
7
Probabilities

In the preceding chapters we laid down a comprehensive formal framework
for describing concrete spatio-temporal events in an indeterministic setting.
We defined a number of different types of events and introduced their occur-
rence propositions. These, in turn, allowed us to define algebraic operations
on events, such as union, intersection, or complement. We showed how
transition-events can be defined on the basis of initial and outcome events of
different types. Transitions are a handy concept to discuss indeterminism, as
local alternatives to a transition represent indeterminism in a concrete way.
There is a particularly simple type of transition, the so-called basic transi-
tions. These are the basic indeterministic building blocks of BST structures.
For a transition I � O∗ to a singular, non-disjunctive outcome, we defined
the causae causantes to be a certain set of basic transitions, CC(I � O∗),
and we argued that these causae causantes play the causal role of bringing
about the transition in question.1 To support this claim, we showed that
the causae causantes for a given transition satisfy Mackie’s inus (or some
inus-like) conditions: At a junction at which an outcome could be rendered
impossible, a causa causans keeps the occurrence of the outcome possible,
but the causa causans need not necessitate the outcome. Causae causantes
thus represent an objective notion of causation under indeterminism

Given these features and defined notions, in this chapter we will show that
BST also provides a promising background for a theory of propensities (i.e.,
of objective single-case probabilities).

7.1 Two conditions of adequacy and two crucial questions

The key ingredients for a theory of objective single-case probabilities in
BST have already been supplied in the previous chapters: BST combines

1 As detailed in Chapter 6.3 (see Def. 6.2), a transition to a disjunctive outcome calls for an
additional set-theoretical layer:CC(I � Ŏ) is identified with the family of the reduced sets of causae
causantes to the “ingredient” transitions, I � Ôγ , where Ŏ = {Ôγ | γ ∈ Γ}.
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possibilities with space and time, it provides a way of defining algebraic
operations on concrete events, and it allows for a formal analysis of causation
in indeterministic settings. Our aim in this chapter is to use these resources
to lay down a general framework for probabilities that does justice to the
indeterministic and spatio-temporal features of our world. We will propose
a rigorous formal theory of objective single-case probabilities (propensities),
in which we define probabilities as graded possibilities. Probability, in other
words, codes the degree to which a given event is possible.2

In parallel to the development of our theory of causation in Chapter 6,
we motivate the overall features of our theory of probabilities through
considerations of conditions of adequacy and via the answer to two crucial
questions about the representation of probability structures in BST.

7.1.1 Two conditions of adequacy

We impose two conditions of adequacy for our approach.The first is a purely
formal condition, one which will ensure that our approach stays within a
strictly mainstream notion of probability theory: we require that our theory
should follow the axioms of standard (Kolmogorovian) probability theory.
We provide the standard definition of a probability space here for later
reference.

Definition 7.1 (Probability space). A probability space is a triple ⟨S,A , p⟩,
where S is the countable base set, or sample space,A is a σ -algebra of subsets
of S (i.e., a set of subsets of S with the operations of union, intersection, and
complement defined onA , andwhich is closed under countable union), and
p is a normalized, σ -additivemeasure; that is, a function p : A 7→ [0,1] such
that p(S) = 1 and for a family {ai | i ∈ Γ} of disjoint elements of A , we have
p(∪i∈Γai) = ∑i∈Γ p(ai).

In what follows, we will mostly focus on finite probability spaces, in which S
is a finite base set. In that case, A can be taken to be the power-set (the set
of all subsets) of S, and the requirement of σ -additivity boils down to finite

2 This idea is advocated, e.g., by Van Fraassen (1980, p. 180), who says that “probability is a
modality, it is a kind of graded possibility”, or by Popper (1982, p. 70). See Gigerenzer et al. (1989,
pp. 7f.) for some historical material on early 18th-century references to graded possibilities (e.g., in
Leibniz).
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additivity, which already holds iff for any a1,a2 ∈ A for which a1 ∩a2 = /0,
we have p(a1 ∪a2) = p(a1)+ p(a2).

Our second condition of adequacy is not formal but rather philosoph-
ical, although it has formal aspects: we require that our theory be able to
make good sense of objective single-case probabilities (propensities) vis-
à-vis known objections. We by no means argue that all uses of probability
theory are concerned with objective single-case probabilities. There are, for
example, completely adequate uses of subjective probabilities. But we aim
at providing a BST analysis of the notion of ontologically basic, objective
single-case probabilities, and so we are affirming the sensibility of the notion
of propensities as probabilities.That idea has, however, been attacked as both
philosophically ill-motivated and, perhaps more alarmingly, as formally
untenable. The latter charge, which is often raised via an argument known as
Humphreys’s paradox, is connectedwith the alleged inapplicability of Bayes’s
theorem, a simple basic result of standard (Kolmogorovian) probability the-
ory, to any notion of propensities. As we aim at a formally tenable and well-
motivated theory, our second condition of adequacy is that our approach has
to provide an answer to the challenge posed by Humphreys’s paradox.

We take on our first condition of adequacy immediately, in Chapter 7.2,
where we will work out a BST-based causal probability theory whose proba-
bility structures are probability spaces fulfilling Def. 7.1. A discussion of the
second condition of adequacy, in the form of a defense of BST probabilities
as propensities and of a thorough analysis of Humphreys’s paradox, we defer
to Chapter 7.3.

7.1.2 Two crucial questions

Thefollowing twoquestions are fundamental for any approach to probability,
and they guide the development of our formal theory.

Question 7.1. What are the entities to which probabilities are assigned?

Question 7.2. What are the formal structures in which these entities are
assigned their probabilities? In other words, what are the probability spaces?

There are several options for answering Question 7.1 in BST. For example,
one could assign probabilities fundamentally to the individual histories in
a BST structure, perhaps even in such a way that each history is assigned
the same probability. One could then derive probabilities for other entities
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such as events, which typically occur in many histories, by measuring the
respective set of histories, which might amount to simply counting their
number. The idea of equiprobable histories and history counting has a
certain intuitive appeal, but it faces severe technical challenges in the general
case.3 In what follows, we will sometimes appeal to the idea of probabilities
attaching to histories for illustration, and in fact, our theory allows one to
define the causal probability of a history as a derivative concept.⁴ We will,
however, assign probabilities fundamentally to other, more local objects. In
parallel with our approach to objective causation, our answer to the question
of which entities are assigned objective probabilities refers to the notion of a
transition in BST.

Answer to Question 7.1:The entities to which probabilities are assigned are
indeterministic transitions of any of the types definable in BST (Def. 4.4).

To motivate this answer, note that indeterministic transitions are a conve-
nient, albeit abstract, means of representing various “chance set-ups”, and
objective probabilities arguably attach fundamentally to concrete chance set-
ups such as a concrete toss of a concrete die. A chance set-up, understood as
a singular entity, involves an initial (for example, a concrete measurement
process) and a collection of possible outcomes together with a probabil-
ity distribution on those outcomes conditional on the initial. Clearly, a
chance set-up need not be human-made. A distant collision of two asteroids,
together with a number of different possible outcomes of the collision
and with a probability distribution on these outcomes conditional on the
collision, counts as a chance set-up as well.

We do not claim that every BST transition can be assigned a probability.
There are technical reasons for leaving the (anyway, uninteresting) case
of trivial deterministic transitions out of the picture (see footnote 9), and
there may be philosophical reasons in non-trivial cases as well—we believe
that that issue is best left to further metaphysical investigation.⁵ But if a

3 McCall (1994, Ch. 5) bases his probabilistic theory of Branching Space-Times on counting
histories that are taken to be equiprobable, providing a number of suggestive illustrations in support
of his idea. McCall clearly recognizes the technical challenges of general real-valued probabilities,
but in our view, his approach does not address these challenges in a fully satisfactory way, so that it
remains open to formal and philosophical criticism (see, e.g. Briggs and Forbes, 2019).

⁴ In the manner described in Section 7.2.4, one can define a causal probability space based on
TR(h), the set of transitions fully characterizing the history h (see Def. 4.11), and then look at
p(TR(h)), the probability of that set of transitions, in that space.

⁵ Onemight, for example, be hesitant to assign a probability to a particular free action of an agent.
We do not take a stance on this matter, we merely flag it as providing a reason for perhaps not
requiring all transitions to have a probability.
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probability is assigned to some entity in BST, then that entity has to be a
transition involving indeterminism, or a set of such transitions.

In what follows, we will make a terminological distinction between two
notions of probability: causal probabilities or propensities defined on BST
transitions, which we will denote by µ and which will be given directly via
probabilistic BST structures (Def. 7.3), and measures p on mathematical
probability spaces, which will be defined in accordance with Def. 7.1. It is
important to keep these two notions separate, as they play different roles in
our theory. Our discussion below can be viewed as providing an interface
between them.

7.1.3 Propensities µ and probability measures p

Our aim is to develop the notion of the causal probability, or propensity, of
a concrete BST transition I � O∗. We will follow our analysis of causation
in Chapter 6, which has highlighted the crucial role of a transition’s causae
causantes, CC(I � O∗). We will assume that the causal probability of an
arbitrary transition should be provided via the causal probability of its set
of causae causantes. As the set of CC(I � O∗) is a subset of TR(W ) (or, for
disjunctive outcomes, a family of such sets), it makes sense to assign propen-
sities to the relevant subsets of TR(W ). For non-disjunctive outcomes, we
will thus write the propensity as µ(CC(I � O∗)), and we will interpret it
as a measure of the causal strength—as the grade of the possibility—of the
causae causantes in question. For some transitions, however, a propensity
might not be defined. As a consequence, µ should be a partial function on
the powerset of TR(W ). Its range is the unit interval [0,1] of real numbers.

Having decided to let µ be a partial function on the powerset of TR(W ),
the identification of propensities of transitions with propensities of sets of
causae causantes for these transitions could be handled, formally speaking,
by introducing another function, say µ ′, defined generally on transition
events rather than on subsets of TR(W ). Our identification thesis would then
be rendered as µ(CC(I � O∗)) = µ ′(I � O∗). However, in order not to
introduce too much symbolism, we will use the same symbol, µ , and write
µ(CC(I �O∗)) = µ(I �O∗), as the domain of µ will always be clear from
context.

In what follows, we first discuss a few metaphysical constraints on µ that
follow from the fact that µ(I � O∗) is a propensity, that is, a measure of
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the grade of possibility of a concrete transition in BST. Then we discuss how
propensities µ can be reflected via mathematically well-defined probability
measures p. The first metaphysical constraint concerns the propensity µ of
transitions to disjunctive outcomes. To begin, consider a non-trivial basic
disjunctive transition τ =df e � 1̆e from a choice point e to the exhaustive
disjunctive outcome 1̆e =df {H | H ∈ Πe} = Πe that collects together all
of its (two or more) possible immediate outcomes.⁶ The transition τ is
deterministic in the sense that it happens anyway: its occurrence proposition
is universal, He�1̆e

= Hist. So τ has to have propensity one:

µ(τ) = µ(e � 1̆e) = 1. (7.1)

Given that the initial e is indeterministic, the transition e � H to any
individual possible outcome H ∈ Πe of e has a cause-like locus at which it
could be prevented from occurring, namely, e, and therefore, the grade of
possibility of e � H will normally be strictly less than one. The complete
disjunctive outcome 1̆e, however, exhausts all the possibilities. Given that
e occurs, one of the outcomes of e has to be realized, and this is what is
expressed by Eq. (7.1).⁷

This constraint on the propensity function µ is of a logico-metaphysical
nature: it follows from the way in which concrete transitions are defined
in BST. The constraint will become important when we discuss marginal
probabilities below. In a similar vein, we also assume a logico-metaphysically
motivated constraint for other disjunctive outcomes of a point event: for a
disjunctive outcome H̆ ⊆ Πe (i.e., for H̆ a set of immediate basic outcomes of
a choice point e, which aremutually incompatible by definition)we postulate

µ(e � H̆) = ∑
H∈H̆

µ(e � H), (7.2)

⁶ In this chapter, we rewrite the definition of 1̆e (Def. 4.6) in terms of propositional outcomes
rather than in terms of scattered outcomes. As shown in our discussion in Chapter 4.2, the two
representations are equivalent for initials consisting of single events e.

