weiner and Belnap (2006) and Müller (2005).
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Postulate 2.6 (Weiner’s postulate). Let l, l′⊆ h1∩h2 be upper bounded chains
in histories h1 and h2. Then the order of the suprema in these histories is the
same:

suph1
l 6 suph1

l′ iff suph2
l 6 suph2

l′.

Note that hereby we also have

suph1
l = suph1

l′ iff suph2
l = suph2

l′.

Weiner’s postulate has philosophical significance as it helps to clarify which
objects branch in branching-style theories. Histories represent alternative
possible scenarios. In Branching Time, histories capture merely temporal
aspects of a possible scenario, whereas in BST histories accommodate spatio-
temporal aspects. Perhapsmisled by the names, an objection has been leveled
that these theories assume the branching of time or of space-time itself. But
what branches, according to these theories, is spatio-temporal (temporal)
histories andnot space-time (time).Weiner’s postulate provides an argument
for this verdict, as it makes the following construction possible.

Having a branchingmodel of possible histories, onemight want to coordi-
nate, in a temporal or spatio-temporal sense, events belonging to alternative
histories. The motivation for this is clearly seen in a temporal case, as we
often wonder what would have occurred at a given instant of time (e.g., 9 am
this morning) if things had gone differently in the past. Onemight thus want
to view some incompatible events as possibly occurring at the same instant of
time. The result of introducing such temporal coordinates would be a theory
of Branching Time with temporal instants, with the set of instants naturally
identifiedwith time. Since the time so constructed is common to all histories,
it cannot branch, though histories do branch.1⁶ The same motivation, if
applied to spatio-temporal histories, yields the concept of spatio-temporal
(point-like) locations, with the underlying idea that events from alternative
histories belong to one and the same location of this sort. The set of spatio-
temporal (point-like) locations is analogously read as space-time.

The significance of Weiner’s postulate is that it provides a necessary (but
not sufficient) condition for spatio-temporal locations to be definable in BST
structures. To prove this claim we first define space-time locations:

1⁶ For a theory of Branching Time with Instants, see Belnap et al. (2001, Ch. 7A.5).
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Definition 2.9 (BST with space-time locations). Let ⟨W,<⟩ satisfy Pos-
tulates 2.1–2.5. A partition S of W is a set of spatio-temporal locations of
⟨W,<⟩ iff

1. For each history h in W and for each s ∈ S, the intersection h ∩ s
contains exactly one element.

2. S respects the ordering, i.e., for s,s′ ∈ S and h1,h2 ∈Hist, s∩h1 6 s′∩h1

iff s∩h2 6 s′∩h2.1⁷

An auxiliary result is that the history-relative suprema of upper bounded
chains, guaranteed to exist by Postulate 2.5, belong to the same location—if
⟨W,<⟩ admits spatio-temporal locations.

Fact 2.5. Let ⟨W,<,S⟩ satisfy Postulates 2.1–2.5, and let S be a set of spatio-
temporal locations of ⟨W,<⟩. Let l be an upper-bounded chain inW such that
l ⊆ h1 ∩h2, where h1,h2 ∈ Hist. Then for some s ∈ S, {suph1

l,suph2
l} ⊆ s.

Proof. Let c1 = suph1
l and s ∈ S be such that c1 ∈ s. We take the unique

c2 ∈ s∩h2.We need to prove that c2 = suph2
l. Since S preserves the ordering,

and c1 upper bounds l in h1, c2 must be an upper bound of l in h2. Moreover,
c2 must be the least upper bound of l in h2, for if there were a c′2 such that l 6
c′2 < c2, then c1 would not be the least upper bound of l in h1, contradicting
our assumption. Thus, c2 is an h2-relative supremum of l, i.e., c2 = suph2

l,
as required.

Then as a corollary we get that Postulate 2.6 is a necessary condition for
definability of locations S on ⟨W,<⟩:

Corollary 2.1. If ⟨W,<⟩ satisfies Postulates 2.1–2.5 and admits spatio-
temporal locations S, then it satisfies Postulate 2.6.

Proof. Let l and l′ be two upper bounded chains, and let h1, h2 be two
histories towhich both l and l′ belong.Thenby Fact 2.5, their history-relative
suprema will be at the same space-time locations, and the claim follows by
order preservation of S.

Further, the model discussed in Exercise 2.5 shows that definability of
locations S is not a trivial matter, as evidenced by the following:

1⁷ We are using an extension of the ordering notation to singletons here, as s∩h1 is the singleton
set of an event, not an event. The analogous claims for “=” and for “<” follow directly.
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Fact 2.6. There is a strict partial ordering ⟨W,<⟩ that satisfies Postulates 2.1–
2.5, but does not admit spatio-temporal locations.

