
3
Two Options for the Branching

of Histories

3.1 Indeterminism as the branching of histories

The branching of histories in BST is intended to represent indeterminism as
a feature of our world. Now, if a common BST structure contains just one
history, then it is trivial from the perspective of indeterminism: all events
are compatible, and the picture of a world with just one history is that of a
deterministic world. Since there aremultiple histories in any non-trivial BST
structure, there are different ways in which these histories can interrelate. A
strong intuitive principle is historical connection (Postulate 2.2): The idea
is that any two histories should share some common past. As we said, we
will show that historical connection is implied by stronger principles con-
cerning the interrelation of histories. These so-called prior choice principles
(Defs. 3.4 and 3.14) make specific demands on the way in which histories
branch off from one another. The key decision is what the branching of
histories looks like locally: What are the objects at which histories branch?
BST92 decides for points: histories branch, or remain undivided, at points,
which means that there is a maximal element, called a choice point, in the
overlap of any two histories.

The existence of choice points has important implications for the topo-
logical properties of the resulting structures, a matter to which we will turn
later in Chapter 4.4. But do choice points exist, or, more precisely, do the
postulates of a common BST structure decide whether there are choice
points? It turns out that the answer is in the negative: we can show that
both the existence and the non-existence of choice points are live options
for the branching of histories in common BST structures. While BST92
requires the existence of choice points, the “new foundations” theory BSTNF
prohibits the existence of choice points and works with so-called choice sets.
The difference is illustrated by the two common BST structures of Figure 3.1
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44 branching space-times

(a) and (b).1 These structures illustrate the two possibilities for histories to
branch in common BST structures.
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Figure 3.1 Two simple common BST structures with (a) and without (b) a
choice point. Both (a) and (b) depict partial orderings in which there are
two continuous histories branching at point 0. In (a), point 0 is the shared
maximum in the intersection of the histories, so that 0 is a choice point. In (b),
the intersection of the histories has no maximum, and points 01 and 02 are
different history-relative suprema (minimal upper bounds) of the intersection,
which together form a choice set.

We provide a formal definition of these structures, so that we do not rely
on pictures alone. Both structures are defined as quotients of the double
real line

L2 =df {⟨x, i⟩ | x ∈ R, i ∈ {1,2}}

under the equivalence relations ≡a and ≡b, which are defined, respec-
tively, as

⟨x, i⟩ ≡a ⟨x′, i′⟩ ↔ (x = x′∧ (i = i′∨ x 6 0));

⟨x, i⟩ ≡b ⟨x′, i′⟩ ↔ (x = x′∧ (i = i′∨ x < 0)).

These relations differ only in their handling of x = 0. The ordering on
the quotient structures Ma =df L2/ ≡a and Mb =df L2/ ≡b is defined
uniformly via

[⟨x, i⟩]< [⟨x′, i′⟩]⇔df (x < x′∧ [⟨x, i⟩] = [⟨x, i′⟩]).

1 These structures have just the bare minimum of complexity to fulfill the axioms of Def. 2.10 in
a non-trivial way: they contain just two histories each. Furthermore, they do not include any spatial
extension—so in fact they are branching time structures as well.
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It is easy to check that these structures are non-empty partial orderings
satisfying all the conditions of a common BST structure. The two histories
ha

1,h
a
2 in Ma and hb

1,h
b
2 in Mb are, respectively (for γ one of a or b),

hγ
1 = {[⟨x,1⟩] ∈ Mγ | x ∈ R}; hγ

2 = {[⟨x,2⟩] ∈ Mγ | x ∈ R}.

The intersections of these two histories are, respectively, the upper bounded
chains

la =df ha
1∩ha

2={[⟨x,1⟩]∈Ma | x6 0}; lb =df hb
1∩hb

2={[⟨x,1⟩]∈Mb | x< 0}.

The difference is the following: while the chain la in Ma has a maximal
element, [⟨0,1⟩], the chain lb in Mb has nomaximal element.That latter chain
instead has two different history-relative suprema:

suphb
i

lb = [⟨0, i⟩], i = 1,2.

3.2 On chains in common BST structures

As history-relative suprema of chains will play a crucial role in the chapters
to come, we provide a number of pertinent definitions and facts.

Definition3.1 (Chains and related sets). LetW be a commonBST structure.
We define the following classes of chains and related sets in W :

• Ce: the set of chains ending in, but not containing, e. That is:
l ∈ Ce iff l is an upper bounded chain and there is some h ∈ Hist

for which l ⊆ h and suph l = e, but e ̸∈ l.
• S (l): the set of history-relative suprema for an upper bounded chain l:

S (l) =df {s ∈W | ∃h ∈ Hist [l ⊆ h∧ s = suph l]}.

• For l a chain and e ∈W , we define initial and final segments:

l6e =df {e′ ∈ l | e′ 6 e}; l>e =df {e′ ∈ l | e′ > e};

• Pe: the proper past of e:
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Pe =df {e′ ∈W | e′ < e}.

We establish the following Facts, using the existence of history-relative
suprema and Weiner’s postulate (see Section 2.5):

Fact 3.1. Let l be an upper-bounded chain in a common BST structureW and
l ⊆ h′ for some h′ ∈ Hist(W ), and s = suph′ l. Then for all h ∈ Hs, we have
suph l = s.

Proof. Assume that s ∈ h. Observe that {s} is a (trivial) chain with
suph∗{s}=s for any h∗ ∈ Hs. We can use Weiner’s postulate on the chains l
and {s}. As suph′{s}=s= suph′ l, we also have to have suph l= suph{s}=s.

Alternatively, the result also follows from the definition of suprema and
the downward closure of histories, so Weiner’s postulate does not need to be
used—see Exercise 3.7.

Fact 3.2. Let l be an upper bounded chain and h1,h2 ∈ H[l], and let

suph1
l = s1 ̸= s2 = suph2

l.

Then there is no history h containing both s1 and s2.

Proof. Assume otherwise, and let {s1,s2} ⊆ h for some h ∈ Hist. We have
l ⊆ h, since s1 ∈ h and l 6 s1. By Fact 3.1, we have both suph l = s1 (as s1 ∈ h)
and suph l = s2 (as s2 ∈ h), contradicting our assumption that s1 ̸= s2.

Here is another useful fact about the suprema of chains. If a chain l
contains its history-relative supremum s, s ∈ l, then a chain obtained by
removing s from l has the same history-relative supremum, s. An analogous
fact holds for infima.

Fact 3.3. The suprema and infima of maximal chains are unaffected by the
removal of the supremum or infimum:

1. Let l be amaximal upper bounded chain, and let h∈Hist such that l ⊆ h.
Let s =df suph l. Then for l′ =df l \{s}, we also have suph l′ = s.

2. Let l be a maximal lower bounded chain, and let e =df inf l. Then for
l′ =df l \{e}, we also have inf l′ = e.
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Proof. (1) If s ̸∈ l, we have l′ = l, and there is nothing to prove. Otherwise,
let s′ =df suph l′. Clearly, l′ 6 s, so s′ 6 s (by the definition of suprema). Now
assume for reductio that s ̸= s′, i.e., s′ < s. By the construction of l′, we then
have

(∗) ∀x ∈ l [x ̸= s → x 6 s′].

By density, there is some e∈W for which s′ < e< s. By (∗), we have e ̸∈ l. But
then, again by (∗), we have that l∗ =df l∪{e} is also a chain with suph l∗ = s,
and l∗ ) l. This contradicts the maximality of l. So, we have s = s′.

The proof for (2) is exactly parallel to that for (1).

Our next Fact concerns the maximality of chains in a history h ∈ Hist(W )

and in W :

Fact 3.4. Let l be a maximal chain in h ∈ Hist(W ). Then l is a maximal chain
inW as well.

Proof. For reductio, let us suppose that l is a maximal chain in h ∈ Hist(W ),
but not in W . Since l is not a maximal chain in W , there exists some e in
W\l such that the set l ∪ {e} forms a chain. Observe that (†) l < e, since
otherwise there would be some element x ∈ l such that e < x, from which
it follows by downward closure of h that l is not a maximal chain in h,
which is a contradiction. Thus l is an upper-bounded chain in W , so we
can apply the history-relative supremum postulate to conclude that l has an
h-relative supremum s = suph l ∈ h. By maximality of l, s ∈ l and (by the
same assumption) s is a maximal element of h. By Fact 2.1(9), s is then a
maximal element of W , so there is no e > l, contradicting (†). Thus l is a
maximal chain in W .

The next Fact shows that the proper past of an event e consists of all the
chains ending in, but not containing, e.

Fact 3.5. For e ∈W , we have

Pe =
∪

l∈Ce

l.

Proof. “⊇” Let x ∈
∪

l∈Ce l, i.e., x ∈ l for some l ∈ Ce. Since l ∈ Ce, there is
h ∈ He such that suph l = e and e ̸∈ l, we have l < e, and thus, x < e, i.e.,
x ∈ Pe.
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“⊆” Let x ∈ Pe, i.e., x < e. Then {x,e} is a chain, which by the Hausdorff
maximal principle2 can be extended to a maximal chain l ending in e. By
Fact 3.1, for any history h in He we have that suph l = e. By Fact 3.3, for
l′ =df l \ {e} we also have suph l′ = e, whereby we have some l′ ∈ Ce for
which x ∈ l′.