⁷ In a mathematical probability space that represents τ = e � 1̆e, the full disjunction of all
possible outcomes of e is represented via the unit element of the algebra, which has probability 1
by normalization. And the zero element has probability 0, of course. We remain impartial on the
issue of so-called faithfulness, i.e., on the question of whether only the zero element of the algebra
can have probability zero. By allowing for the assignment of zero probability to other elements of
the algebra, we can, for example, simulate modal funny business in a probabilistic BST structure
that harbors no real modal funny business. We will make use of this option in Chapter 8.4.



164 branching space-times

that is, the propensity of the transition from e to its disjunctive outcome H̆ is
the sum of the propensities of these basic outcomes taken individually. For
example, considering a concrete throw of a fair die, for which all immediate
outcomes 1 , . . . , 6 have propensity 1/6, the disjunctive outcome “even
number” (immediate outcome 2 , 4 , or 6 ) has propensity 1/6+ 1/6+
1/6 = 1/2. In fact, Eq. (7.1) can be viewed as a special case of this additivity
constraint, given the logico-metaphysical rule that unavoidable transitions
have propensity one.

These considerations show that the set of all basic transitions from a given
choice point naturally gives rise to a probability space. In the finite case
on which we focus here, that is, when e has finitely many immediate basic
outcomes, one can simply use the Boolean algebra A of the power-set of all
the basic transitions, and a measure on the algebra can be induced by the
propensities of the individual basic transitions.

At this juncture, our second notion of probability, the mathematical
probability measure p, becomes important. Even if we can introduce some
more constraints on the propensity function µ , we are not working toward
a theory in which the propensity function µ itself fulfills the axioms of
probability theory of Def. 7.1. On the one hand, this is due to our choice of
answer to Question 7.1: We are working toward a theory in which concrete
local BST transitions, which can represent concrete chance set-ups, have
causal probabilities assigned, and therefore, we target the definition of local
probability spaces with local measures p, whereas µ is defined globally.
In addition, there are several technical hurdles that stand in the way of
interpreting µ as a probability measure. For starters, note that we have
allowed µ to be a partial function, which directly contradicts the assumption
that a probability measure be defined for all elements of the algebra, (i.e., for
all possible events). Second, and more alarmingly, consider the fact that, as
we just said, all unavoidable transitions have propensity one. How should
this be accommodated in a probability space defined on all transitions?
Consider two transitions fromchoice points ei to their exhaustive disjunctive
outcome, τi =df ei � 1̆ei (i = 1,2), in incompatible possible futures (basic
scattered outcomes) of another choice point e, so that e < e1 and e < e2.
The two unavoidable transitions τ1 and τ2 both have propensity one, but
their outcome-parts are incompatible. So it seems that in a probability space
representation, τ1 and τ2 have to belong to disjoint elements of the algebra.
But then we have to have two disjoint elements of the algebra that each have
probability 1, and by the additivity of the measure, their union has to have
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probability 2, violating the normalization of themeasure. Something is badly
amiss here. Apart from extremely simple cases such as BST structures with
just one choice point, it seems hopeless to try and define a global probability
space in which the propensity function µ is really a probability measure.⁸,⁹

We do not claim that the issue cannot be resolved by some clever way
of defining a global probability space based on a whole BST structure and
deriving propensities of transitions in some other way. The propensities
of concrete transitions in the BST structure would most likely have to
be defined as conditional probabilities of some sort (something like the
probability of the occurrence of the outcome conditional on the occurrence
of the initial). We will not go down that route, however, as on the one hand
it leads to unmanageably large probability spaces while, on the other, it goes
against a basic principle of our approach to possibilities: a main advantage
of BST is that we work with local notions of possibilities and transitions.1⁰
We look for a corresponding, local way of handling propensities as well.

So, given that we want to talk about the propensity µ(I � O∗) of
some concrete transition I � O∗ as a probability, and a globally defined
probability space is not promising in this respect, we have to find some
locally defined mathematical probability space ⟨S,A , p⟩ in which the given
transition (together with some other transitions) is represented and in which
it is assigned a probability that can be read as a propensity. This is the
question of providing an interface between the causal BST notion µ and
mathematical probability theory. As we will see, logico-metaphysical and
causal constraints on µ (such as the one about unavoidable transitions
having propensity one) provide useful guidance as to which mathematical
structures are appropriate. To provide an indication of our approach: for
a given indeterministic transition I � O∗, an adequate causal probability

⁸ In this sense, therefore, propensities and probabilities come apart—but they are
intimately linked. Our answer to Humphreys’s challenge that “propensities cannot be probabilities”
will stress that link; see Chapter 7.3.3.

⁹ A further problem is how to handle trivial deterministic transitions, such as a transition from
a deterministic event e to its only outcome He. For such transitions, the set of causae causantes is
empty. The only sensible propensity one can assign for µ( /0) is one, as such a transition is inevitable,
having the universal occurrence proposition. But it is not possible to build a probability space in
which the event algebra has only one element, the empty set. (The problem for fulfilling Def. 7.1
is with the measure, not with the algebra.) This is our technical reason for not considering causal
probability spaces (see Def. 7.4) for transitions that have no indeterministic causes: there are no
causal probability spaces without causation.

1⁰ Defining probabilities on the histories, as discussed in note 3, would be one such global
approach; another would be to define a joint probability space for all indeterministic transitions
in a given BST structure ⟨W,<⟩, i.e., on TR(W ). Our approach naturally extends to accommodate
these two ideas, but it does not presuppose them. It is, therefore, both more local and more general.
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space, which is able to represent that transition and its propensity, will
contain CC(I � O∗) together with some appropriate representation of
causal alternatives to I � O∗ (see Defs. 7.2 and 7.4). As we said, we will
make use of the assumption that the propensity of a transition may only
depend on the propensities of its set of causae causantes. The latter set is
consistent, and accordingly, a causal probability space will have a sample
space consisting of consistent sets of transitions.11 Once the details are in
place, a number ofmathematical constraints on themeasure in a given causal
probability space in relation to measures in other causal probability spaces
can be motivated as either logico-metaphysical postulates (e.g., involving
marginal probabilities), or as causal postulates (e.g., involving a form of the
Markov property).

We sum up the partial answer to our Question 7.2 which is implicit in our
discussion above.12

Partial answer to Question 7.2:When µ(I �O∗) is defined, its value must
be fully determined via the propensities of the basic transitions from the
set CC(I � O∗). This emphatically includes the possibility that one may
need to take into account not only the propensities of the individual causae
causantes, but also propensities of certain sets of them, taken as operating
jointly.

This answer guarantees that for BST transitions that have causal proba-
bilities assigned, if they have the same set of causae causantes, then their
causal probability also has to be the same. Note that we made a caveat
about sets of causae causantes possibly working together. This option is
needed in order to make room for probabilistic correlations. Correlations
are often scientifically important. InChapter 5.1wemotivated our account of
modal funny business via the phenomenon of modal correlations, and here,
similarly, we also have to make room for the phenomenon of probabilistic
correlations. We work toward the notion of probabilistic correlations, to
be provided in Chapter 7.2.6, by considering a number of scenarios that
will help to anchor our general ideas about representing propensities µ as
Kolmogorovian probabilities p.

11 Note that by Def. 6.4 the set of causae causantes for a BST transition to an outcome chain or
to a scattered outcome is consistent, and that the causae causantes for a transition to a disjunctive
outcome are a family of consistent sets of transitions.

12 A full answer to Question 7.2 will be provided via our definition of causal probability spaces in
Chapter 7.2.4; see p. 193.
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7.2 Causal probability spaces in BST

With a view to our first condition of adequacy, we will start by developing
our theory of BST probabilities for indeterministic transitions, which will
lead to the definition of a causal probability space. This will help provide a
full answer to Question 7.2 about the formal structures in which transitions
are assigned probabilities that can be read as propensities.

7.2.1 Probabilities for transitions: The simplest case

We illustrate the idea of defining probabilities for transitions by starting
with the simplest case, which we have already outlined above. The simplest
case of a transition is a basic indeterministic transition, a notion that we
discussed in Chapter 4.2. Consider Alice’s throwing of a fair die, and assume
for simplicity that this die-throwing is a localized indeterministic event
that has exactly six possible immediate outcomes, namely, the numbers 1
through 6.13 We thus represent the die-throwing by a set of six mutually
incompatible basic transitions τ1 = e � 1 , . . . ,τ6 = e � 6 with the
same initial e, whose set of basic outcomes we write as Πe = { 1 , . . . , 6 }.
Given that the die is fair, each of the concrete transitions τi has the same
propensity, µ(τi) = 1/6 (i = 1, . . . ,6). In this case, it is perfectly natural to
take the six basic transitions as the elementary events constituting a sample
space S = {τ1, . . . ,τ6} = {e � H | H ∈ Πe}. We can then define a finite
probability space ⟨S,A , p⟩ using the Boolean algebra A of subsets of S,
and assigning the fully symmetrical probability measure p in accord with
the transitions’ propensities: the value of p on the elements of the sample

13 It is not easy to say whether a concrete transition of Alice’s throwing a die, with the initial
of Alice prepared to throw in a concrete situation and with the outcome of the die showing, for
example, outcome 1, is indeed indeterministic. The issue may in fact depend on details of Alice’s
current physiological state. As to the mechanics of throwing leading to a specific number, given
a concrete die thrown in a concrete way (with concrete speed and angular momentum etc.), the
transition to the outcome is perhaps even deterministic. (See Diaconis et al., 2007, for a study of the
related problem of coin-tossing.) In what follows, we idealize Alice’s die-throwing, as well as other
chance set-ups (Bob’s tossing a coin and Eve’s throwing an octahedron), to be indeterministic. The
most realistic examples of truly indeterministic transitions with precisely specified probabilities are,
for all we know, quantum experiments, which will be discussed in Chapter 8. We stick to everyday
examples in this chapter so as not to bring up too many complications at once. And, historically,
probability theory was in fact developed initially for use in the context of simple games of chance
such as games with dice (see Hacking, 2006).
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space (the atoms of the algebra) is p(τi)=µ(τi)=1/6 (i = 1, . . . ,6).1⁴ Apart
from the BST notion of a transition, this is all perfectly standard. Note that
non-atomic elements of the Boolean algebra can be viewed as disjunctive
outcomes of the initial e, in full accordance with Def. 4.4, as indicated above.
To repeat, the event “throwing an even number”, which is represented as the
set {τ2,τ4,τ6} ∈ A , corresponds to the transition from e to the disjunctive
outcome { 2 , 4 , 6 } of e.This will become important below in connection
with marginal probabilities.

As transitions represent causal happenings in BST, our mathematically
defined probabilities p for transitions represent causal probabilities, or
propensities, µ . The causal probability µ(e � 1 ) of τ1 = e � 1 can
be viewed as the grade of possibility of the concrete possible causal process
that leads from the initial event e to the concrete outcome-event 1 . In
our example, using our probability space ⟨S,A , p⟩ as the mathematical
background representation, that probability is given as µ(e � 1 ) =

p(τ1) = 1/6. So, in this simple case, there is an immediate correspondence
between the causal probabilities µ and the mathematical probabilities p.

Earlier, we discussed a logico-metaphysical constraint on causal probabil-
ities: the causal probabilities for incompatible basic outcomes of the same
initial event have to add up. Given the probability space of our example, the
additivity of the measure secures that this constraint is satisfied. Take two
basic outcomes i and j of e (i ̸= j). The concrete transition e � { i , j }
to the disjunctive outcome { i , j } corresponds to the element {τi,τ j}∈A ,
and as {τi}∩{τ j}= /0, by additivity we have

µ(e � { i , j }) = p({τi,τ j}) = p(τi)+ p(τ j) = µ(e � i )+µ(e � j ).

Similarly, it follows by normalization that

µ(e � 1̆e) = p(1A ) = p(S) = 1.