Proof. By the model given in Exercise 2.5 and by Corollary 2.1, using
contraposition.

2.6 Axioms of the common core of BST

We end this chapter with the “official definition” of a commonBST structure,
pulling together all of the above Postulates, with BST histories defined by
Definition 2.3:

Definition2.10 (CommonBST structure). A commonBST structure is a pair
⟨W,<⟩ that fulfills the following conditions:

1. W is a non-empty set of possible point events.
2. < is a strict partial ordering denoting a pre-causal relation on W .
3. The ordering < is dense;
4. The ordering contains infima for all lower bounded chains;
5. The ordering contains history-relative suprema for all upper bounded

chains;
6. Weiner’s postulate: Let l, l′ ⊆ h1 ∩ h2 be upper bounded chains in

histories h1 and h2. Then the order of the suprema in these histories
is the same:

sup
h1

l 6 sup
h1

l′ iff sup
h2

l 6 sup
h2

l′.

7. Historical connection: Any two histories have a non-empty intersec-
tion, i.e., for h1,h2 ∈ Hist, h1 ∩h2 ̸= /0.

2.7 Exercises to Chapter 2

Exercise 2.1. Complete the sketch of the proof of Fact 2.1(5). Then prove
that, if a subset of a partially ordered set is maximal downward directed,
then it is upward closed.
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Hint: Rework the proof of Fact 2.1(5) in an appropriate way.

Exercise 2.2. Prove the M property (Fact 2.4):
For every pair e1,e5 of point events in W , there are e2,e3,e4 in W such that
e1 6 e2, e5 6 e4 and e3 6 e2, e3 6 e4.

Hint: Use historical connection and the directedness of histories. An explicit
proof is given in Appendix B.2.

Exercise 2.3. Let ⟨W,6⟩ be a partially ordered set satisfying Postulates 2.1
and 2.2. Prove that if every history of W is downward directed, then so is W
as a whole. (Note that the assumption is true, for example, if each history is
isomorphic to Minkowski space-time.)

Hint: Pick any e1,e5 ∈W . If these events share a history, we are done. If not,
invoke the M property to find appropriate lower bounds. An explicit proof
is given in Appendix B.2.

Exercise 2.4. Let ⟨W,6⟩ be a partially ordered set satisfying the infima
postulate 2.4. Show that this postulate does not imply the existence of
history-relative suprema for upper bounded chains (i.e., it does not imply
Postulate 2.5).

Hint: Take a maximal chain in history h and its Dedekind cut {A,B}, where
A < B. (See Appendix A.1 for the definition.) The upper sub-chain B thus
has an infimum. Suppose that it belongs to B. Then this infimum is also
a minimal upper bound for A. One can show, however, that the infima
postulate does not prohibit the existence of another minimal upper bound
for A in h. Then in h there is no unique minimal upper bound of A, and so
A has no supremum in h (and hence no supremum simpliciter). Although
a topology for BST has not yet been introduced (see Chapter 4.4), one
can reasonably suspect that the structure in question violates the Hausdorff
property. The postulate of history-relative suprema accordingly assures that
all histories are Hausdorff.

Exercise 2.5. Show that Postulate 2.6 is independent of the remaining
postulates 2.1–2.5.

Hint: For a structure that satisfies Postulates 2.1–2.6, one can pick a simple
two-histories structure in which each history h1 and h2 is isomorphic to
the two-dimensional real plane with the Minkowskian ordering 6M (see
Eq. 2.1).
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For a structure that satisfies Postulates 2.1–2.5 but violates Postulate 2.6,
consider the essentially linear two-history structure depicted in Figure 2.4.1⁸

h1

c

q1

e

p1
l

h2

c

q2

e

p2

l′
l′ l

Figure 2.4 Postulate 2.6 is violated by chains l and l′.

1⁸ The figure is based on a drawing by M. Weiner. For a different example that is essentially two-
dimensional, see Appendix A of Müller (2005).


	Contents
	Preface
	Real possibilities as alternatives for rather than alternatives to
	Our World
	Events
	Histories
	Temporal directedness
	Actuality and alternatives to vs. alternatives for
	Eliminative analysis or modalism 
	Possible worlds or alternative states of one world
	Example 1: Simple cases
	Example 2: Two time-like splitting points
	Example 3: Four splitting points, layered in two SLR pairs