3.3 Extending common BST: two options

As suggested by Figure 3.1, there are two options for fulfilling the common
BST axioms in a simple case. Which one should we choose? We could now
enter into a philosophical discussion as to the correct manner in which we
are to proceed—but we refrain from attempting any a priori arguments here.
One can give good reasons for each option. Thus, in favor of the existence of
choice points, one can argue that a causal account of indeterministic choice
requires a special final element of indecision and, therefore, a maximal
element of any two branching histories. On the other hand, since choice
points are distinguished as maximal elements of the overlap of histories,
considerations of uniformity argue against them: as we will see, it is possible
to have branching without maxima in the overlap of histories in a uniform
way. The further topological considerations to be discussed in Chapter 4.4
also argue against the assumption of choice points. In our view, these
controversial issues provide a good motivation for investigating common
BST structures both with and without choice points.

As a matter of fact, the theory of Branching Space-Times was initially
developed with the requirement of the existence of choice points, and the
resulting axiomatic theory, BST92 (named after the year of publication of
the original BST paper by Belnap (1992)), has proved to be fruitful for quite
a number of applications, for example, to causation (Belnap, 2005b), to
probability theory (Weiner and Belnap, 2006; Müller, 2005), and to physics
(Placek, 2004, 2010). On the other hand, in applications of BST to physics
in which an attempt is made to link BST histories to physical space-times,
topological considerations argue against the existence of choice points,
so that a slightly different axiomatic theory, BSTNF (with “NF” for “new
foundations”), is to be preferred.

2 See note 8 on p. 30.
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We will proceed by introducing both developments of the common BST
framework, BST92 and BSTNF. Each will be obtained by adding a (different)
axiom, a prior choice principle, called PCP92 or PCPNF, to the list of axioms
given in Definition 2.10. We will investigate the consequences of the result-
ing theories, focusing in particular on how they define local possibilities
and how histories are to branch in each of them. Finally, we will broach
the larger question of whether the differences between the two kinds of
structures really matter. While pointing to the significance of topological
differences on the one hand, on the other hand we exhibit translatability
results that lessen the importance of topology somewhat. In a nutshell, if
we have a BST92 structure with topologically worrisome features, it can be
translated into a BSTNF structure, in which the worrisome feature is absent;
and a translation in the other direction is also available. The remainder of
this chapter is divided into sections devoted to BST92, to BSTNF, to issues of
topology, and to the translatability of the two kinds of structures.

3.4 BST92

BST92 is the original BST theory put forward by Belnap (1992). Here we
approach it somewhat differently, namely by considering it as a development
of the common BST framework.The development consists of the addition of
just a single axiom, the Prior Choice Principle (PCP92), to the set of axioms
of Definition 2.10.

3.4.1 BST92 in formal detail

As we just said, the theory of BST92 posits the axioms of a common BST
structure together with the so-called prior choice principle (PCP92).3 In
order to motivate the idea of prior choice, we start with the notion of
undividedness. Let two histories h1,h2 share some event e ∈ h1 ∩ h2. Then
they also may or may not share a later event (provided there is one at all). In
the former case, we call the histories undivided at e:

3 Belnap (1992) does not mention Weiner’s postulate, which proved critical for some applications
developed later, especially regarding probability theory. See note 15.
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Definition 3.2 (Undividedness). Let h1,h2 ∈ Hist, and let e ∈ h1 ∩ h2. We
say that h1 and h2 are undivided at e (h1 ≡e h2) iff either there is no e′ ∈W
at all for which e < e′, or there is some e′ ∈ h1 ∩h2 for which e < e′.

There is also a relation opposite to undividedness: in case two histories
h1,h2 share an event e but no event later than e, that event e is a maximum
in the intersection of the histories h1∩h2. In that case (provided that e is not
maximal in W to begin with), we say that the histories split at e:

Definition 3.3 (Splitting at a point; choice point). Let h1,h2 ∈ Hist, and let
e ∈ h1 ∩ h2. We say that h1 and h2 split at e, and that e is a choice point for
histories h1 and h2 (h1 ⊥e h2) iff it is not the case that h1 ≡e h2.We extend the
“⊥” notation to sets, with the universal reading, i.e., for H ⊆ Hist, we write
h1 ⊥e H iff for any h ∈ H , we have h1 ⊥e h.

It immediately emerges that this definition agrees with the informal explana-
tion of a choice point for h1 and h2 as a maximal element in the intersection
h1 ∩h2.

Basically, the prior choice principle PCP92 requires thatwhenever an event
e belongs to one history h1 but not to another history h2, these two histories
split at a choice point c in the past of e:

e ∈ (h1 \h2)→∃c [c ∈ h1 ∩h2 ∧ c < e∧h1 ⊥c h2].

A motivation for PCP92 is that there should be a reason (however minimally
understood) in the past of each point event for its being in one history rather
than another.

We have written the notion of undividedness in a way that suggests
that it is an equivalence relation, which seems natural enough. It turns
out, however, that in order to enforce the transitivity of the relation of
undividedness, PCP92 needs to be formulated not for points, but for lower
bounded chains in the difference of two histories, as follows.⁴

⁴ Why not generalize PCP92 to other sets of events contained in a history? Such a set can spread
through much space and lack homogeneity, and so, intuitively speaking, a PCP of so large a scope
seems unreasonable. Chains, however, form a distinguished category as they naturally represent
(parts of) world-lines of (spatially non-extended) objects. And it is a common practice to ask
questions like “where did a given particle go up, instead of going down?” We owe our thanks to
J. Luc for discussing various versions of PCP.
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Definition 3.4 (BST92 prior choice principle, PCP92). A common BST
structure ⟨W,<⟩ fulfills the BST92 prior choice principle iff it fulfills the
following condition:

Let h1,h2 ∈ Hist be two histories, and let l ⊆ (h1 \h2) be a lower-bounded
chain that belongs fully to history h1 but does not intersect history h2. Then
there is a choice point c ∈ h1 ∩ h2 such that c < l and h1 ⊥c h2, i.e., c lies
properly below l and is a choice point for h1 and h2, which is maximal in the
intersection of h1 and h2.

That definition obviously implies the point version described above, as any
singleton {e} is a lower-bounded chain.⁵ It also ensures the property of his-
torical connection independently of the explicit requirement of Def. 2.10(7):
any two different histories have a non-empty difference (see Fact 2.1(7)), so
that it follows that they have to share a choice point.

We can now enter the BST92 prior choice principle in its official form as
an additional item to our list of axioms for BST92:

Definition 3.5 (BST92 structure). A BST92 structure is a common BST
structure ⟨W,<⟩ (Definition 2.10) that also fulfills the BST92 prior choice
principle, PCP92 (Definition 3.4).

We can prove that in BST92 structures, there is a choice point (i.e., a
maximal element in their overlap) for any two histories.

Fact 3.6. Let h1,h2 ∈ Hist be histories of a BST92 structure, h1 ̸= h2. Then
there is a maximal element in h1 ∩h2.

Proof. Left as Exercise 3.1. Note that by Def. 3.3, any maximal element in
h1 ∩h2 is a choice point for h1 and h2.

3.4.2 Local possibilities

One important application of PCP92 is the construction of the concept of
possibilities open at an event. For any event e, the relation≡e among the set
He of all the histories containing e is obviously symmetrical (by the form of
the definition) and reflexive (note that the definition takes care of e being a
maximal element in W as well). It is transitive as well, as proved below.

⁵ See Belnap (1992) for an argument that the chain version properly strengthens the point version
of PCP92.
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Fact 3.7. Suppose that a poset ⟨W,<⟩ satisfies density, existence of infima and
PCP92. Then for every e inW , the relation≡e is transitive on the set He.

Proof. Fix some e ∈ W , and let h1,h2,h3 ∈ He. Suppose toward a contra-
diction that (†) h1 ≡e h2 and h2 ≡e h3, but that h1 ̸≡e h3. By the definition
of undividedness h1 ̸≡e h3 implies that e is not maximal in W , and hence
e is not maximal in any history containing e (by Fact 2.1(9)). Consider the
subset of h1∩h2 that is properly above e. Since h1 ≡e h2, and e is notmaximal
in h1 and h2, this set is nonempty. So by the Hausdorff maximal principle,
there is a maximal chain l of points above e in h1 ∩h2 (i.e. a maximal chain
lower-bounded by e). By Postulate 2.4, inf(l) exists, and e6 inf(l).Moreover,
inf(l) = e since by maximality of l there are no points properly between e
and l, as this would contradict density. Further h1 ̸≡e h3 implies that no
point later than e belongs to both histories, so l ⊆ h1 but l ∩h3 = /0. By the
construction, l ⊆ h2, so l ⊆ h2 \h3. Thus by PCP92 (Def. 3.4), there must be
a choice point e1 for h2 and h3, (‡) h2 ⊥e1 h3, strictly below l, e1 < l. Since
e = inf(l), by the definition of infima, e1 6 e. But if e1 < e, we contradict (‡)
as e ∈ h2 ∩h3. And, if e1 = e, then h2 ⊥e h3, contradicting (†).

Transitivity of ≡e allows one to establish that a choice point posited by
PCP splits not just two histories, but a history and a set of histories:

Fact 3.8. Let c < l, l ⊆ h1 \h2, and h1 ⊥c h2. Then H[l] ⊥c h2, where H[l] =

{h ∈ Hist | l ⊆ h} is the set of histories containing all of l.