Note that the probability space in which p(τ1) is assigned a probability
contains all the immediate causal alternatives to τ1, namely, all the other
transitions from e to one of its immediate outcomes, as well. This idea

1⁴ We follow the standard practice in abusing the notation slightly: given an elementary outcome
a∈ S, the probability is officially defined only for the corresponding element of the algebra, {a} ∈A ,
but we allow ourselves to write p(a) instead of the more cumbersome p({a}). We take the same
liberty for µ .
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will guide our general construction below. We work toward that general
construction by considering a number of further simple stories.

7.2.2 Two BST transitions, one basic transition

Recall the story about Alice sending a letter to Bob from Chapter 6.3.1,
which we used to make a distinction between an active and a passive
causal contribution. In order to stay close to our story, assume that Alice is
undecided as to whether she wants to send a letter to Bob (initial A-undec),
and has chosen to leave thematter to chance. Shewill throw a fair die, and she
will send a letter (outcome A-sends) exactly if the die shows 1 (outcome 1A

of die-throwing event eA). This chance set-up is mathematically represented
by the probability space for the die-throwing discussed above, which we
now write ⟨SA,A A, pA⟩, where the sample space SA = {τA

1 , . . . ,τA
6 }. Bob,

on the other hand, is far away, and he is facing a (passive) transition from
having no information in the morning as to whether he will receive a letter
(initial B-noinf) to either having personally received Alice’s letter (outcome
B-receives) or not having received a letter (outcome B-noletter). Given our
minimal story, we have

CC(A-undec � A-sends) = {eA � 1A }=CC(B-noinf � B-receives).

The scenario is pictured in Figure 7.1. Given our reliance on causae
causantes, we already have

µ(A-undec � A-sends) = µ(eA � 1A ) = µ(B-noinf � B-receives),

and by our representation of Alice’s die-throwing event via the probability
space ⟨SA,A A, pA⟩, we have

µ(eA � 1A ) = pA(τA
1 ) = 1/6.

That is, our decision to make single-case probabilities depend exclusively on
the causae causantes of a transition already has a substantial consequence for
our simple example: given that there is only one indeterministic transition
doing any causal work, it must be that all concrete transitions that have the
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Figure 7.1 Alice throws a fair die to decidewhether or not to send a letter to Bob.
TheBST structure contains six histories, one for each outcomeof the throw.Alice
sends the letter, and Bob receives it, exactly in history h1.

same causae causantes also have the same causal probability. That causal
probability is represented in a suitable probability space.

It is crucial that here we are dealingwith causal probabilities of transitions,
rather than the causal probabilities of outcomes in isolation. It arguably
makes little sense to ask about the objective probability of the occurrence
of an outcome event such as B-receives alone. The event of Bob’s receiving
the letter may be taken to have probability 1/6, given the background of our
story, but it may also be taken to be exceedingly improbable, considering,
for example, the fact that Bob’s parents only met via an unlikely coincidence
and that it is therefore highly improbable that Bob was even ever born. A
causal probability always depends on how far back in time one looks for
alternatives.1⁵ As discussed in Chapter 6, a BST transition supplies all the
details of the causal background before which the causal influences bringing
about an event are assessed. Likewise, a transition supplies all the details
of the causal background (the initial) before which the probability of an
outcome is determined.

1⁵ It is possible to look back all the way, to the beginning of time, in which case no initial has to
be given. Before we introduced the notion of causae causantes for a transition I � O∗ via its set of
cause-like loci cll(I � O∗) (Defs. 6.2 and 6.4), we in fact defined the set of cause-like loci cll(O)
of an outcome chain (Def. 5.10). This set includes all the risky junctions at which the occurrence
of O could ever have been prevented. That set will normally be far too large to be of interest, and the
objective probability of the occurrence event given no initial will normally be vanishingly small. (If
we had not ruled this out by requiring an initial event to be non-empty (Def. 4.3), we could indicate
the occurrence of the outcome O∗ alone via the transition /0 � O∗.) To repeat, we aim at providing
a locally anchored BST probability theory, and so we avoid the idea of looking back all the way.
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7.2.3 Two or more transitions and some complications

On amore realistic account of the letter sending and receiving example, both
concrete transitions in question—Alice’s transition from being undecided
to having sent the letter and Bob’s transition from having no information
to having personally received the letter—of course have many more causae
causantes.

We first provide two different variants of our simplest story in which we
add one extra indeterministic event, first on Bob’s side and then on Alice’s.
We later combine the two variants into a more complex story, which already
contains most of the ingredients needed for motivating our general account.

h1

e
A

e
B

B —
receives

1
A

T
B

A —
undec

B —
noinf

h2

e
A

e
B

1
A

H
B

A —
undec

B —
noinf

· · ·

Figure 7.2 Alice throws a fair die to decide whether or not to send a letter to
Bob, and Bob throws a fair coin to decide whether or not to go out. Bob receives
the letter if and only if Alice’s die has outcome 1 and his coin lands tails. The
BST structure contains twelve histories, one for each pairing of an outcome of
the throw of the die and the toss of the coin. Only histories h1 and h2 are shown.

Variant 1: Bob goes out. Consider, first, that Bob’s personally receiving
the letter depends causally on his being at home. In the morning, Bob is
undecided whether to stay at home or to go out, and similar to Alice, he
leaves the matter to chance: he tosses a fair coin, and if the coin shows heads
(HB), he stays at home; if not, if the coin shows tails (T B), he takes a long
walk (see Figure 7.2). Bob’s coin-tossing can be represented in exact analogy
to the formal account of Alice’s die-throwing: the relevant mathematical
probability space is based, in this case, on an underlying set of two mutually
incompatible basic transitions leading from the choice point eB to the
outcomes T B (τB

1 = eB � T B) or HB (τB
2 = eB � HB). The symmetrical



172 branching space-times

probability measure pB for Bob’s coin-toss assigns the values that we know
to be the causal probabilities of the chance set-up of the concrete tossing of
the fair coin, one half:

pB(τB
1 ) = µ(eB � T B) = pB(τB

2 ) = µ(eB � HB) = 1/2.

Let us assume that, as Alice and Bob are far away, their respective chance
events are space-like related (for the initials, eA SLReB): these events cannot
causally influence one another. The transition A-undec � A-sends from
Alice’s being undecided to her having sent the letter, due to her die having
shown outcome 1, still has a single causa causans, namely, the transition
τA

1 = eA � 1A . The transition B-noinf � B-receives from Bob’s having
no information about the letter and being undecided whether to go out
to his personally receiving the letter, on the other hand, now has two
causae causantes: The originating causes of that transition are the two basic
transitions eA � 1A (Alice’s die showing 1), which triggers Alice’s sending
the letter, and eB � HB (Bob’s coin showing heads), which triggers Bob’s
staying at home.

This causal story, together with our decision that causal probabilities
have to be based exclusively on causae causantes, affirms our earlier verdict
about the probability of Alice’s sending-the-letter-transition: µ(A-undec�
A-sends) = 1/6. For Bob’s transition fromno information to having received
the letter personally, however, our account gives only a partial answer:

µ(B-noinf � B-receives) = µ({eA � 1A ,eB � T B}) =?

The causal probability of Bob’s transition has to be the causal probability of
its two-transition set of causae causantes, but that latter probability is not
necessarily determined by the individual causal probabilities of the basic
transitions alone. And so far it is also not clear in which mathematical
probability space that causal probability can be adequately represented.

To make some headway, we provide some relevant logico-metaphysical
observations about causal probabilities. Given that in our structure, eA and
eB are the only choice points and these choice points are SLR , it follows
that any history h ∈ Hist contains both eA and eB. (For our reasoning below
it is enough that for any history h, eA ∈ h iff eB ∈ h.) The set I={eA,eB}
makes sense as a BST initial event, as it is consistent. Now we can look at
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its outcomes. Assuming that there is no modal funny business (see p. 175
for a brief discussion), any basic outcome of eA is compatible with any
basic outcome of eB, so that there are 6 · 2 = 12 possible basic (non-
disjunctive) joint outcomes, and 212 −1 = 4095 disjunctive outcomes (sets
of basic outcomes; we have to disregard the empty set). We represent the
elementary joint outcomes via outcome chains Oij, where i ∈ {1, . . . ,6} and
j ∈ {1,2}. Spatio-temporally, the outcome chains Oi j begin in the joint
future of possibilities of eA and eB. Epistemologically speaking, if you are
situated at one of these chains, you have information about the outcome of
both eA and of eB. Each joint outcome corresponds to one of the 12 histories
in the structure, which are accordingly denoted as hi j, so that Oi j ⊆ hi j.

With a view to calculating marginal probabilities, consider the disjunc-
tive outcome Ŏi =df {Oi1,Oi2}, so H⟨Ŏi⟩ = {hi1,hi2} (i ∈ {1, . . . ,6}). The
transition I � Ŏi fulfills the requirement of the appropriate spatio-temporal
location of I and Ŏi of Def. 4.4, as is easy to check. We then calculate

CC(I � Ŏi) = {{eA � i ,eB � HB},{eA � i ,eB � T B}}. (7.3)

We can now employ the logico-metaphysical principles about causal prob-
abilities being based solely on causae causantes and about the probabilities
of disjoint outcomes adding up. Since the elements of CC(I � Ŏi) are
incompatible, the probability of CC(I � Ŏi) should be the sum of the
probabilities of these elements. Further, since every history passing through
i contains either HB or T B, for our particular setup, in which eA and eB

occur in each history, we have that:

H
{eA� i ,eB�HB}

∪H
{eA� i ,eB�T B}

= H
{eA� i }

. (7.4)

These observations lie behind the following summation formula, where
we use Oi for an outcome chain witnessing the outcome i of Alice’s die
throwing:

µ(I � Ŏi) = µ(CC(I � Ŏi)) =

µ({{eA � i ,eB � HB},{eA � i ,eB � T B}}) =

µ({eA � i ,eB � HB})+µ({eA � i ,eB � T B}) =

µ({eA � i }) = µ(CC(I � Oi)) = µ(I � Oi).
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The first transformation comes from Eq. 7.3, the second results from the
summation of probabilities of incompatible elements of causae causantes,
the third is based on Eq. 7.4, and the remaining transformations invoke
our convention about the domain of µ . This calculation establishes that
the causal probabilities yield sensible marginal probabilities: The causal
probability of Alice’s die showing outcome i and Bob’s coin turning up either
way is just the causal probability of Alice’s die showing outcome i, full stop.

Given these facts about the causal probabilities, it is natural to try to
represent them by combining the two given probability spaces for Alice’s and
for Bob’s chance set-ups via their Cartesian product. That operation leads
to the sample space SC = SA × SB. That is, a basic outcome ⟨τA

i ,τB
j ⟩ ∈ SC

in that probability space specifies one transition τA
i of Alice’s die-throwing

and one transition τB
j of Bob’s coin-tossing, in natural correspondence to

the outcome events Oij. The algebra A C will be the algebra of subsets of
SC, as usual. Furthermore, given the SLR layout, it seems natural to require
that the distant outcomes be probabilistically uncorrelated. In that case, the
joint measure pC is the product measure, for which pC(⟨τA

i ,τB
j ⟩) = pA(τA

i ) ·
pB(τB

j ). In particular, we then have

pC(⟨τA
1 ,τB

2 ⟩) = pA(τA
1 ) · pB(τB

2 ) = 1/6 ·1/2 = 1/12.

If we assume that the probability space ⟨SC,A C, pC⟩ provides an ade-
quate representation of the causal probabilities, we thus have µ(B-noinf �
B-receives) = pC(⟨τA

1 ,τB
2 ⟩) = 1/12.

The just mentioned construction proceeds in two steps: first, combine the
small (local) probability spaces by taking their Cartesian product, and then
define ameasure on the joint space via the product of the localmeasures.This
construction is quite useful in the case at hand but, emphatically, we do not
propose any of these two steps as a general basic recipe: we do not require in
general that causal probability spaces combine via Cartesian products, and
we do not require that in all cases, SLR initials give rise to probabilistically
uncorrelated transitions.

Wewill soon turn to a case in which the Cartesian product construction is
inappropriate; see our next scenario, Variant 2 (p. 177). There are, however,
a number of important issues that we can discuss in relation to the present
case (Variant 1). First, in the case of SLR initials, the question of whether
the individual local possibilities combine so as to yield the Cartesian product
is exactly the question of whether there is modal funny business (MFB) as



probabilities 175

discussed in Chapter 5; see clause 4 of Def. 5.5 of combinatorial consistency
and the following Def. 5.6 of combinatorial funny business. Given the
simplifying assumption of no MFB, the sample space for the combination
of the possibilities in Alice’s and Bob’s chance set-ups is indeed adequately
represented by the Cartesian product SC = SA ×SB as defined above.

Second, the Cartesian product construction does not uniquely determine
the joint probability measure pC, but it constrains the options. That is, again,
in full accord with the situation regarding the causal probabilities. It might
be, for all we know, that the transitions are fully correlated, so that in any
case in which Alice’s die shows 1, Bob’s coin shows tails. In that case,

µ(B-noinf � B-receives)=µ
(
{eA � 1A ,eB � T B}

)
=µ(eA � 1A )=1/6,

which in terms of the joint measure would correspond to pC(⟨τA
1 ,τB

2 ⟩) =
pA(τA

1 ) = 1/6, rather than 1/12 on the product measure. On the other hand,
it might also be that the transitions are fully anti-correlated (either one can
occur only if the other does not occur), so that

µ(B-noinf � B-receives) = µ({eA � 1A ,eB � T B}) = 0,

corresponding to pC(⟨τA
1 ,τB

2 ⟩) = 0. In terms of possible probability mea-
sures pC based on pA and pB, all these numbers make sense, and empirically,
in terms of observed causal probabilities, the well-confirmed phenomenon
of EPR-like probabilistic quantum correlations arguably shows that the full
range of these options can in fact be produced.1⁶ This means that given
our causal set-up of eA SLReB, there is quite some freedom for assigning a
numerical value to the joint probability pC(⟨τA

1 ,τB
2 ⟩).

Even so, there are still some constraints—one cannot just assign any
number between 0 and 1 to pC(⟨τA

1 ,τB
2 ⟩). Technically, we require that the

probability of the single-transition events can be recovered as marginal
probabilities from the joint probability measure. That is, pA(τA

1 ) has to be
recovered from the joint probabilities of all two-transition pairs including
τA

1 and some τB
j , and similarly for pB(τB

2 ):

pA(τA
1 ) =

2

∑
j=1

pC(⟨τA
1 ,τB

j ⟩); pB(τB
2 ) =

6

∑
i=1

pC(⟨τA
i ,τB

2 }. (MP)

1⁶ We will discuss these issues in more detail in Chapter 8.4.
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These equations simply follow from representing probabilities of transi-
tions via the causal probabilities of the sets of their causae causantes and from
our account of causae causantes.

Given the Cartesian product construction of joint probability spaces, the
marginal property follows as a mathematical consequence. Our reason for
requiring the marginal property is, however, not purely mathematical, but
properly causal. Consider any history h in which eA occurs, so that by our
assumptions eB ∈ h as well, and eA SLReB. As eB is the initial of a set of
incompatible basic transitions, it follows that on h, exactly one of the possible
outcomes occurs, viz., ΠeB⟨h⟩. So, any history on which τA

1 occurs must be
a history on which one of the τB

j occurs as well: for τA
1 to occur is for τA

1 to
occur and for some τB

j to occur.Thus, the probability for τA
1 to occurmust be

divided up, so to speak, between the different ways for τA
1 to occur and some

τB
j to occur. Each of the pairs ⟨τA

1 ,τB
j ⟩ has to have a non-negative probability

with respect to the measure pC, and together, these probabilities have to add
up to the probability pA(τA

1 ), as Eq. (MP) specifies.
To put this matter in explicitly causal terms, we can say that given our

scenario, the transition from Alice’s initial eA to the outcome 1A is causally
equivalent to (has the same causae causantes as) the transition from the
initial {eA,eB} to the disjunctive outcome {{ 1A ,T B},{ 1A ,HB}}, and
therefore, as a matter of causal probability irrespective of the representation
of these probabilities in any mathematical structures, we have to have

µ(τA
1 ) = µ({τA

1 ,τB
1 })+µ({τA

1 ,τB
2 }).

So the marginal property has a proper metaphysical foundation. It follows
in particular that, as probabilities are non-negative, for j ∈ {1,2},

0 6 µ({τA
1 ,τB

j })6 µ(τA
1 ) = 1/6,

and a parallel consideration establishes the bound that for i ∈ {1, . . . ,6},

0 6 µ({τA
i ,τB

2 })6 µ(τB
2 ) = 1/2.

So our requirement of basing probabilities solely on probabilities of sets
of causae causantes (possibly working together), supplemented by consider-
ations of the causal consequences of the SLR relation of the initials eA and
eB, yields the following constraint:
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0 6 µ(B-noinf � B-receives) = µ({τA
1 ,τB

2 })6 min(µ(τA
1 ),µ(τB

2 )) = 1/6.

And, to repeat, in the case of no correlations, which for our example is
exceedingly plausible, we have the simple “just multiply” result,

µ(B-noinf� B-receives) = µ(eA � 1 ) ·µ(eB �HB) = 1/6 ·1/2= 1/12.

Variant 2: Mail gets lost. We return to our basic story of Alice throwing a
die to determine whether or not to send a letter to Bob. This time round,
we let Bob stay at home deterministically, canceling the indeterministic
transition event on his side. However, we introduce a different complication,
namely, there is an eavesdropper, Eve, who indeterministically blocks some
letters from being delivered. If Alice’s die has shown outcome 1 and she has
sent her letter, there is a further indeterministic transition, from Eve seeing
the letter (E-sees) to one of two possible outcomes: taking the letter, so that
it will not arrive at Bob’s place (E-takes), or letting it pass (E-passes). Given
that BST represents concrete events, the initial E-sees can occur only after
Alice sends the letter. The concrete event E-sees does not occur in any of the
other, incompatible outcomes of A-undec. Now we assume again that the
indeterminism of Eve’s taking or not taking the letter is due to a chance set-
up, this time the throw of an octahedron by Eve, which is represented by a set
of eight basic outcomes iE of the choice point eE at which the octahedron
is thrown, corresponding to the eight basic transitions τE

i = eE � iE

(i= 1, . . . ,8).We assume that Eve lets the letter pass iff her octahedron shows
3, and that she takes the letter on all other outcomes.We also assume that the
octahedron is fair, so that the causal probabilities are µ(eE � iE ) = 1/8
(i = 1, . . . ,8). An adequate probability space for representing Eve’s throw
can be based on the sample space SE = {τE

1 , . . . ,τE
8 } and the symmetrical

measure pE that assigns the value pE(τE
i ) = 1/8 for each of the τE

i (i =
1, . . . ,8).

As in Variant 1, the transition A-undec � A-sends, from Alice’s being
undecided to her having sent the letter, still has a single causa causans,
namely, the transition τA

1 = eA � 1A . The transition B-noinf� B-receives
from Bob’s having no information about the letter to his personally receiving
the letter again has two causae causantes, but this time, these are the basic
transitions τA

1 = eA � 1A , which triggers Alice’s sending the letter, and
τE

3 = eE � 3A , which triggers Eve’s letting the letter pass.
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This causal story, together with our decision about probabilities having
to be based exclusively on causae causantes, reaffirms that µ(A-undec �
A-sends) = pA(τA

1 ) = 1/6. For Bob’s transition from no information to
having received the letter personally, we can start with the following partial
answer:

µ(B-noinf � B-receives) = µ({eA � 1A ,eE � 3E }) =?

The probability of Bob’s transition has to be the probability of its two-
transition set of causae causantes. The question is whether we can use
considerations about the causal set-up together with the known probabilities
of the basic transitions to narrow down the possible answers, as above, or
even to provide a unique answer.

It turns out that in the present case, the causal set-up provides the
resources to secure the uniqueness of the causal probability. The adequate
representation of this fact is, however, not completely straightforward from
the perspective of standard probability theory.

Note, first, that since “B-receives” is a concrete outcome event, represented
by an outcome chain or a scattered outcome, the set of causae causantes
CC(B-noinf � B-receives) = {eA � 1A ,eE � 3E } = {τA

1 ,τE
3 } is con-

sistent (see Def. 6.2). This does not imply, however, that any other set of
basic transitions {τA

i ,τE
j } is also consistent. In the previous scenario in

which we considered two SLR initials, the absence of MFB was sufficient
to guarantee the consistency of all joint outcomes, and this made it possible
to use the familiar probability-theoretic idea of building joint spaces via
Cartesian products. In the present case, however, this construction makes
no sense. Indeed, by Fact 4.7, only one outcome of the earlier choice point
eA is consistent with the occurrence of the later choice point eE , namely,
the outcome ΠeA⟨eE⟩ = 1A . For i ̸= 1, any set of transitions {τA

i ,τE
j }

( j ∈ {1, . . . ,8}) is inconsistent. One might think that, as inconsistent sets
of transitions cannot occur in any history, they could simply be assigned
probability zero in a standard Cartesian product space, but this move has
disastrous consequences. (As we will show in Chapter 7.3, this seemingly
innocent move is one root of Humphreys’s paradox.)

Before we discuss this problem, we can make a second observation: as
above, we can establish a causally motivated marginal probability—only this
time, limited to the consistent joint outcomes.Given thatAlice’s die showed 1,
Eve’s throw of the octahedron has to have one of its eight possible outcomes,
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and these together constitute the full set of alternatives; the transition from
eE to the disjunctive outcome consisting of all of eE ’s basic outcomes, eE �
{ 1E , . . . , 8E } = eE � 1̆eE , is deterministic. Accordingly, the disjunctive
transition from the joint initial, {eA,eE} � { 1E , . . . , 8E }, only has one
originating cause:1⁷

CC
(
{eA,eE}� { 1E , . . . , 8E }

)
= {eA � ΠeA⟨eE⟩}= {eA � 1A }.

Given that Alice threw her die and Eve’s throw of her octahedron had any
of its possible outcomes, it must be that Alice’s die showed 1. So, given that
causal probabilities depend only on the causae causantes, we have another
marginal probability result, this time for the <-related initials eA and eE :

µ
(
{eA,eE}� { 1E , . . . , 8E }

)
= µ(eA � 1A ) = 1/6.

The above result, we claim, is fundamental: given what causal probabilities
are, it must be that full “upward” coarse-graining reduces the set of causae
causantes, and thus makes a consideration of the upper chance event proba-
bilistically superfluous.

We can now venture to propose a related principle of the upward mul-
tiplication of causal probabilities. That principle may, however, have some
traces of empirical content—it is hard to be sure.1⁸ So we flag it as a
causal-metaphysical Postulate rather than as a result of logico-metaphysical
analysis:

Postulate 7.1. (Finite-case Markov condition) Let I � O be an indetermin-
istic BST transition to an outcome chain O such that CC(I � O) = {e0 �
H0,e1 � H1, . . . ,eK � HK}, e0 < ek for k = 1, . . . ,K, and µ(I � O) is
defined. Then

µ({e0 � H0,e1 � H1, . . . ,eK � HK}) =
µ({e0 � H0}) ·µ({e1 � H1, . . . ,eK � HK}).

Two remarks are in order. Note first that in the precondition of Postulate 7.1,
the set {e0 � H0,e1 � H1, . . . ,eK � HK} is required to be the full set of

1⁷ In the following, we make use of the interchangeability of proposition-like and event-like
transitions, noting that the initial events are point-like.