Proof. Suppose toward a contradiction that there is some h ∈ Hl such that
h�⊥c h2. The latter implies, since c ∈ h (for c < l) and c ∈ h2, that h ≡c h2.
Since l ∈ h∩h1 and c < l, h ≡c h1. By the transitivity of≡c we get h1 ≡c h2,
which contradicts our premise.

Given transitivity,≡e is an equivalence relation on He.We use the notation
Πe to indicate the partition of histories from He into equivalence classes
according to ≡e, i.e.,

for H ⊆ He with H ̸= /0, we have H ∈ Πe ↔ H is maximal with respect to
the property that ∀h1,h2 ∈ H [h1 ≡e h2].

It may be that in fact all histories from He are undivided at e, i.e., e is not
maximal in the intersection of any two histories from He. In that case, we
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have Πe = {He}. On the other extreme, it may be that any two histories in
He split at e, so we have {h} ∈ Πe for every h ∈ He.

The relation of undividedness at an event is significant, as it allows us to
define an entirely objective concept of ‘elementary possibility at e’.

Definition 3.6 (Elementary possibility at e). Let Πe be the partition of He

induced by ≡e. By an elementary possibility at e (a basic outcome of e) we
mean a member of Πe.

The concept of elementary possibilities deserves a few comments.

1. An elementary possibility can be represented as a set of histories. This
idea is copied from ‘possible worlds’ theories.

2. Which English phrase shall we use for Πe, apart from ‘the elementary
possibilities (open) at e’? One might think of Πe as representing what
might happen at e, or the way things might go immediately after e, or
as the possible outcomes (results) of e.

3. The range of elementary possibilities open at e is therefore not an extra
primitive. It is definable from the very structure of Our World ⟨W,<⟩.

4. An elementary possibility at e is always a set of histories, all of which
contain e. It may be typically or even always true inOurWorld that the
unit set {h} of a history from He is not an elementary possibility at any
e.Thus, the competing definition of an elementary possibility as such a
unit set of a history would be too fine-grained (though perhaps not too
fine-grained for every purpose). There are also possibilities open at an
event that are not elementary. At least any union of a set of elementary
possibilities at e will need to be counted as itself a possibility at e. Some
notions of less immediate possibilities, or outcomes, will be discussed
in Chapter 4.1.

The uniquely determined partition Πe is a proper locus for a ground-level
theory of objective transition possibilities (or outcomes) in the single case.
The significance is this: the finest partition is delivered by the causal structure
of Our World, not by human interests, language, concepts, universals, other
possible worlds, or evolutionary entrenchment. The possibility in question
is conditional in form (the condition being that the point event occurs), but
more than that, it has a concrete foothold in Our World.
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With the concept of local possibilities, we are finally in a position to
define a local, modal, and relativity friendly notion of determinism and
indeterminism.

Definition 3.7 (Determinism and indeterminism). Apoint event, e, is inde-
terministic (is a choice point) if Πe has more than one member. Otherwise,
it is deterministic.

As a rhetorical variant, we may say that Our World is indeterministic
at e. Note that on this account it makes perfectly good sense to locate
indeterminism not metaphorically in a theory, but literally in our world,
something verymuch in contrast with the dominant views in the philosophy
of science.⁶ The concept is also local: it makes sense to say that Our World
was indeterministic in Boston yesterday, but might not be so in Austin
tomorrow.

3.4.3 The pattern of branching of BST92

Given how frugal the axioms of BST92 are, there are many different kinds
of structures of BST92. Since our aim is that the theory can have applica-
tions in physics, it will be useful to single out BST92 structures in which
histories are isomorphic to Minkowski space-time, or to some solutions of
the field equations of General Relativity. Details of these will be discussed
in Chapter 9. At this stage, we will explore the pattern of branching that
the BST92 axioms impose: If two histories split at a single choice point c,
at which regions they are identified, and what do the regions of difference
look like? Understandably, the histories share the past light-cone of c, and
have separate future light-cones of c, but are the events space-like separated
from c (forming the so-called ‘wings’, or the ‘elsewhere’ of c) in the shared
region, or not? As we shall see, PCP92 provides a principled answer to this
query.

To explore the matter further, it would be helpful to introduce some of
the steps in our construction of Minkowskian Branching Structures, to be

⁶ The standard approach in the philosophy of science (e.g., Earman, 2006; Butterfield, 2005) is
to take determinism and indeterminism to be properties of theories, not of our world. According
to that approach, roughly, a theory is called deterministic iff all of its models that have isomorphic
initial segments also have isomorphic final segments. The individual models are usually taken to be
separate possible worlds, so there is no notion of branching histories involved in that approach to
indeterminism.
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provided in Chapter 9.1. Here we put down a preliminary target definition
(for the precise formulation, see Definition 9.5):⁷

Definition 3.8 (Target notion of MBS). A Minkowskian Branching Struc-
ture (MBS) is a BST structure in which each history is order-isomorphic
to Minkowski space-time, with the pre-causal ordering generalizing the
Minkowskian ordering <M of Definition 2.1.

To be more specific, let us set out the task of producing an MBS that
models a measurement of spin with two possible outcomes (idealized as
histories), measured spin up or measured spin down. How does this mea-
surement affect the causal contemporaries of the measurement? Do they
belong to the intersection of the two histories, or just to one or the other?
Are they ontologically indefinite or ontologically definite (if that language
helps), relatively or absolutely?

Given the problem, we can consider an MBS that satisfies the following
stipulations:

1. There are exactly two histories.
2. Each history is order-isomorphic to Minkowski space-time.
3. There is precisely one choice point c.

The matter is resolved by the Prior Choice Principle of BST92, as the
following fact testifies:

Fact 3.9. Let ⟨W,<⟩ be a BST92 structure that contains two histories, h1 and
h2, and exactly one choice point, c, which is maximal in h1∩h2. It follows from
the BST92 Prior Choice Principle, PCP92, that the ‘wings’ of c, i.e.X = {e∈W |
eSLRc}, must be in the intersection h1 ∩h2 of the two histories.

Proof. By the definition of X , no element of X has a choice point in its past.
Therefore, if an element of X failed to lie in both h1 and h2, PCP92 would be
violated.

Thus, given PCP, the true picture of two Minkowski histories with exactly
one choice point must be as it is displayed in Figure 3.2. The intersection of

⁷ In Chapter 9.1 we exploreMBSs that are BSTNF structures. A series of papers listed in Footnote 4
of Chapter 9 (p. 307) develops MBSs that are BST92 structures.
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the two histories is shaded, and the upper borders belong ‘on the light side’
in the respective differences.

h1

c

l

s1

h1\ h2 h2 \ h1

h1 ∩ h2 h1 ∩ h2

h2

c
l

s2

Figure 3.2 ‘Wings’ (‘elsewhere’) belong to the intersection.

This formal result deserves additional comments:

(i) Observe that the difference made by the choice at c pertains only
to the future of possibilities of c. It does not pertain to the causal
contemporaries of c.

(ii) One might imagine that whenever there is a tiny indeterministic
situation such as spin up/spin down, the entire causally unrelated
universe simultaneously splits in twain. BST92 gives a sharp expla-
nation of how and why this picture is generally wrong. It also offers a
competing rigorous and positive theory of what is right: splitting in
Our World fundamentally occurs at point events. A single splitting
affects only its causal future, not everything above a simultaneity
slice.

(iii) Thus, a single, local splitting (a single chancy event, idealized to be
point-like) does not give rise to a simultaneity slice that divides h1

into h1∩h2 and h1\h2. BST is thus in conflict with any interpretation
of special relativity that assumes that a wave-function collapse occur-
ring along a simultaneity surface can be effected by a single chancy
event such as a measurement.⁸

A feature specific to the BST92 pattern of branching is the topological
difference between what might be called “indeterminism without choice”

⁸ In Chapter 10wewill discuss how the additional resources provided by BST—most prominently,
modal correlations, to be discussed in Chapter 5—can be used to define different kinds of splitting.
These, however, need coordinated choice points, and for each of them, the pattern of branching is as
described, affecting only its causal future.
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Figure 3.3 Two binary SLR choice points giving rise to four histories.

and “indeterminism with choice”. To explain, consider again Figure 3.2 and
a maximal chain, l, that traverses from the histories’ overlap, h1∩h2, toward
the histories’s difference h1 \h2, avoiding c. Does it have a last element in the
intersection of h1∩h2?Note that the borders of a pair of histories that overlap
do not belong to the overlap (apart from c), since they are above c.The chain
l therefore has two minimal upper bounds, say, s1 on the upper light cone
of h1 and s2 on the upper light cone of h2. If you are ‘traveling along’ this
track, the situation as the track draws to a close is indeterministic: it is not
determined whether you will wind up at s1 or s2. Still, there is no choice:
the matter is entirely in the hands of your causal contemporary, c. Things
are different, however, for a chain converging to a choice point, c, in the
histories’ overlap: this chain has a unique least upper bound (supremum),
namely c. The difference between the two cases seems to be this. The only
reason that l underdetermines whether s1 or s2 will occur is that it does not
exhaust the entire past of either of these points: given the set of all proper
predecessors of s1, which includes a choice point for histories containing
s1 vs. s2, the outcome, s1, is uniquely determined (and analogously for s2).
In contrast, the entire past culminating in c does not suffice to decide what
happens next.