1⁸ For some pertinent results, see Brierley et al. (2015) on quantum temporal correlations.
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causae causantes for the transition I � O from initial I to the outcome
chain O. That is, if I � O is to occur, exactly these basic transitions, no
more and no less, are needed. Second, as O is an outcome chain, this set
of basic transitions is consistent (see Def. 6.4), so in particular there is a
history hE such that {ek | 0 < k 6 K} ⊆ hE . This fact and the ordering
relations e0 < ek for k = 1, . . . ,K imply that H0 = Πe0⟨hE⟩. It is thus
uncontroversial that the transition I � O is adequately represented as
consisting of two consecutive steps. The first step is the basic transition
e0 � Πe0⟨hE⟩ that enables the initials e1, . . . ,eK .The second step consists of
K basic transitions from these initials, with the proviso that these transitions
might work jointly. The fact that there are two consecutive, separate
steps strongly supports the multiplication formula for causal probabilities.
However, as the K basic transitions of the second step might work jointly,
the second multiplicand need not to factor; that is, it can happen that
µ({e1 � H1, . . . ,eK � HK}) ̸= µ(e1 � H1) · . . . ·µ(eK � HK).1⁹

Given Postulate 7.1, the causal probability of two immediately consecutive
basic transitions τ0 = e0 � H0 and τ1 = e1 � H1 is given by multiplying
the respective individual causal probabilities. Whatever its ultimate meta-
physical merit, this result is highly plausible. Given that in order for e1 to
occur, e0 has to have had outcome H0 = Πe0⟨e1⟩, which is a possible event
with causal probability µ(e0 � H0), and that the causal probability for e1

to result in outcome H1 is µ(e1 � H1), and that no other indeterminism
occurs between e0 and e1, the causal probability for both transitions to occur
consecutively is just given by multiplying the two individual values. Further
support for our Postulate comes from considerations of causal probabilities
attaching to histories. Earlier, we expressed reservations about that idea as
a general approach (see note 3), but it provides an instructive illustration
here. Assume that the number of histories under consideration is finite and
that all histories are equiprobable. Then there has to be a natural number
n of histories containing event e0, and the size of the bundle of histories
H0 = Πe0⟨e1⟩ is some natural number m. Given our assumptions, there
are no further indeterministic happenings between e0 and e1, so that m is
also the number of histories containing event e1. Let the size of the history
bundle H1 be k. As we have H1 ⊆ He1 = H0 ⊆ He0 , we have k 6 m 6 n. By
equiprobability of histories, one can read off the causal probabilities of the
BST transitions under consideration as fractions:

1⁹ For a slightly more general discussion in terms of layered spaces, see Müller (2005).
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µ(e0 � H0) =
m
n

; µ(e1 � H1) =
k
m

; µ(e0 � H1) =
k
n
.

It follows that, indeed, we can prove the required instance of Postulate 7.1:

µ(e0 � H1) =
k
n
=

m
n
· k

m
= µ(e0 � H0) ·µ(e1 � H1).

We can now use Postulate 7.1 to calculate the causal probability of Bob’s
personally receiving the letter in our “mail gets lost” scenario, as follows:

µ(B-noinf � B-receives) = µ
(
{eA � 1A ,eE � 3E }

)
= µ(eA � 1A ) ·µ(eE � 3E )

= 1/6 ·1/8 = 1/48.

Having dealt with the numerical values of the causal probabilities, we can
now look into their adequate representation via probability spaces. We said
earlier that, as some (in fact, most) combinations of basic outcomes of eA

and of eE are inconsistent and accordingly cannot have a causal probability,
we cannot use the standard Cartesian product construction. The resulting
sample space SA × SE contains many inconsistent joint outcomes, such as
⟨τA

2 ,τE
5 ⟩. We have already warned that it will not do to simply assign these

inconsistent outcomes the probability zero and stick to theCartesian product
construction. Especially with a view to our discussion of Humphreys’s
paradox in Chapter 7.3, it is instructive to see what the consequences would
be. Thus, assume that in fact all inconsistent sets of transitions—that is, all
pairs ⟨τA

i ,τE
j ⟩ ∈ SA × SE for which i ̸= 1—are assigned probability zero.

Recall that by the marginal property, we have

pA×E({⟨τA
1 ,τE

j ⟩ | j = 1, . . . ,8}) = pA(τA
1 ) = 1/6.

Yet, on the other hand, all pairs of transitions in SA ×SE whose first element
is not equal to τA

1 have probability zero, and the measure pA×E has to be
normalized. So it has to be that

1 =
6

∑
i=1

8

∑
j=1

pA×E(⟨τA
i ,τE

j ⟩) =
8

∑
j=1

pA×E(⟨τA
1 ,τE

j ⟩)

= pA×E({⟨τA
1 ,τE

j ⟩ | j = 1, . . . ,8}).
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This is a contradiction, so something has to give. We argue that, far from
showing that the notion of a causal probability for a transition such as
µ(B-noinf� B-receives)makes no sense, the contradiction in fact naturally
vanishes once we provide a proper analysis of the causal background before
which it arises.

The crucial question is: What is an adequate probability space in which
the causal probability µ(B-noinf � B-receives) can be represented? Given
the causal relations in our scenario, the causal alternatives toCC(B-noinf�
B-receives) = {eA � 1A ,eE � 3E } are of the following two kinds: (1)
Alice’s die in fact shows 1, but Eve’s octahedron shows an outcome different
from 3, or (2) Alice’s die shows an outcome different from 1, and Eve
never gets to throw her octahedron. That is, instead of the 6 · 8 − 1 = 47
alternatives according to the Cartesian product construction that was seen
to make no sense, there are really only 7 + 5 = 12 alternatives. Given
Postulate 7.1, all of these have well-defined causal probabilities based on
the causal probabilities characterizing Alice’s and Eve’s chance devices: (1)
The causal probabilities µ({eA � 1A ,eE � jE }) can be computed by
multiplying the causal probabilities for the respective outcomes of the two
chance set-ups. (2)The causal probabilities µ(eA � iA ) are all already given
via the characterization of Alice’s throw of her die. As one can easily check
(see Eq. 7.5), on that representation, no problem with marginals ensues.

Building on our causal analysis, we posit the following probability space
⟨SD,A D, pD⟩ for an adequate representation of µ(B-noinf � B-receives):
The sample space consists of 13 sets of transitions,

SD =df {{τA
i } | i = 2, . . . ,6}∪{{τA

1 ,τE
j } | j = 1, . . . ,8}.

The algebra is, as usual, the power-set algebra. For the probability measure,
we assign:

pD({τA
i }) = µ(eA � iA ) = 1/6, i = 2, . . . ,6;

pD({τA
1 ,τE

j }) = µ(eA � 1A ) ·µ(eE � jE ) = 1/6 ·1/8 = 1/48,

j = 1, . . . ,8.

We then recover the result of our causal analysis:

µ(B-noinf � B-receives) = pD({τA
1 ,τE

3 }) = 1/48.
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As a sanity check, note that our measure is indeed normalized:

pD(1D) =
6

∑
i=2

pD({τA
i })+

8

∑
j=1

pD({τA
1 ,τE

j }) = 5 ·1/6+8 ·1/48 = 1. (7.5)

Variant 3: Alice, Bob, and Eve. Let us quickly put the two previous scenar-
ios together, such that Bob’s transition B-noinf � B-receives now causally
depends on Alice’s die, on Bob’s coin toss, and on Eve’s octahedron, which is
thrown iff Alice’s die showed 3. That is, the causae causantes are now

CC(B-noinf � B-receives) = {eA � 1A ,eB � T B,eE � 3E }.

We assume that the spatio-temporal relations are: eA SLReB, eA < eE ,
eE SLReB.

By logico-metaphysical analysis, as above, we have the following results
concerning marginal probabilities:

µ({eA � 1A ,eB � T B,eE � 1E}) = µ({eA � 1A ,eB � T B});

µ({eA � 1A ,eB � 1B,eE � 3E }) = µ({eA � 1A ,eE � 3E });

µ({eA � 1A ,eB � 1B,eE � 1E}) = µ({eA � 1A }).

Note, however, that the expression µ({eA � 1A,eB � T B,eE � 3E }),
which also looks like a marginal probability, is undefined: as we said when
discussing the previous scenario, it makes no sense to consider the causal
probability of an inconsistent set of transitions, and that expression invokes,
for example the inconsistent set {eA � 2A ,eB � T B,eE � 3E }.

As there are SLR transitions involved whose joint causal probability is
only constrained, but not uniquely determined by the underlying individual
causal probabilities, our analysis does not yield a unique verdict on the
propensity of the transition B-noinf � B-receives. However, if there are no
space-like correlations, we can simply multiply, which yields

µ(B-noinf � B-receives) = µ(eA � 1A ) ·µ(eB � T B) ·µ(eE � 3E )

= 1/6 ·1/2 ·1/8 = 1/96.

The important question is, again, which mathematical probability space
is adequate for representing this causal probability. We take our lead from



184 branching space-times

the previous case, in which the recipe was to consider all consistent causal
alternatives that could be based on the local indeterministic happenings
involved and on their local alternatives. That is, with a view toward a general
recipe:

• We consider the set T̃ of all basic indeterministic transitions that are
either a member of CC(B-noinf� B-receives), or a local alternative to
such a member.
Given that the causae causantes include transitions from the initials eA,
eB, and eE , we have the 16-element set

T̃ = {eA � iA | i = 1, . . . ,6}∪{eB � T B,eB � HB}∪{eE � iE |
i = 1, . . . ,8}.

• Many subsets of T̃ are inconsistent and thus cannot have a causal
probability assigned.2⁰ We therefore take the sample space of our prob-
ability space to consist of consistent subsets of T̃ only. We already
know that some consistent subsets, such as {eA � 1A }, come up via
considerations of marginals. These sets should thus not be elements of
the sample space, but elements of the algebra. As a general recipe, we
take our sample space S to be the set ofmaximal consistent subsets of T̃ .

• As this is a finite set, we let the algebra A be the power set algebra of S.
• The probability measure p on the space defined by S and A has to

represent the corresponding causal probabilities µ . Given the causal
structure of our scenario, the measure p is constrained (via marginals)
by the measures pA, pB, and pE of the probability spaces representing
the individual chance devices at issue, which in turn represent the cor-
responding single-device causal probabilities. The measure p, however,
is not uniquely determined by pA, pB, and pE , due to the possibility
of space-like correlations between outcomes of eA and eB, and between
outcomes of eE and eB. Whether such correlations obtain is a fact about
the corresponding propensities of sets of transitions.

2⁰ As stated in note 7 we do not categorically rule out extreme cases in which a real possibility
may have probability zero. An inconsistent set of transitions, however, does not represent a real
possibility at all, and consequently cannot have a probability assigned. Probabilities are, after all,
graded possibilities.
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• In the (here, highly plausible) case that such space-like correlations are
absent, the measure is simply the product measure. But as we are here
dealing with a construction that is not based on Cartesian products, we
need to write the product measure in a somewhat non-standard way:
For T ∈ S a maximal consistent set of transitions, we have

p(T ) = ∏
τ∈T

p∗(τ),

where p∗ is the appropriate single-device probability.Thus, for example,
p({τA

4 ,τB
2 }) = pA(τA

4 ) · pB(τB
2 ) = 1/6 ·1/2 = 1/12.

Given this recipe and assuming no SLR correlations, we can thus compute

p({τA
1 ,τB

2 ,τE
3 }) = pA(τA

1 ) · pB(τB
2 ) · pE(τE

3 ) = 1/6 ·1/2 ·1/8 = 1/96,

in full accordance with our causal analysis for the no correlation case.

7.2.4 General probability spaces in BST

Based on our discussion of a few simple but exemplary cases, we can
now extract a general recipe for representing causal probabilities of BST
transitions in mathematically well-defined probability spaces. We maintain
our two simplifying assumptions: first, we assume that the structures we
will be dealing with are all finite: we will always be dealing with transitions
I �O∗ forwhich the set of causae causantes is finite, and for any choice point
e that is an initial of one of the causae causantes (i.e., for any cause-like locus
e ∈ cll(I � O∗)), the number of different local alternatives splitting off at e
(the cardinality of Πe) is finite.21 Second, we assume that there is no modal
funny business of the kind discussed in Chapter 5.Thus, for example, for any

21 If a set of local alternatives from an initial e, Πe, is infinite, one can use standard tools of
measure theory (e.g., Borel sets) to generalize our approach. In case the set of initials itself is infinite,
different approaches appear to be needed for the case in which there is an infinite set of SLR
initials and for the case in which there is an infinite chain of initials. In the first case, the tools of
standard probability theory for infinite product spaces (cylinder sets, zero-one laws) will apply. In
the second case, the situation appears to bemore challenging, as upwardmultiplicationmay trivialize
the resulting probabilities. It is metaphysically interesting to investigate these cases, as, for example,
in the modal theory of agency (Belnap et al., 2001), ‘busy choice sequences’ are analyzed whose
probabilistic equivalent exactly requires a probability theory for infinite chains of transitions. We
will leave this issue to one side and continue working with finite structures.
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set of SLR initials, all combinations of local outcomes can be assumed to be
consistent.That is, we assume that there are nomodal correlations thatwould
restrict the space of possibilities. This assumption, however, leaves open
whether or not there are probabilistic correlations between distant outcomes,
which will be the topic of Chapter 7.2.6.

In our preceding discussions it has been crucial to get the sample space
right, and we motivated the choice of the sample space as a set of sets
of transitions via a consideration of the causal alternatives of a given BST
transition. Following exactly the recipe given above, we now work toward a
general definition of a probability space based on a consistent set of basic
transitions, such as provided via the causae causantes of an outcome chain
or of a scattered outcome.

Definition 7.2 (Causal alternatives). Let ⟨W,<⟩ be a BST92 structure, and
let T be a consistent set of basic transitions, the initials of which form the set
E . The causal alternatives for T are the sets of transitions in S, where

S =df {T ′ ⊆ T̃ | T ′ is maximally consistent}, and where
T̃ =df {e � H | e ∈ E and H ∈ Πe}.

(7.6)

Before we define probabilistic BST92 structures and causal probability
spaces, we list again the constraints on the measure µ that have emerged
in our examples above, and which we will postulate to hold in general.

Markov condition. First, for the sake of completeness, we repeat the state-
ment of the finite-case Markov condition already introduced above:

Postulate 7.1. (Finite-case Markov condition) Let I � O be an indetermin-
istic BST transition to an outcome chain O such that CC(I � O) = {e0 �
H0,e1 � H1, . . . ,eK � HK}, e0 < ek for k = 1, . . . ,K, and µ(I � O) is
defined. Then

µ({e0 � H0,e1 � H1, . . . ,eK � HK}) =
µ({e0 � H0}) ·µ({e1 � H1, . . . ,eK � HK}).

Partial function. Fundamentally, we allow µ to be a partial function. We
hold, however, that µ should not contain weird gaps in its domain: if µ
is defined for some transitions, it should also be defined for parts of their
causae causantes and for local causal alternatives to them. We can now spell
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out this constraint in a precise way, as the following causal-metaphysical
Postulate:

Postulate 7.2 (Constraints on the domain of µ). If µ is defined for the causae
causantes of a BST transition I � O∗, then µ(I � O∗) = µ(CC(I � O∗)),
and µ is also defined for the causal alternatives to I � O∗ and for all subsets
ofCC(I � O∗).

Unavoidable transitions have causal probability one. The causal proba-
bility of a non-trivial unavoidable transition, that is, of a transition to an
exhaustive disjunction of alternatives, has to be one. Given that the initial
occurs, the world has to continue in some way. All these ways together
exhaust the possible alternatives, and therefore, their disjunction is certain
to happen. We formulate this constraint as the general logico-metaphysical
Postulate of the law of total causal probability:

Postulate 7.3 (Law of total causal probability). Let {Tγ | γ ∈ Γ} be a set
of non-empty consistent sets of indeterministic transitions that are pairwise
incompatible, i.e., for any γ,γ ′ ∈Γ, if γ ̸= γ ′, thenH(Tγ)∩H(Tγ ′) = /0. Suppose
further that there is an initial event (a consistent subset of W ) I such that
H[I] ⊆

∪
γ∈Γ H(Tγ). Then, as these sets Tγ of transitions partition the possible

ways in which I can occur, so that exactly one of them has to occur given that
I occurs, if all the µ(Tγ) are defined, we have

∑
γ∈Γ

µ(Tγ) = 1.

This postulate applies naturally to transitions to disjunctive outcomes, as
follows. Consider such a transition I � Ŏ, and let Tγ =CC(I � Ôγ), where
Ŏ = {Ôγ | γ ∈ Γ}.Then the Tγ fulfill the conditions of Postulate 7.3:We have
H(Tγ)∩H(Tγ ′)= /0 for γ ̸= γ ′ by the definition of a disjunctive outcome event
(see Defs. 4.3(4) and 4.9), and H[I] =

∪
γ∈Γ H(Tγ) as I � Ŏ is unavoidable.

So µ(I � Ŏ) = ∑γ∈Γ µ(Tγ) = 1.
Note that the premises of Postulate 7.3 are not trivial: there has to be a

concrete initial I for which H[I] ⊆
∪

i∈Γ H(Ti). Such an I may be hard to find.
If one tries, for example, to take the set of minimal initials from the union
of all the Tis, that set may well be inconsistent, which disqualifies it from
being a BST initial. And if one tries to locate I in the common past of these
initials (guided by the PCP), the premises may fail because the set H[I] stops
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being a subset of
∪

i∈Γ H(Ti). Thus, the set {Ti | i ∈ Γ} has to be of a special
kind to admit an initial I satisfying the premises of the Postulate. Reading
the premises informally, the Tis have to represent all alternative possible
continuations that theworld can take, provided that I occurs. In that case, the
probability that any of these continuations will occur is one, and that is also
the sum of the probabilities of each of the continuations taken separately, as
these continuations are pairwise incompatible alternatives.22

Marginal probabilities. In a similar vein, we formulate a general Postulate
for marginal probabilities, written in terms of sets of basic transitions:

Postulate 7.4 (General marginal probabilities). Let T = {ei � Hi | i ∈ Γ}
be a set of basic transitions, and let E =df {ei | i ∈ Γ} be the set of initials of
transitions from T . Let e ∈ W \E be a new initial such that for any ei ∈ E ,
either ei < e or ei SLRe, so that e is maximal in the set E ∪{e}. Assume that
µ(T ) is defined and that also µ(T ∪{e � H0}) is defined for some H0 ∈ Πe

(it is then defined for all such H, by Postulate 7.2). Then we have

∑
H∈Πe

µ(T ∪{e � H}) = µ(T ).

This postulate also results from logico-metaphysical analysis: the summa-
tion formula is based on the observation that the basic transitions from a
maximal element of E ∪ {e} are truly alternative; that is, they have pair-
wise inconsistent outcomes, while not affecting the occurrence or non-
occurrence of any of the other transitions (given no MFB). Note that, in
contrast to the Cartesian product construction, and in line with our previous
discussioin, the summation formula applies only to transitions issuing from
a maximal element of E ∪{e}.23

22 It is tempting to broaden the postulate to also cover trivial deterministic transitions, such as
from a deterministic initial e to its only outcome Πe = {He}, or to the reduced set of causae causantes
for a deterministic transition to a disjunctive outcome. The problem in these cases is, however, that
the set of causae causantes is then empty, so that the resulting algebra of subsets would have just
one element, /0—and there is no way to consistently define a probability measure on an algebra
that has only one element, as one can see from Def. 7.1. Metaphysically, a trivial transition that
happens anyway surely happens with certainty, but a probability space always has to include at least
a probability-zero alternative, which is lacking if the set of causae causantes of a transition is empty.

23 Note that the Cartesian product construction of standard probability theory is adequate
precisely if all initials are maximal in the set of all initials, i.e., if they are all pairwise SLR (and
there is no MFB). As standard probability theory formalizes neither space nor time (let alone space-
time or modal correlations), this precondition of the Cartesian product construction is not—cannot
be—made explicit. As we have shown, however, it is indeed crucial, and it fails to apply already in
simple, everyday scenarios.
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Based on the Postulates summarized above, we now define probabilistic
BST92 structures:2⁴

Definition 7.3 (Probabilistic BST structure). A probabilistic BST92 structure
is a triple W = ⟨W,<,µ⟩, where ⟨W,<⟩ is a BST92 structure and the
propensity function µ is a partial function defined on sets of indeterministic
basic transitions in ⟨W,<⟩, µ : P(TR(W )) 7→ [0,1], that satisfies theMarkov
Postulate 7.1, Postulate 7.2 concerning the domain of µ , Postulate 7.3 of the
law of total probability, and Postulate 7.4 of general marginal probabilities.

We can now give our general definition of causal probability spaces based
on an arbitrary BST transition. We will proceed in two steps, first giving
a definition for probability spaces based on transitions to outcome chains
or scattered outcomes, and then for transitions to disjunctive outcomes.
This division results from the fact that causal alternatives look different in
these two cases, which implies that the base sets of the probability spaces
are constructed differently. We begin with the first case. All the probability
spaces discussed in our examples above fulfill this definition, as is easy to
check.

Definition 7.4 (Causal probability spaces, O/Ô version). Let ⟨W,<,µ⟩ be
a probabilistic BST92 structure in which there is no MFB, and let I � O∗

be an indeterministic transition from an initial I to an outcome chain or
a scattered outcome O∗ for which µ(CC(I � O∗)) is defined. The causal
probability space based on I � O∗, CPS(I � O∗), is the probability space
⟨S,A , p⟩, where S is the set of causal alternatives forCC(I �O∗) according
to Def. 7.2, A is the power-set algebra over S, and the measure p on A is
induced via the measure assigned to the elements T ∈ S via p(T ) = µ(T ).

We have to establish that the object defined in this way, ⟨S,A , p⟩, is in
fact a probability space fulfilling Def. 7.1. This is the subject of the following
lemma:

Lemma 7.1. Let the conditions of Def. 7.4 hold for an indeterministic transi-
tion I � O∗, with O∗ an outcome chain or a scattered outcome, and consider
CPS(I � O∗) = ⟨S,A , p⟩. That triple is in fact a probability space satisfying
Def. 7.1. That is,CPS(I � O∗) is well defined and p is a normalized measure
on A . Furthermore, we have that

2⁴ Note the somewhat different status of the Postulates: While Postulates 7.3 and 7.4 result from
purely metaphysical considerations, Postulates 7.1 and 7.2 also have causal underpinnings.
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CC(I � O∗) ∈ S and p(CC(I � O∗)) = µ(I � O∗).

Proof. Let E =df cll(I � O∗), let T0 =df CC(I � O∗), let T̃ =df {e � H |
e∈E,H ∈Πe}, and let S be the set ofmaximally consistent sets of transitions
from T̃ .

For well definedness, we have to prove that for any T ∈ S, µ(T ) is defined.
This follows directly from Postulate 7.2. As a consequence, p(T ) is defined
via Def. 7.4, inducing the full measure p on A .

To see that CC(I � O∗) = T0 ∈ S, note first that according to Def. 7.2, E
is the set of initials of basic transitions from T0, so that T0 ⊆ T̃ . Furthermore,
T0 is consistent since any set of causae causantes of a transition to a scattered
outcome or outcome chain is consistent. There is thus some T1 ∈ S for which
T0 ⊆ T1. To see that T0 = T1, assume otherwise, so that there would have to
be some τ1 = e1 � H1 ∈ T1 \T0. By the construction of S, it has to be that
e1 ∈ cll(I � O∗). Note that there is some basic transition e1 � H0 ∈ T0,
H0 ∈ Πe1 , as e1 is a cause-like locus for I � O∗. As τ1 ̸∈ T0 by assumption,
it has to be that τ1 = e1 � H1 for some H1 ∈ Πe1 , H1 ̸= H0. But then we
have H(T1) ⊆ H0 ∩H1 = /0, showing that T1 is inconsistent. So T0 is in fact
maximal consistent, and T0 ∈ S. The claim that p(T0) = µ(I � O∗) then
follows by definition of p and by our general assumption that µ(I � O∗) =

µ(CC(I � O∗)), which is part of Postulate 7.2.
It remains for us to show that p is indeed a normalized probability

measure. By Def. 7.4, the measure on the algebra is induced in the standard
way by the probabilities assigned to the elements of the sample space,
so additivity holds by construction. Therefore it suffices to show that the
probabilities assigned to the different elements of S sum to one, as then

p(1A ) = ∑
T∈S

p(T ) = 1.