Figure 3.3 illustrates the combination of choice points in the simplest case,
in which two SLR choice points e1 and e2 have two outcomes each (denoted
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“+” and “−”). The choices at e1 and e2 are uncorrelated, giving rise to a total
of four histories. As we will show in Chapter 5, BST also allows for structures
in which choice points are coordinated; compare Figure 5.1 on page 107.

3.4.4 Transitions

The notion of a transition is a powerful tool for discussing indeterminism.
Belnap (1999) adopts the notion from von Wright (1963), who provides
the basic idea of a transition as “first this, and then that”, adding formal
rigor. Generally, a transition is a pair ⟨I,O⟩, written I � O, in which I is
appropriately prior to O, and O is, in some appropriate sense, an outcome of
I. There are several notions of transitions, which we discuss in Chapter 4.1.
For our immediate purposes we focus here on the simplest notion of a
transition, a basic transition, which in BST92 is from a point event e to one of
the immediate possibilities open at e (i.e., from e to amember of the partition
Πe of the set He of histories containing e),

τ = e � H, e ∈W, H ∈ Πe.

Observe that the kind of transitions that we consider are modal transitions.
They are not merely state transitions. If at a certain moment, for example,
there is a (real) possibility of motion, then ‘remaining at rest’ would cut off
certain possibilities and thus be an (indeterministic) transition event of a
kind that is the object of our investigation, even though there is no ‘change
of state’.

Basic transitions are divided up into those that witness local indeter-
minism, and those at which, so to speak, nothing happens. The formal
distinction is provided bywhether or not there aremultiple immediate future
possibilities open at e, or just one. Thus, at an indeterministic event e (at a
choice point), the partition Πe has more than one member (histories split
at e; there are h1,h2 ∈ He for which h1 ⊥e h2), whereas at a deterministic
event e, there is only one immediate possibility for the future, whence for all
h1,h2 ∈ He, we have h1 ≡e h2, and Πe = {He}.

Definition 3.9 (Deterministic and indeterministic basic transitions). A
basic transition is a pair ⟨e,H⟩, written e � H , with e ∈ W and H ∈ Πe.
For h ∈ He, we write Πe⟨h⟩ for the member of Πe that contains h, so that
the basic transition e � Πe⟨h⟩ is from e to that (unique) basic outcome of
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e that contains h. A basic transition is indeterministic iff Πe has more than
one member. On the other hand, if Πe = {He}, then the transition e � He

is called deterministic or trivial.

We denote the set of basic indeterministic transitions of a BST92 structure
⟨W,<⟩ by TR(W ), and the set of all basic transitions by TRfull(W ).

The set of basic transitions, whether deterministic or indeterministic,
admits a natural ordering.

Definition 3.10 (Transition ordering). For τ1 = e1 � H1, τ2 = e2 � H2,
we say that τ1 precedes τ2, written τ1 ≺ τ2, iff (e1 < e2 and H2 ⊆ H1). The
companion non-strict partial ordering is defined via τ1 4 τ2 ⇔df (τ1 ≺ τ2 ∨
τ1 = τ2).

We prove next that that ≺ is a partial ordering:

Fact 3.10. Let ⟨W ′,<′⟩ =df ⟨TRfull(W ),≺⟩ be the set of all basic transitions
of a BST92 structure ⟨W,<⟩ together with the transition ordering ≺. Then (1)
TRfull(W ) is non-empty and (2)≺ is a strict partial ordering on TRfull(W ).

Proof. (1) Since W is non-empty, there is some e ∈ W and hence He ̸= /0
(see Fact 2.1(4)), so there is a non-empty H ∈ Πe, and hence there exists a
transition e � H ∈W ′.

(2) Since< is irreflexive,≺ is irreflexive as well. For transitivity, let (e1 �
H1)≺ (e2 � H2) and (e2 � H2)≺ (e3 � H3). By transitivity of< we have
e1 < e3. Also, from H2 ⊆ H1 and H3 ⊆ H2 we have H3 ⊆ H1 by transitivity
of ⊆. Together this establishes (e1 � H1)≺ (e3 � H3).

We can also prove that on the assumption that ⟨W,<⟩ has no maxima nor
minima, TRfull(W ) also has no maxima nor minima; see Exercise 3.2.

The following facts about alternatives to the definition of the transition
ordering (Def. 3.10) will be helpful later on.

Fact 3.11. Let τ1 = e1 �H1, τ2 = e2 �H2 be transitions in a BST92 structure
⟨W,<⟩. (1) Generally, τ1 ≺ τ2 iff (e1 < e2 and He2 ⊆ H1) iff (e1 < e2 and for
every h ∈ He2 it is the case that H1 = Πe1⟨h⟩). (2) If τ1 is deterministic, then
τ1 ≺ τ2 iff e1 < e2. (3) For the non-strict companion order, we have τ1 4 τ2 iff
(e1 6 e2 and H2 ⊆ H1).

Proof. (1)Weprove the first “iff”, fromwhich the second follows immediately
(left as Exercise 3.3). Let e1 < e2. We have to show that H2 ⊆ H1 iff He2 ⊆ H1.
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As H2 ⊆He2 , the “⇐” direction is trivial. For “⇒”, assume H2 ⊆H1, and pick
an arbitrary h ∈ H2, so h ∈ H1. Pick next some h′ ∈ He2 . We have e2 ∈ h∩h′,
which establishes h ≡e1 h′. It follows that h′ ∈ H1 = Πe1⟨h⟩.

(2) The “⇒” direction is trivial. For “⇐”, let e1 < e2, and assume that τ1 is
deterministic, so thatH1 =He1 .Wehave to show thatH2 ⊆H1. By downward
closure of histories (Fact 2.1(5)), we have He2 ⊆ He1 , and H2 ⊆ He2 by
definition, so that H2 ⊆ He2 ⊆ He1 = H1. The claim follows by transitivity
of ⊆.

(3) “⇒”: Assume τ1 4 τ2 (i.e., either τ1 ≺ τ2 or τ1 = τ2). In the first case,
the claim follows from the definition of ≺, in the second case the claim is
obvious as then, e1 = e2 and H1 = H2.

“⇐”: Let H2 ⊆ H1, and let e1 6 e2. Again there are two cases. If e1 =

e2, then, as H1,H2 ∈ Πe1 and Πe1 is a partition, H2 ⊆ H1 implies H2 = H1,
whence τ1 = τ2, establishing the claim.The remaining case, e1 < e2 and H2 ⊆
H1, satisfies the definition of ≺ exactly as in Def. 3.10.

Transitions figure prominently in our account of singular causation,
propensities, and many other applications of BST. Importantly, it can be
shown that the set of transition TRfull(W ) of a BST92 structure ⟨W,<⟩
together with the ordering≺ of Definition 3.10 is a common BST structure.
Under the further assumption that ⟨W,<⟩ has no minimal elements,
⟨TRfull(W ),≺⟩ is a BSTNF structure—a notion that we now go on to define.

3.5 Introducing BSTNF

Similarly to our construction of BST92 structures, we begin with a com-
mon BST structure and then put forward a new prior choice principle,
PCPNF. With this principle in hand, we will define a BSTNF structure as a
common BST structure that satisfies PCPNF. Having achieved this task in
Chapter 3.5.1, we explore some of the basic features of the resulting theory
in Chapters 3.5.2–3.5.3.

3.5.1 The new Prior Choice Principle and BSTNF
structures defined

Working with a common BST structure ⟨W,<⟩, we define a few concepts
needed to formulate PCPNF. The underlying idea of BSTNF is that there
should be no maximal elements in the overlap of histories. Thus, for any
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maximal chain l traversing from the histories’ overlap h1 ∩ h2 to one of
its differences, say h1 \ h2, its segment in the overlap, l′ =df l ∩ h1 ∩ h2,
has at least two history-relative suprema, s1 = suph1

(l′) and s2 = suph2
(l′).

Since typically such pairs of distinct suprema abound for any two histories
h1,h2, we should not say that the two histories split at all such pairs. We had
better pick distinguished pairs, analogous to the topologically distinguished
choice points of BST92. A relevant observation is that a chain may be such
that its pair of distinct suprema s1,s2 cannot be avoided, because any chain
approaching any one of s1,s2 has (at least) two history-relative suprema,
s1 and s2. In contrast, other chains with distinct history-relative suprema
s1,s2 may be such that these distinct suprema can be avoided, that is, there
is a different chain approaching one of s1,s2 that fails to have them both
as history-relative suprema. In fact, given PCP92, there will always be a
chain that has only one history-relative supremum (see Exercise 3.4). But
in common BST structures without PCP92, the former case of unavoidable
history-relative suprema is not excluded. Accordingly, we single out the first
category of sets of history-relative suprema as choice sets, at which histories
split. These observations translate into the following definitions:

Definition 3.11 (Choice set). For e ∈ W , we define the choice set based on
e, written ë, to be the intersection of the sets of suprema of all chains ending
in e (Def. 3.1).⁹ In case e is a minimal element in W , we have Ce = /0, so we
make sure that e belongs to its own choice set in this case as well.