Our proof uses the law of total probability in the form of Postulate 7.3. We
thus have to show that the elements of S partition the set of histories in which
the initial I occurs. First we have to show that for two different T1,T2 ∈ S,
T1 ̸= T2, we have H(T1)∩H(T2) = /0. This follows immediately from each
T1 and T2 being a maximal consistent subset of T̃ . We need next to show
H[I] ⊆

∪
T∈S H(T ). Thus, for an arbitrary h ∈ H[I] we have to find some T ∈ S

for which h ∈ H(T ). There are two cases.
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Case 1: h∈H⟨O∗⟩ for the givenO∗ that definedCPS(I �O∗). In this case,
we have found the element T0 =CC(I � O∗) ∈ S such that h ∈ H(T0), and
we are done.

Case 2: h ̸∈ H⟨O∗⟩. In this case, h is a witness for some e0 ∈ E = cll(I �
O∗), such that h ⊥e0 H⟨O∗⟩. We define the set

T ′ =df {e � Πe⟨h⟩ | e ∈ E ∩h}.

By definition, h ∈ H(T ′), so that T ′ is consistent. Furthermore, its initials
belong to E , so we have T ′ ⊆ T̃ . To show that T ′ is maximally consistent,
take some τ ′ = e′ � H ′ ∈ T̃ \T ′, for which e′ ∈ E and H ′ ∈ Πe′ . We have
to show that T ′ ∪{τ ′} is inconsistent. There are again two cases. (1) Either
e′ ∈ h, whence H ′ ̸= Πe′⟨h⟩ by τ ′ ̸∈ T ′, showing that T ′∪{τ ′} is (blatantly)
inconsistent. (2)The other case is that e′ ̸∈ h. Let h′ ∈ He′ . We have e′ ∈ h′ \h,
and so, by PCP92, there is some c < e′ for which h ⊥c h′. By Fact 3.8, h ⊥c

He′ . We claim that c ∈ E . Since e′ ∈ E = cll(I � O∗), there is some history
h∗ ∈ H[I] for which h∗ ⊥e′ H⟨O∗⟩. So H⟨O∗⟩ ⊆ He′ , which implies h ⊥c H⟨O∗⟩.
This, however, is the defining expression for cll(I � O∗) (note that h ∈ H[I]

by our initial assumption), i.e., we have c ∈ E , and as c ∈ h as well, we have
established that the transition c � Πc⟨h⟩ ∈ T ′. On the other hand, we have
h ⊥c h′, and as the new initial c < e′ and e′ ∈ h′ \ h, we have H ′ ⊆ Πc⟨e′⟩.
But Πc⟨e′⟩ ̸=Πc⟨h⟩, so that T ′∪{τ ′} is in fact inconsistent. So, in both cases,
T ′ ∈ S and h ∈ H(T ′).

This establishes H[I] ⊆
∪

T∈S H(T ). With the premises of the law of total
causal probability (Postulate 7.3) satisfied, we therefore have

∑
T∈S

p(T ) = ∑
T∈S

µ(T ) = 1,

showing that the measure p is indeed normalized.

The Definition 7.4 of causal probability spaces requires a small mod-
ification to apply to a transition to a disjunctive outcome, I � Ŏ: For
Ŏ = {Ôγ | γ ∈ Γ}, we take S to be the set of maximal consistent subsets
of T̃ =df

∪
γ∈Γ{e � H | e ∈ cll(I � Ôγ)∧H ∈ Πe}. The transition to the

disjunctive outcome is then represented not via an element of S, but via an
element of the algebra A .



192 branching space-times

Definition 7.5 (Causal probability spaces, Ŏ version). Let ⟨W,<,µ⟩ be a
probabilistic BST92 structure in which there is no MFB. Let I � Ŏ be a
transition to a disjunctive outcome Ŏ = {Ôγ | γ ∈ Γ}, and let µ(CC(I �
Ôγ)) be defined for every γ ∈ Γ.The causal probability space based on I � Ŏ,
CPS(I � Ŏ), is the probability space ⟨S,A , p⟩, where S is the set ofmaximal
consistent subsets of T̃ =df

∪
γ∈Γ{e � H | e ∈ cll(I � Ôγ)∧H ∈ Πe}, A

is the power-set algebra over S, and the measure p on A is induced via the
measure assigned to the elements T ∈ S via p(T ) = µ(T ).

One might be worried by a difference, both set-theoretical and content-
wise, between causae causantes for a transition to a disjunctive outcome,
I � Ŏ, and the base set S of the causal probability space based on I � Ŏ. To
recall, CC(I � Ŏ) is the set of CCr(I � Ô), with Ô ∈ Ŏ. This seems right,
as each CCr(I � Ô) stands for a separate path leading to the production
of disjunctive outcome Ŏ. By taking the union of all CCr(I � Ô), we will
typically lose the information about these alternative paths. Furthermore,
the appeal to reduced sets, CCr(I � Ô), rather than causae causantes
simpliciter,CC(I � Ô), stems from the fact that, given the disjunctive nature
of an outcome in question, not every element of the latter set is needed for
the production of that disjunctive outcome. Recall that at the extreme case
of a deterministic transition to a disjunctive outcome, CC(I � Ŏ) is (the
singleton of) the empty set.

As for set S, which is the set of transitions, it encodes information about
alternative paths to a disjunctive outcome, as among members of S there
are all sets CC(I � Ô), where Ô ∈ Ŏ. And in constructing S we appeal to
CC(I � Ô) rather than to CCr(I � Ô) (literally speaking, to cll(I � Ô)

rather than cllr(I � Ô)), since even in a case of a deterministic disjunctive
outcome, we want to accommodate all the underlying causal information.
We take it that determinism should come up at a probabilistic level, by I � Ŏ
getting assigned probability p(I � Ŏ) = 1.

We need to check whether the object thus introduced is a probability
space, that is, whether it satisfies Def. 7.1. The following Lemma states that
this is indeed the case.

Lemma 7.2. Let the conditions of Def. 7.5 hold for a transition I � Ŏ to a
disjunctive outcome Ŏ, and consider CPS(I � Ŏ) = ⟨S,A , p⟩. That triple
is in fact a probability space satisfying Def. 7.1. That is, CPS(I � Ŏ) is well
defined and p is a normalized measure on A . Furthermore, we have that
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p(CC(I � Ôγ))=µ({T ∈ S |CC(I � Ôγ)⊆ T})= ∑
T∈S,CC(I�Ôγ )⊆T

µ(T );

p(CC(I � Ŏ))= ∑
γ∈Γ

p(CC(I � Ôγ)).

Proof. For the proof, one needs to adapt the proof of Lemma 7.1. We leave
this task as Exercise 7.1.

Although officially, Defs. 7.4 and 7.5 require one to base a causal probabil-
ity space on a concrete BST transition, such a space can be based on any set
of consistent basic transitions, as any such set provides a well-defined notion
of causal alternatives (see Def. 7.2).2⁵

We are now in a position to provide a full answer to the question about
the formal structures in which transitions are assigned probabilities.

Full answer to Question 7.2: When µ(I � O∗) is defined, that causal
probability is represented in a causal probability space as defined viaDefs. 7.4
and 7.5.

7.2.5 Representing transitions in different causal
probability spaces

Before we end our introduction of causal probability spaces with a
discussion of space-like correlations (which we will call “probabilistic funny
business”), there is one topic left to discuss: how are concrete BST transitions
represented in different causal probability spaces? This topic is important
especially in light of the formal challenge of Humphreys’s paradox, which
will be treated in Chapter 7.3. In our general approach, BST transitions and
their propensities are basic, while causal probability spaces are derivative.
We have already stated that, in general, the propensity function µ is not a
probability measure, but the connection of propensities to probabilities is, of
course, intimate. We stress this connection by discussing the representation

2⁵ Indeed, as one can see from our definitions, it is enough to specify the set E of initials. This
approach is investigated in Müller (2005). That paper also provides a discussion of a generalization
of the Markov property and an extended discussion of the representation of transitions in different
probability spaces. The latter discussion forms the background for the following remarks on
representability.
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of the propensity of a BST transition in different causal probability
spaces.

The formal setting of this investigation is as follows. Let ⟨W,<,µ⟩ be
a probabilistic BST structure, and let I � O∗ be an indeterministic BST
transition from initial I to outcome O∗. We assume for simplicity’s sake that
O∗ is an outcome chain or a scattered outcome. Assume that µ(I � O∗) is
defined. Now letCPS = ⟨S,A , p⟩ be some causal probability space definable
on the basis of ⟨W,<,µ⟩. We will discuss the following three questions:

• When is the transition I � O∗ representable in CPS?
• If that transition is representable, how is it represented?
• How can the numerical value of µ(I � O∗) be recovered from p?

The simplest case is, of course, CPS = CPS(I � O∗), where the answers
are immediate from Lemma 7.1. Almost equally simple is the case in which
T =df CC(I � O∗) ∈ S, that is, in which the transition in question is a
causal alternative to the transition onwhich the spaceCPS is based; see again
Lemma 7.1.

It is also clear that for I �O∗ to be representable inCPS, all the transitions
in T have to occur in the transition sets that make up the sample space S.
Let S =df

∪
S be the set of all transitions that belong to some element of

the sample space. Then we can say that for representability of I � O∗ in
CPS it is necessary that T =CC(I � O∗)⊆ S . If this condition is fulfilled,
there are two cases, depending on how T is situated with respect to the other
transitions present in S . The crucial issue is whether or not S contains
any transitions that precede (in the sense of the transition ordering ≺) any
of the transitions from T .

Case 1: There is no τ ′ ∈ S for which τ ′ ≺ τ for any τ ∈ T . In this case,
consider the element a ∈ A defined via

a =df {T ′ ∈ S | T ⊆ T ′}.

That element a is either equal to {T} (leading back to the simplest cases
above), or it is an extension (we might say, a fine-graining) of T via later or
SLR transitions. By the marginal property (Postulate 7.4), perhaps applied a
number of times, we therefore have

p(a) = µ(a) = µ(T ) = µ(CC(I � O∗)),
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thus answering all our questions satisfactorily. For an illustration, consider
our discussion of how to represent Alice’s throw of her die in the “Variant 2”
story above (p. 177).

Case 2:There is some τ ′ ∈S and some τ ∈ T for which τ ′ ≺ τ ; that is, the
transition I � O∗ has causal preconditions (e.g., τ ′) that are made explicit
in CPS. This case is somewhat more tricky—in fact, it is at the root of the
problematic assumption (CI) in the statement of Humphreys’s paradox (see
Chapter 7.3.3).We can discuss this case in the context of the “Variant 2” story
as well. To recall, a letter to Bob is transmitted iff first, Alice’s throw of a die
(initial eA) has outcome 1A , and then, Eve’s throw of an octahedron (initial
eE) has outcome 3E . As discussed earlier, the adequate causal probability
spaceCPS =CPS({eA � 1A ,eE � 3E }) has a sample space consisting of
the 13 maximally consistent combinations of basic transitions from eA and
basic transitions from eE . Now consider the transition τ =df eE � 5E of
Eve’s throwing her octahedron with result 5. Clearly, τ ∈ S , because the set
of transitions T =df {eA � 1A ,eE � 5E } ∈ S. That set, however, also
contains the transition τ ′ =df eA � 1A , for which τ ′ ≺ τ .

In this case, the transition τ is sufficient to uniquely identify the set
of transitions T : saying that Eve’s octahedron has shown 5 amounts to
saying that Alice’s die has shown 1 and then Eve’s octahedron has shown
5, because the former is a causal precondition of the latter. But the two sets
of transitions, T and {τ}, are different, and their propensities are different as
well (unless τ ′ is inevitable). In fact, by the Markov property (Postulate 7.1),
we have

µ(T ) = µ(τ ′) ·µ(τ).