ë =df

{
{e}, if Ce = /0,∩

l∈Ce S (l), otherwise.

Fact 3.12. For any e ∈W , e ∈ ë.

Proof. If Ce = /0, we have e ∈ ë by definition. Otherwise, for any l ∈ Ce,
e ∈ S (l) by definition, and hence e ∈ ë.

We also call the choice set ë the set of local point-wise alternatives for e.
Note that e then counts as an alternative to itself. The related notions of
alternative histories and history-wise alternatives are defined via the point-
wise alternatives:

⁹ Our notation with the double dot over e is meant to be suggestive of a number of different
history-relative suprema on top of a chain. Think of Figure 3.1(b) rotated counterclockwise by 90
degrees.
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Definition 3.12 (Alternative histories and local history-wise alternatives).
We define the set of alternative histories at ë, Hë, and the set of local history-
wise alternatives for e, Πë, to be

Hë = {h ∈ Hist | h∩ ë ̸= /0}; Πë =df {Hs | s ∈ ë}.

In order to spell out PCPNF, we define twonew relations between histories,
splitting at a choice set and being undivided at a choice set, written h1 ⊥ë h2

and h1 ≡ë h2, respectively, in analogy to the respective BST92 notions.

Definition 3.13. Let h1,h2 be histories in Hist(W ), and let e∈W .We require
as a presupposition for h1 ≡ë h2 and h1 ⊥ë h2 that h1,h2 ∈ Hë (i.e., h1∩ ë ̸= /0
and h2 ∩ ë ̸= /0). Then the relations are defined as follows:

h1 ≡ë h2 ⇔df h1 ∩ ë = h2 ∩ ë;

h1 ⊥ë h2 ⇔df h1 ∩ ë ̸= h2 ∩ ë.

If h1 ⊥ë h2, we say that the choice set ë is a choice set for histories h1 and h2.

With the required notions at hand, we put forward a new prior choice
principle, PCPNF:

Definition 3.14 (PCPNF). Let h1,h2 ∈Hist(W ), and let l be a lower bounded
chain for which l ⊆ h1 but l ∩ h2 = /0. Then there is some e ∈ W for which
e 6 l and for which the set ë of local alternatives to e satisfies h1 ⊥ë h2.

Note the weak relation e 6 l in the formulation of PCPNF, in contradis-
tinction to the strict relation in the formulation of PCP92 in Def. 3.4. For
example, if l has just one element c (i.e., l = {c}) such that c ∈ h1 \ h2 and
c is an element of a non-trivial choice set c̈ ̸= {c}, then the choice set for
l = {c} is just c̈ itself, and h1 ⊥c̈ h2. In such a case we only have the weak
ordering relation, c 6 l.

Having proposed a new prior choice principle, we can now give a full
definition of the “new foundations” for BST, BSTNF:

Definition 3.15 (BSTNF structure). A strict partial ordering ⟨W,<⟩ is a
structure of BSTNF iff it is a common BST structure (Def. 2.10) for which
PCPNF (Def. 3.14) holds.

It can be shown that PCPNF implies historical connection; see Exercise 3.5.
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3.5.2 Local possibilities and the pattern of branching in BSTNF

In this section we ask how local possibilities are represented in BSTNF and
howhistories branch according to this theory. To this end, we first investigate
some features of the relations of splitting ⊥ë and being undivided ≡ë at a
choice set ë. A handy fact that we will use below says that a history and a
choice set intersect at one point event at most:

Fact 3.13. (1) For any h ∈ Hist(W ) and for any e ∈ W , we either have
h ∩ ë = /0, or h ∩ ë = {e′} for some e′ ∈ ë, i.e., a choice set has at most
one element in common with any history. (2) The set of sets of histories Πë

partitions Hë.

Proof. (1) We have two cases here. Case 1: If e is a minimal element of W ,
then by Def. 3.11 we have ë = {e}, and the result follows immediately.

Case 2: If e is not aminimal element ofW , there exists some element x< e.
We can then invoke the Hausdorff maximal principle to extend the chain
{x,e} to a maximal chain l and delete the segment of l that is above e. The
remaining chain l′ =df l<e is a maximal chain upper-bounded by e, i.e., l′ ∈
Ce. If the set h∩ ë ̸= /0, then l′ ⊆ h, and thus if h∩ ë were to contain more
than one element, this would contradict Fact 3.2.

(2) Exhaustiveness is immediate: by definition, ∪Πë = Hë. To prove
disjointness of the elements of Πë, let H1,H2 ∈ Πë such that H1 ̸= H2. Then
H1 = Hs1 and H2 = Hs2 for two distinct members s1,s2 ∈ ë. Let h ∈ H1; by
(1), we then have h ̸∈ H2.

The first part of this fact implies the following interrelation of the two
relations, ≡ë and ⊥ë:

Fact 3.14. Let e ∈ W and let h1,h2 ∈ Hë. Then ≡ë and ⊥ë are mutually
exclusive and jointly exhaustive: we have h1 ≡ë h2 iff not h1 ⊥ë h2.

Proof. Given the assumptions, we have h1 ∩ ë = {s1} and h2 ∩ ë = {s2} for
some s1,s2 ∈ ë. Now by our definitions, h1 ≡ë h2 iff s1 = s2, and h1 ⊥ë h2 iff
s1 ̸= s2.These are mutually exclusive and jointly exhaustive alternatives.

Finally, we can prove amuchdesired consequence of the above definitions:

Fact 3.15. The relation ≡ë is an equivalence relation on the set of alternative
histories at ë, Hë.
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Proof. Let h1,h2,h3 ∈ Hë. We have to establish reflexivity, symmetry and
transitivity. Reflexivity and symmetry are trivial. For transitivity, assume
h1 ≡ë h2 and h2 ≡ë h3, so h1 ∩ ë = h2 ∩ ë and h2 ∩ ë = h3 ∩ ë. By transitivity
of identity h1 ∩ ë = h3 ∩ ë, which implies h1 ≡ë h3.

The immediate corollary of this Fact is that Hë/≡ë is a partition of Hë. We
thus define local possibilities as follows:

Definition 3.16 (Elementary possibility at ë). The set of elementary possi-
bilities open at ë (or of possible outcomes of ë) is the partition Hë/≡ë.

It is then immediately discernible that Hë/≡ë is identical to the partition
Πë of Def. 3.12:

Fact 3.16. Πë = Hë/≡ë.

Proof. The claim is established by this chain of equivalences: h1,h2 ∈ H ∈
(Hë/≡ë)⇔ h1 ≡ë h2 ⇔∃e ∈ ë [e ∈ h1 ∩h2]⇔ h1,h2 ∈ He ∈ Πë.

In what follows, we will use the succinct notation Πë for the possibilities
open at ë.We turn next to facts shedding some light on the pattern of branch-
ing in BSTNF structures. Such structures, being common BST structures,
satisfy historical connection just as BST92 structures do. The new PCPNF,
however, implies that the branching of histories in BSTNF looks different
from the branching in terms of choice points in BST92: there cannot be any
maximal elements in the intersection of histories in a BSTNF structure.

Fact 3.17. Let h1,h2 be two histories in a BSTNF structure ⟨W,<⟩, h1 ̸= h2.
Then h1∩h2, which is non-empty, contains nomaximal elements. Accordingly,
there are no choice points in a BSTNF structure.

Proof. By historical connection (see Exercise 3.5), h1 ∩ h2 ̸= /0. Assume for
reductio that there is a point e that is maximal in h1 ∩h2. By assumption h1

and h2 are distinct histories. It follows from the contrapositive of Fact 2.1(10)
that the element e is not maximal in W . By Fact 2.1(9) this means that in
particular, e is not maximal in h1. Therefore there is some element x in
h1 that lies strictly above e. By the Hausdorff maximal principle, there is a
maximal lower bounded chain l ⊆{x∈ h1 | e6 x}. As e∈ l, we have inf l = e.
Since e is not a maximal element of h1, it follows that l′ =df l \ {e} ̸= /0.
By Fact 3.3, e is also the infimum of l′. As we have l′ ⊆ h1 \ h2, by PCPNF
there is c̈ with some c1,c2 ∈ c̈ such that c1 ∈ h1, c2 ∈ h2, h1 ∩ c̈ = c1 ̸= c2 =

h2 ∩ c̈, and c1 6 l′. Then c1 and c2 cannot share a history (by Fact 3.13(1)).
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However, since e = inf l′, by the definition of inifima, c1 6 e, and as histories
are downward closed, c1 ∈ h2. But we have c2 ∈ h2 as well, which again
contradicts Fact 3.13(1).

We also establish a fact about minimal points in BSTNF structures.

Fact 3.18 (Minimal elements in BSTNF). A minimal point in a BSTNF
structure belongs to all histories of that structure.

Proof. For reductio, let e be a minimal point in a BSTNF structure ⟨W,<⟩
such that e ∈ h1 \ h2 for some histories h1,h2 ∈ Hist(W ). By PCPNF there
is a choice set c̈ for which h1 ⊥c̈ h2, and so there are c1,c2 ∈ c̈ for which
ci ∈ c̈∩hi (i = 1,2), c1 6 e, and c1 ̸= c2. But two distinct c1,c2 ∈ c̈ can exist
only if they are history-relative suprema of some chain l ∈ Ce (i.e., one that
approaches them from below). Thus, l < c1 6 e, so e cannot be minimal,
contradicting our assumption.

As a consequence, in a BSTNF structure no two histories can branch (in
the sense of Definition 3.13) at a set of minimal points. This illustrates
a difference between BST92 structures and BSTNF structures: the former
permit branching at minimal elements, but the latter do not.1⁰

One might wonder if the BSTNF pattern of branching, which is different
from one present in BST92, affects the verdict about the set of events space-
like related to a choice that was discussed above in terms of the problem of
the wings. In the present context, the focus is on a single choice set c̈ such
that two histories, h1 and h2 split at c̈, h1 ⊥c̈ h2, and the question is whether
the set of point events space-like related to an element of c̈, ci = c̈∩ hi, is
in the histories’ overlap, h1 ∩h2, or not. We invite the reader to show that in
BSTNF, the wings are also in the overlap—see Exercise 3.6.

3.5.3 Facts about choice sets

The focus of this section are structures of BSTNF. We prove a few facts
related to sets of local point-wise alternatives and sets of local history-wise
alternatives, which will also justify our terminology. Our main result is
Theorem 3.1, which states that choice sets fully capture the notion of a local
alternative in BSTNF.

1⁰ As we will see, this difference implies a small limitation for the translatability of one kind of
structure into the other kind; see Theorem 3.3.
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Fact 3.19. Let there be h1,h2 and e ∈W such that h1 ⊥ë h2. Then there is no
c < e for which h1 ⊥c̈ h2.

Proof. Suppose that ei ∈ ë are distinct, where hi ∩ ë = {ei} (i = 1,2), and let
c 6 e. Since e is a member of some history h3, by the Hausdorff maximal
principle we can extend the chain {c} to a maximal chain l upper-bounded
by e, which yields suph3

l = e. This chain l is a member of Ce, so by our
supposition that e1 ∈ ë, it follows that there is some history h such that
suph l = e1. By the definition of supremum, this means that l 6 e1, and
in particular, c < e1. Since e1 ∈ h1, it follows from the downward closure
of histories that c ∈ h1, and thus we may apply Fact 3.13(1) to deduce that
h1 ∩ c̈ = {c}. A symmetrical argument can be made to deduce that h2 ∩ c̈ =
{c}, fromwhich we observe that h1∩ c̈ = {c}= h2∩ c̈, which is precisely the
definition of undividedness at c̈. The result then follows immediately from
Fact 3.14.

Lemma 3.1. Let s ∈ ë for some e ∈ W . Then we have x < s iff x < e, i.e.,
Pe = Ps.

Proof. If e = s, there is nothing to prove. Also, if e is a minimal element of
W , then s = e, and there is nothing to prove either. We thus assume below
that e is not a minimal element of W and e ̸= s.

“⇐”: Let s ∈ ë, and let x < e. By the Hausdorff maximal principle, there is
some chain l ∈ Ce for which x ∈ l. As s ∈ ë, we know that there is some h ∈
Hist for which suph l = s. We cannot have s ∈ l: otherwise, for h′ witnessing
suph′ l = e, we would have {e,s} ⊆ h′, contradicting Fact 3.2. Thus, l < s,
which implies x < s.

“⇒”: Let s ∈ ë, and let x < s. Assume for reductio that x ̸< e. We first
show that under this assumption, x and e cannot share a history. Assume
otherwise, and let h1 ∈ He∩Hx. Let h2 ∈ Hs. Take some l ∈Ce (it exists since
e is not a minimal element of W ). We have x ∈ h1, x ∈ h2 (by downward
closure of histories, as x < s), and l ⊆ h1 (as e ∈ h1). Now, as s ∈ h2 and s ∈ ë,
we have l < s, so by downward closure of histories, l ⊆ h2 as well. Noting
that suph2

{x}= x < s = suph2
l, Weiner’s postulate implies that suph1

{x}=
x < e = suph1

l, contradicting the assumption that x ̸< e.
Under our reductio assumption, we must thus have that x and e do not

share a history. Choose some h1 ∈ He and some h2 ∈ Hs. Since s ∈ ë and
e ̸= s, by Facts 3.13 and 3.14, h1 ⊥ë h2. Moreover, by the downward closure
of histories, we have x ∈ h2, and as e ∈ h1 and x and e do not share a history,
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x ̸∈ h1. By PCPNF applied to x ∈ h2 \h1, there is c ∈W such that h1 ⊥c̈ h2 and
c6 x, and hence c< s and c∈ h2. And there is c′ ∈ c̈ such that c′ ∈ h1. Picking
I ∈ Ce and J ∈ Cc, I,J ⊆ h1 ∩ h2 and observing c = suph2

J < suph2
I = s,

Weiner’s postulate implies c′ = suph1
J < suph1

I = e.
Fact 3.19 says that since c′ < e and h1 ⊥ë h2, it cannot be the case that

h1 ⊥c̈′ h2. Thus h1 and h2 are undivided at c′. However, by definition of
undividedness this means that h1 ∩ c̈′ = h2 ∩ c̈′ = {c′}, and thus c′ ∈ h2,
which contradicts h2 ∩ c̈ = {c}.

With Lemma 3.1 to hand, it is easy to see that an element of a non-trivial
choice set is always aminimal element in the difference of some two histories
that split at this choice set.

Fact 3.20. Let h1 ⊥c̈ h2. Then c1, the unique element of h1 ∩ c̈, is a minimal
element in h1 \h2, and c2, the unique element of h2 ∩ c̈, is a minimal element
in h2 \h1.

Proof. To prove that c1 is a minimal element in h1 \ h2, let us assume for
reductio that there is e ∈ h1 \h2 such that e < c1. By Lemma 3.1, e < c2. But
c2 ∈ h2, and by downward closure of histories, also e ∈ h2, contradicting our
assumption. The argument that c2 is a minimal element in h2 \h1 is exactly
analogous.

It follows, moreover, that for any two histories h1,h2 in a BSTNF structure,
there is a minimal element in their difference, h1 \h2.

Fact 3.21. Let h1,h2 ∈ Hist, with h1 ̸= h2. Then there is a minimal element in
h1 \h2.

Proof. Since histories are maximal, there is e ∈ h1 \h2. By PCPNF there is c̈
such that h1 ⊥c̈ h2. Then by Fact 3.20, c1 ∈ c̈∩ h1 is a minimal element in
h1 \h2.

Another fact concerns maximal chains in the difference of two histories:

Fact 3.22. Let l ⊆ h \ h′ be a maximal chain in the difference of histories h
and h′. PCPNF guarantees that there is a choice set c̈ such that h ⊥c̈ h′, and for
c ∈ c̈∩h, we have c 6 l. We claim that in fact, c = inf l.

Proof. By PCPNF, c 6 l, so by the infima postulate, i =df inf l exists. As i is
the greatest lower bound of l and c is a lower bound of l, we have c 6 i.
We need to show that c = i. Assume otherwise, i.e., c < i. Note that this
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implies that c ̸∈ l. We also have c ∈ h. Given that c ∈ c̈ and h ⊥c̈ h′, we have
that c ̸∈ h′ (by Def. 3.13). But then l ∪ {c} is also a chain (c < i 6 l) that
lies wholly in h \ h′, and that chain properly extends l. This contradicts the
maximality of t.

Given Lemma 3.1, it is also not difficult to see that for s ∈ ë, a chain ends
in e iff it ends in s:

Fact 3.23. Let s ∈ ë. Then we have l ∈ Cs iff l ∈ Ce.

Proof. If e = s, there is nothing to prove. Also, if e is a minimal element of
W , then s = e, and there is nothing to prove either. We thus assume below
that e is not a minimal element of W and e ̸= s. The former implies Ce ̸= /0.

“⇐”: Given s ∈ ë and l ∈ Ce, by the definition of ë there is some history h
for which suph l = s.We argue that s /∈ l. Suppose otherwise. Since l is upper-
bounded by e, this means that s < e. Then for any history h containing e, we
would have that {s,e} ⊆ ë∩h, which contradicts Fact 3.13(1). Then it must
be the case that s /∈ l, which implies that l ∈ Cs.

“⇒”: Let s ∈ ë, and let l ∈ Cs, i.e., l < s and for some h ∈ Hs, suph l = s.
By Lemma 3.1, l < e. Take some h′ ∈ He, and pick some k ∈ Ce, so k < e,
and hence k ⊆ h′. By the same Lemma, since s ∈ ë, we have k < s, which
gives us k ⊆ h. We claim that suph k = s. For, if there were some x in h such
that k 6 x < s, then Lemma 3.1 implies that x < e. Then k 6 x < e in h′,
which means that e ̸= suph′ k, contradicting k ∈ Ce. We thus have suph l =
s = suph k. Hence by Weiner’s postulate, we also have suph′ l = suph′ k = e,
and therefore, l ∈ Ce.

Given the previous results, we see that the set ë is independent of the
witness chosen:

Fact 3.24. Consider a BSTNF structure ⟨W,<⟩. Let s ∈ ë. Then e ∈ s̈.

Proof. If e is a minimal element of W , then e = s and we are done. We thus
assume that e is not minimal inW , and hence Ce ̸= /0. By Lemma 3.1, Cs ̸= /0
as well.

Let s ∈ ë. We have to show that e ∈ s̈, i.e., e ∈ S (l) for all l ∈ Cs. Thus
consider an arbitrary l ∈ Cs. By Fact 3.23, l ∈ Ce. Now take some h ∈ He; we
have suph l = e, i.e., e ∈ S (l). As l was arbitrary, we have e ∈ s̈.

Lemma 3.2. We have s ∈ ë iff ë = s̈.
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Proof. “⇐”: Immediate, since s ∈ s̈ by Fact 3.12.
“⇒”: Let s ∈ ë. For s = e there is nothing to prove, so suppose that s ̸= e.
“⊆”: Let x ∈ ë. We have to show that x ∈ s̈, i.e., that x ∈S (l) for all l ∈Cs.

Thus, take some l ∈ Cs. By Fact 3.23, l ∈ Ce, and as x ∈ ë, we have x ∈ S (l).
“⊇”: Let x ∈ s̈. Take some l ∈ Ce. As above, by Fact 3.23, l ∈ Cs, and as

x ∈ s̈, we have x ∈ S (l).

Having prepared the groundwork, we can now finally fully justify calling
the partition Πë the set of local history-wise alternatives: the set of sets of
histories Πë partitions the set of histories containing Pe.That is, any history
containing the whole proper past of e ends up in exactly one of the elements
of Πë.

Theorem 3.1. Let e ∈ W . Then Πë partitions H[Pe], i.e.: (1)
∪

Πë = Hë =

H[Pe] and (2) for H1,H2 ∈ Πë, if H1 ̸= H2, then H1 ∩H2 = /0.

Proof. (1) We have to show that
∪

Πë = H[Pe]. Note that
∪

Πë = Hë by
Fact 3.13(2).

“⊆”: Take h ∈
∪

Πë, i.e., h ∈ Hs for some s ∈ ë. By the definition of Ps,
we have Ps ⊆ h, and by Lemma 3.1, Pe ⊆ h. Thus, h ∈ H[Pe].

“⊇”: We need to consider two cases.
Case 1: Event e is minimal in W . By definition this means that Pe = /0.

Accordingly, H[Pe] = Hist(W ). By Fact 3.18 the minimal point e belongs to
every history ofW , so it is also the case that Hë = He = Hist(W ), which gives
us the desired identity.

Case 2: Event e is not minimal in W , hence Ce ̸= /0. Consider h ∈ H[Pe],
which implies Pe ⊆ h. By Fact 3.5, for all l ∈ Ce we have l ⊆ h. Take some
l0 ∈ Ce, and let s =df suph l0. We show that s is the h-relative supremum of
any chain from Ce. Fix some h′ ∈ He. Take any l ∈ Ce. We have suph′ l =
e = suph′ l0, and thus by Weiner’s postulate we also have suph l = suph l0 = s.
Thus we have s ∈ S (l) for any l ∈ Ce, which implies s ∈ ë. As h ∈ Hs, we
have h ∈

∪
Πë.

(2) This follows from Fact 3.13(2), as Hë = H[Pe] (by item (1) of this Fact).

Themainmessage of the constructions studied in this section is that some
e ∈ W generate a non-trivial choice set ë, in the sense that ë ̸= {e}. Such
a set ë indeed consists of local point-wise alternatives to e. We can think
of a choice set as a set of “indeterministic transitions”, and each choice set
induces a set of history-wise alternatives for e, namely Πë. Finally, PCPNF
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requires that any two histories split at a choice set. So, in BSTNF the basic
concepts of branching histories still apply, but in a slightly different way
from BST92. As we will later show (Chapter 4.4), this has some beneficial
topological consequences.

3.6 BST92 or BSTNF: Does it matter?

The difference between BST92 and BSTNF amounts to the issue of whether
there is a maximal element in the overlap of histories or a minimal element
in the difference of histories (cf. Facts 3.6 and 3.21). This may seem to be a
minor issue, and one may accordingly doubt whether the difference matters.
Indeed, in many applications of BST to general philosophical problems, as
well as to some problems in the philosophy of physics, the issue does not
seem to have any bearing. It becomes important, however, when BST is used
tomodel space-times of general relativity (GR), as then topological questions
come to the fore. For a precise evaluation of whether BST92 or BSTNF can
accommodate the topological requirements of GR space-times, we first need
to describe BST structures topologically.11 There is a natural topology on
BST structures, both BST92 and BSTNF, the so-called diamond topology. We
will describe this topology in technical detail when we return to topological
issues in Chapter 4.4. In Chapter 3.6.1 which follows, we remain on an
intuitive level, adding some promissory notes that will be substantiated
later. After our overview of topology in BST, in Chapter 3.6.2 we then
introduce wide-ranging translatability results for the two frameworks of
BST92 and BSTNF. These can be read as showing that a choice between the
two frameworks can be left a matter of pragmatic choice.

3.6.1 Topological issues: An overview

For representing space-times, physics uses so-called differential manifolds
that have a number of defining topological features. In particular, differ-
ential manifolds have two properties that are hard to satisfy in branching
structures.

11 Topological worries about the appropriateness of BST were raised, e.g., by Earman (2008).
Jeremy Butterfield asked about reasons to assume non-Hausdorff branching and its compatibility
with space-time physics already in 2001 (Butterfield, personal communication with TP).
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First, by definition, a differential manifold is locally Euclidean, which
means that each point of the manifold has a neighborhood that can be
mapped continuously onto an open subset of Rn (in realistic applications,
n= 4; for the precise statement, seeDef. 4.16). Local Euclidicity is standardly
presupposed (often without explicitly mentioning the condition by name)
when the notion of a space-timemanifold is introduced.On such amanifold,
local coordinates are defined via so-called charts (see, e.g., Wald, 1984,
pp. 12f.): at each point of the manifold, it is possible to find a neighborhood
that is homeomorphic to some open set of Rn, and the respective mapping
induces the coordinates. If a topological space is not locally Euclidean, it
is not possible to assign coordinates in this way. It is hard to relax this
requirement, as space-time points without some coordinates go against both
common sense and the practice of physics.

Local Euclidicity is a challenge for BST. Given the frugality of the BST
axioms, BST structures come inmany varieties, so hoping that their topology
will always be locally Euclidean is not realistic anyway. One can reasonably
hope, however, that local Euclidicity should transfer from the individual
histories to the whole global structure. More precisely, if for each history h of
a BST92 structure the history-relative topology Th is locally Euclidean, then
the global topology T should be locally Euclidean as well. The underlying
thought is that if we have a collection of physically reasonable space-times,
each with an assignment of coordinates, then a BST analysis of indetermin-
ism should not destroy the coordinate assignment.

Unfortunately, local Euclidicity is not preserved in BST92 as one moves
from the history-relative topologies to the global topology. In fact, barring
trivial one-history cases, BST92 structures are never locally Euclidean with
respect to their natural topology. The reason is that a neighborhood of a
maximal element in the intersection of two histories cannot be appropriately
mapped ontoRn. A case in point is the simple two-historymodel depicted in
Figure 3.1(a) on p. 44.The two histories are ha

1 and ha
2, and their overlap has a

maximal element [⟨0,1⟩] = [⟨0,2⟩]. By the natural topology on the histories,
which is the topology of the real line, the open sets of Tha

i
(i = 1,2) are

either of the form {[⟨x, i⟩] | x ∈ (c,d)}, for some open interval (c,d) ⊆ R,
or they are unions of such sets. As every element of the history ha

i belongs
to a set {[⟨x, i⟩] | x ∈ (c,d)}, and such a set is trivially homeomorphic to an
open interval of R, Tha

i
is locally Euclidean of dimension 1. Let us now turn

to the global topology T on Ma and consider an open neighborhood (in
T ) of the branching point [⟨0,1⟩]. Each neighborhood of that point must
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extend somewhat to the trunk and to both of the arms. Accordingly, it must
contain subsets {[⟨x,1⟩] | x ∈ (c,d)} and {[⟨x,2⟩] | x ∈ (c,d′)}, with c < 0
and d,d′ > 0. A fork of that sort, however, cannot be homeomorphically
mapped onto an open interval of the real line.Thus, the global topology ofMa

is not locally Euclidean, despite the fact that each history-relative topology is.
Note that no such problem arises for the structure Mb of Figure 3.1(b),

which is a BSTNF structure in which the intersection of the two histories
does not contain a maximum. In fact, as we will show in Chapter 4.4,
BSTNF vindicates the idea that if one starts with locally Euclidean histories
(space-times) that allow for the assignment of spatio-temporal coordinates,
one does not destroy that feature by analyzing indeterminism within the
framework of Branching Space-Times.

The second property that individual space-times satisfy, but which is typi-
cally violated both by BST92 and by BSTNF structures, is a topological separa-
tion property known as the Hausdorff property (see, e.g., Wald, 1984, p. 12).
The property requires that any two points of a topology’s base set have non-
overlapping open neighborhoods. In contrast to the requirement of local
Euclidicity, however, a failure of the Hausdorff property in BST structures is
not a troubling one. After all, in BST, individual space-times are represented
by single histories, and it can be proved under modest assumptions that
histories areHausdorff both in BST92 and BSTNF (see Chapter 4.4).The non-
Hausdorffness of the global topology of a BST structure simply reflects the
fact that such a structure typically brings together multiple space-times, as
it represents a number of alternative spatio-temporal developments.

3.6.2 Translatability results: An overview

We now present a number of theorems that show that there is a systematic
way of translating branching structures of one kind into the branching
structures of the other kind, and vice versa. In this sense, we can leave
the question open as to what branching is really like. A key motivation for
working out an ecumenical position is that there does not seem to be a
really convincing argument for preferring one of the two options mentioned
earlier. In the original paper developing BST92 (Belnap, 1992), the decision
in favor of maxima in the intersection of histories is commented as follows:

Finally, let me explicitly note that on the present theory, and in the
presence of the postulates of this section, a causal origin has always ‘a last
point of indeterminateness’ (the choice point) and never ‘a first point of
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determinateness’. I find the matter puzzling since it’s neither clear to me
how an alternate theory would work nor clear what difference it makes.
(Belnap, 1992, p. 428)

This feeling of puzzlement also lies behind some of the objections to BST92:
the objectors ask about the reasons for assuming a specific pattern of branch-
ing, or they are skeptical whether that pattern is compatible with the physics
of space-time. To such objections, the results given in this section answer
that it is almost always possible to translate a branching structure with one
pattern of branching into a structure with the other pattern of branching.12
Thus, if we have a BST92 structure modeling some phenomena and are wor-
ried that it is non-Euclidean, we will dispense with the worry by translating
it into a BSTNF structure. And in the opposite direction, if we prefer for some
reasons (most likely, for simplicity) the BST92 framework, we are always able
to transform aBSTNF structure into that framework. In order to keep our text
concise, here we just give the statement of relevant theorems and facts, while
putting all the required proofs in Appendix A.2.

The translatability results simplify the use of the BST structures in this
book, as we need not develop the whole machinery for BST92 and for BSTNF
in parallel. If a topic at hand is not related to general relativity, we always
use BST92 structures, as they are somewhat easier to handle and also because
much of our earlierwork onBST and its applications applied that framework.
We will provide some hints to help the reader to connect to the other
framework, however.The exception is Chapter 9 which deals with the space-
times of General Relativity and a related topological issue: there we rely
exclusively on BSTNF structures.

Our first result concerns the set of transitions of a BST92 structure, which
is needed to define a full transition structure; later we argue that it has the
sought-for properties.

Definition 3.17 (The ϒ transform as the full transition structure of a BST92
structure.). Let ⟨W,<⟩ be a BST92 structure.Thenwe define the transformed
structure, ϒ(⟨W,<⟩), to be the full transition structure (including trivial
transitions) together with the transition ordering ≺ from Def. 3.10, as
follows:

ϒ(⟨W,<⟩)=df ⟨W ′,≺⟩, where W ′=df TRfull(W )= {e�H | e∈W,H ∈Πe}.

12 A small qualification applies if there are maxima or minima; see the Lemmas and Theorems
below.
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It turns out that the common BST properties of Def. 2.10 still hold for the ϒ
transform of a BST92 structure:

Lemma 3.3. Let ⟨W,<⟩ be a BST92 structure without minima. Then its full
transition structure ϒ(⟨W,<⟩) is still a common BST structure according to
Definition 2.10.

Further we have the already advertised results:

Lemma 3.4. Let ⟨W,<⟩ be a BST92 structure without minima. Then that
structure’s full transition structure ⟨W ′,<′⟩=df ϒ(⟨W,<⟩) satisfies the PCPNF
as in Definition 3.14.

Taken together, these Lemmas yield our first translatability result (note
that we need to restrict to BST92 structures without minimal elements).

Theorem 3.2. Let ⟨W,<⟩ be a BST92 structure without minima. Then that
structure’s full transition structure ϒ(⟨W,<⟩) is a BSTNF structure.

It turns out that, in the other direction, there is also a fairly simple
translation, viz., lumping together all the elements of a choice set to form
a single point.13

Definition 3.18 (The Λ transformation from BSTNF to BST92.). Let ⟨W,<⟩
be a BSTNF structure. Then we define the companion Λ-transformed (“col-
lapsed”) structure as follows:

Λ(⟨W,<⟩) =df ⟨W ′,<′⟩, where
W ′ =df {ë | e ∈W};

ë1 <
′ ë2 iff e′1 < e′2 for some e′1 ∈ ë1,e′2 ∈ ë2.

With the Λ transform we can prove the desired translatability results in
the other direction, from BSTNF to BST92. Mirroring the situation for the
ϒ transform results that required no minimal elements, here we have to
work under the provision that the given BSTNF model contains no maximal
elements.

Lemma 3.5. Let ⟨W,<⟩ be a BSTNF structure without maxima. Then its
Λ-transform, ⟨W ′,<′⟩=df Λ(⟨W,<⟩), is a common BST structure.

13 Graphically, we have chosen “Λ”, which suggests pulling elements (of a choice set) together into
one, as the reverse of “ϒ”, which suggests fanning out elements from a common base (viz., the choice
point).
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Lemma 3.6. The Λ-transform Λ(⟨W,<⟩) of a BSTNF structure without max-
ima ⟨W,<⟩ satisfies the BST92 prior choice principle.

Theorem 3.3. The Λ-transform Λ(⟨W,<⟩) of a BSTNF structure without
maxima ⟨W,<⟩ is a BST92 structure.

We can even go full circle. As there is a way to get from BST92 structures
withoutminimal elements to BSTNF structures, and a way to get fromBSTNF
structureswithoutmaximal elements to BST92 structures, the question arises
as to where we end up when we concatenate these transformations. We can
show that, as hoped, we return to where we started: the resulting structures
are order-isomorphic to the ones we started with. For simplicity’s sake, we
work with structures without maximal or minimal elements.

Consider first the direction from BST92 to BSTNF to BST92.

Theorem 3.4. The function Λ◦ϒ is an order isomorphism of BST92 structures
without maximal or minimal elements: Let ⟨W1,<1⟩ be a BST92 structure
without maximal or minimal elements, let ⟨W2,<2⟩=df ϒ(⟨W1,<1⟩), and let
⟨W3,<3⟩ =df Λ(⟨W2,<2⟩). Then there is an order isomorphism φ between
⟨W1,<1⟩ and ⟨W3,<3⟩, i.e., a bijection betweenW1 andW3 that preserves the
ordering. Accordingly, ⟨W3,<3⟩ has no minima and no maxima.

The result in the opposite direction, that is, from BSTNF to BST92 to
BSTNF, also holds:

Theorem3.5. The functionϒ◦Λ is an order isomorphism of BSTNF structures
without maximal or minimal elements: Let ⟨W1,<1⟩ be a BSTNF structure
without maximal or minimal elements, let ⟨W2,<2⟩=df Λ(⟨W1,<1⟩), and let
⟨W3,<3⟩ =df ϒ(⟨W2,<2⟩). Then there is an order isomorphism φ between
⟨W1,<1⟩ and ⟨W3,<3⟩, i.e., a bijection betweenW1 andW3 that preserves the
ordering. Accordingly, ⟨W3,<3⟩ has no minima and no maxima.

3.7 Exercises to Chapter 3

Exercise 3.1. Prove that there is a choice point for any two histories in a
BST92 structure (i.e., a maximal element in their overlap).

Hint: Use the fact that histories are maximal and apply PCP92.
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Exercise 3.2. Prove the following extension of Fact 3.10: For a BST92
structure ⟨W,<⟩ that has neither maximal nor minimal elements, its full
transition structure ⟨W ′,<′⟩=df ⟨TRfull(W ),≺⟩ has nomaxima norminima
either.

Hint: Take an appropriate initial from W and a fitting history to define the
outcome of a witnessing transition. (A full proof is given in Appendix B.3.)

Exercise 3.3. Prove the second “iff” in Fact 3.11(1).

Exercise 3.4. Prove that there are no non-trivial choice sets in BST92
structures.

Hint: For reductio, assume ë⊆W , with e,e′ ∈ ë and e ̸= e′.There are histories
h,h′ with e ∈ h,e′ ∈ h′. Since e ̸∈ h′ (why?), we have e ∈ h\h′, to which we
apply PCP of BST92 to get some c < e such that h ⊥c h′. Pick next a chain
l ∈ Ce such that c ∈ l. Observe then that suph′(l) ̸= e′ (why?). This proves
e′ ̸∈ ë (why?) which contradicts the reductio assumption.

Exercise 3.5. Prove that the BSTNF prior choice principle (Def. 3.14) implies
historical connection.

Hint: By maximality of histories, for any two histories h1,h2 there is e such
that e ∈ h1 \ h2. Apply then PCPNF to e to obtain a choice set c̈, at which
h1 and h2 split. There must then be two different c1,c2 ∈ c̈. By definition,
they are history h1- and h2-relative suprema of chains from Cc1 , where these
chains are contained in h1 ∩h2.

Exercise 3.6. Discuss the problem of wings in BSTNF structures (cf.
Figure 3.2). Show that the wings are in the histories’ overlap.

Hint: produce a proof analogous the proof of Fact 3.9, using PCPNF at some
appropriate stage.

Exercise 3.7. Let ⟨W,<⟩ satisfy Postulates 2.1–2.5. Let l be an upper-
bounded chain, and let e =df suph′(l). Then for every history h of W
containing the chain l, if e lies in h, then e = suph(l).

Hint: Derive a contradiction from the assumption that there is an upper
bound of l below e. (A full proof is given in Appendix B.3.)
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