It turns out that our questions have no simple answer in this case: there is
no element a of the algebra A that represents τ such that the propensity of
that transition (1/8, in our example) could be read off as p(a). It is, however,
possible to recover µ(τ) as the conditional propensity of T given τ ′, as we
will show in detail in Chapter 7.3.3.

7.2.6 Probabilistic funny business

For our discussion of quantum correlations in Chapter 8, there is one
substantial task left: We need to provide a representation of non-local
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probabilistic correlations in BST. We provide details in the context of a
discussion of random variables and their dependence or independence in
the framework of causal probabilities.

What we call probabilistic funny business (PFB) consists of the proba-
bilistic correlations between outcomes of space-like related events in a BST92
structure in which there is no MFB. Ultimately we will define PFB in terms
of dependence of random variables. For ease of presentation, however, we
begin with the rudimentary example of a non-local probabilistic correlation
involving two basic outcomes τ1 = e1 � H1 and τ2 = e2 � H2, with H1 ∈
Πe1 , H2 ∈ Πe2 , and initials e1 SLRe2. Given no MFB, the transitions τ1 and
τ2 are compatible, i.e., H1 ∩ H2 ̸= /0. For this simple example, the causal
probability spaceCPS= ⟨S,A , p⟩ is based on the set {τ1,τ2}, so {τ1,τ2}∈ S.
We then say that τ1 and τ2 exhibit non-local probabilistic correlations iff

p({τ1,τ2}) ̸= p(τ1) · p(τ2),

where p(τ1) = p(
∪

T∈S,τ1∈T T ) = ∑T∈S,τ1∈T p(T ), and analogously for
p(τ2), are the marginal probabilities for τ1 and for τ2. Correspondingly,
at the level of the causal probabilities µ represented via p, a non-local
probabilistic correlation in this case is of the form

µ({τ1,τ2}) ̸= µ(τ1) ·µ(τ2).

We can generalize this idea to two generic transitions with SLR initials I
and I′ and scattered outcomes Ô and Ô′, respectively. Further generalizations
to more than two transitions, or to transitions to disjunctive outcomes, are
natural (see Placek, 2010).

Probabilistic correlations are often defined in terms of the dependence
of random variables, and analyses of non-local quantum correlations are
typically expressed in the framework of random variables. In Chapter 8 we
embark on such an analysis: using probabilistic BST92 structures we ask
whether, and under what conditions, non-local quantum correlations can be
accounted for by hidden local factors. To this end, we need to define random
variables and their (in)dependence in the framework of causal probabilities.

As in standard probability theory, in our theory a random variable X is
a function defined on the base set S of a causal probability space ⟨S,A , p⟩,
where the values of X are real numbers. (One may consider other ranges of
random variables, but we fixR as the range in order to be specific.) Just as in
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the standard theory, random variables allow for the definition of correlations
and (probabilistic) dependence and independence:

Definition 7.6 (Independence and correlations). A family X1, . . . ,Xn of
random variables defined on a causal probability space CPS = ⟨S,A , p⟩ is
called independent iff for any n-tuple ⟨x1, ...,xn⟩ of respective values of these
variables, p(X1 = x1 ∧ . . . ∧Xn = xn) = p(X1 = x1) · . . . · p(Xn = xn). If the
family X1, . . . ,Xn is not independent, it is called dependent, or correlated.

A causal probability space contains information about causal relations and
the locations of events. It is therefore particularly well-suited to capturing the
idea of concrete space-like relatedmeasurements, each capable of producing
a number of alternative possible results. We now discuss how a setup of
that sort is represented in a probabilistic BST92 structure with NO MFB,
and, in particular, which random variables should be selected to describe
non-local correlations. Let us thus consider finitely many pairwise-SLR
initials I1, I2, . . . , IK . As the initials are thought of as representing a joint
measurement, theremust be a history in which they all occur.Thus, together
the initials form a consistent set E =df

∪K
k=1 Ik. Each initial Ik has a family of

possible outcomes 1k =df {Ôk
γ | γ ∈ Γ(k)}, so we can represent an individual

measurement via a deterministic transition to a disjunctive outcome, Ik �
1k, where

∪
γ∈Γ H⟨Ôk

γ ⟩ = H[Ik] and for γ,γ ′ ∈ Γ(k), HÔk
γ
∩HÔk

γ ′
= /0 if γ ̸= γ ′.2⁶

Note now that by NO MFB, every element of 11 × 12 × . . . × 1K is
consistent. Thus, by taking the set-theoretical union of an element of 11 ×
12× . . . ×1K (an n-tuple of sets) one obtains a scattered outcome. Since any
two different elements of 11 ×12 × . . . ×1K are incompatible, the set of the
unions below is thus a disjunctive outcome:

1E =df {
∪

Z | Z ∈ 11 ×12 × . . . ×1K}. (7.7)

One can immediately see that 1E is exhaustive and pairwise exclusive:

H1E = H[E], and for Ô, Ô′ ∈ 1E : H⟨Ô⟩∩H⟨Ô′⟩ = /0 if Ô ̸= Ô′.

By our assumption, E is consistent; furthermore, E is below 1E in the rel-
evant sense of Def. 4.4. It follows that E together with 1E constitutes the
deterministic transition E � 1E to a disjunctive outcome. (The proof of the

2⁶ Compare the discussion following Definition 6.1 on p. 139.
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above claims concerning exhaustiveness and the ordering between E and 1E

is left as Exercise 7.2.)
The transition we just constructed, E � 1E , gives rise to a causal prob-

ability space CPS(E � 1E) = ⟨S,A , p⟩ that is adequate to capture any
PFB induced by the transitions I1 � 11, . . . , IK � 1K . That space is based
on the set S determined by the causal alternatives to E � Ô, for Ô ∈ 1E

(see Def. 7.5). That is, S is the set of maximal consistent subsets of T̃ =∪
Ô∈1E

{e � H | e ∈ cll(E � Ô)∧ H ∈ Πe}, A is the powerset algebra
over S, and the measure p on A is induced by the measure assigned to
the elements T ∈ S via p(T ) = µ(T ). Now, in our construction of random
variables that capture PFB, we need to represent sets like CC(Ik � Ôk) in
CPS(E � 1E); note the different initials, Ik vs. E . Representation is possible
due to the following fact:

Fact 7.1. Let I1, . . . , IK be pairwise SLR initial events in a BST92 structure
with NO MFB, let E =df

∪K
k=1 Ik, and for every k ∈ {1, . . . ,K}, let Ik � 1k

be a deterministic transition from Ik to the disjunctive outcome 1k. Let S be
the base set of CPS(E � 1E), where 1E is defined by Eq. 7.7. Then for every
k = 1, . . . ,K and every Ôk ∈ 1k, there is T ∈ S such thatCC(Ik � Ôk)⊆ T .

Proof. Let τ = (e � H) ∈CC(Ik � Ôk), so e ∈ cll(Ik � Ôk). There is thus
h ∈ H[Ik] such that h ⊥e H⟨Ôk⟩. By no-MFB, e < Ôk (Fact 6.1(4)), so H =

Πe⟨Ôk⟩ and, again by no-MFB (as the Ik are pairwise SLR), there is h′ ∈ H[E]

such that h′ ⊥e H⟨Ôk⟩. Hence e ∈ cll(E � Ôk). By no-MFB, and as each 1k

is a disjunctive outcome, (Ô1 ∪ . . . ∪ Ôk ∪ . . . ∪ ÔK) is consistent. It is also
appropriately above E . Hence it is a scattered outcome of E . Also, as it is a
scattered outcome, (†) H⟨Ô1∪ . . .∪Ôk∪ . . .∪ÔK⟩ ⊆H⟨Ôk⟩.Thus, e∈ cll(E � Ô1∪
. . . ∪ Ôk∪ . . . ∪ ÔK), where each Ôi ∈ 1i, so (Ô1∪ . . . ∪ Ôk∪ . . . ∪ ÔK)∈ 1E .
It follows that there is T ∈ S such that

(e � Πe⟨Ô1 ∪ . . . ∪ Ôk ∪ . . . ∪ ÔK⟩) ∈ T.

We can now show that the above transition is identical to our given τ : From
(†) it follows that Πe⟨Ô1 ∪ . . . ∪ Ôk ∪ . . . ∪ ÔK⟩ = Πe⟨Ôk⟩ = H , and so we
are done.

The moral of this fact is that a setCC(Ik � Ôk), which belongs to the base
set Sk of CPS(Ik � Ôk), is represented in CPS(E � 1E) = ⟨S,A , p⟩ as the
following element of the algebra A :

{T ∈ S |CC(Ik � Ôk)⊆ T}.
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Given the construction of our causal probability space and the above
observation concerning the definition of our random variables, we are
ready to state the general definition of probabilistic funny business,
or PFB:

Definition 7.7 (PFB exhibited by a set of transitions and a set of random
variables). Let W = ⟨W,<,µ⟩ be a probabilistic BST92 structure (Def. 7.3)
with no MFB that contains the pairwise SLR initial events I1, . . . , IK , and
for every k ∈ {1, . . . ,K}, let Ik � 1k be a deterministic transition to a
disjunctive outcome 1k. Consider the causal probability space CPS(E �
1E)= ⟨S,A , p⟩determined by the transitionE � 1E in the sense ofDef. 7.5,
whereE =

∪K
k=1 Ik and 1E = {

∪
Z | Z ∈ 11×12× . . .×1K}. Let {X1, . . . ,XK}

be the set of random variables on CPS(E � 1E) defined via

Xk : S 7→ Γ(k) such that for every T ∈ S : Xk(T ) = γ iff CC(Ik � Ôγ)⊆ T.

We say that the set of transitions {I1 � 11, . . . , IK � 1K} exhibits PFB iff the
random variables {X1, . . . ,XK} are correlated in the sense of Def. 7.6.

Observe that each T ∈ S corresponds to a unique element of 11 × 12 ×
. . . × 1K . Hence, such a T corresponds to a unique sequence of indices
⟨γ1,γ2, . . . ,γK⟩, with γk ∈ {1, . . . ,Γ(k)} (k = 1, . . . ,K). We may thus view
the random variable Xk as the projection function that projects the K-tuple
⟨γ1,γ2, . . . ,γK⟩ on the kth axis, yielding γk.

We can illustrate this definition by linking it to non-local quantum
correlations which will be investigated in detail in Chapter 8. Assume that
there are three space-like relatedmeasurement events, whichwe represent by
pairwise SLR initials I1, I2, and I3. Let these initial events have two, three, and
four possible outcomes, respectively, i.e., Γ(1)= 2, Γ(2)= 3, and Γ(3)= 4. A
joint outcome of these threemeasurements is thus represented by a scattered
outcome—a union Ô1

γ1
∪ Ô2

γ2
∪ Ô3

γ3
, where 1 6 γk 6 Γ(k) and Ôk

γk
∈ 1k (k =

1,2,3). The base set S of the causal probability space CPS = ⟨S,A , p⟩ thus
comprises causal alternatives to each CC(I1 ∪ I2 ∪ I3 � Ô1

γ1
∪ Ô2

γ2
∪ Ô3

γ3
), for

all alternative joint outcomes given by allowable values of γ1,γ2, and γ3. Since
we consider all possible outcomes of the initials in our setup, each element
of S contains as a subsetCC(I1 � Ô1

γ1
) for some γ1. Analogously, it contains

CC(I2 � Ô2
γ2
) and CC(I3 � Ô3

γ3
), for some γ2 and γ3. The three random

variables, X1,X2, and X3, are so defined that for any T ∈ S, X1(T ) = γ1 iff
CC(I1 � Ô1

γ1
) ⊆ T , X2(T ) = γ2 iff CC(I2 � Ô2

γ2
) ⊆ T , and X3(T ) = γ3 iff

CC(I3 � Ô3
γ3
) ⊆ T . The setup then exhibits PFB if these random variables

are correlated, i.e., if for some triple ⟨γ1,γ2,γ3⟩,
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p(X1 = γ1 ∧X2 = γ2 ∧X3 = γ3) ̸= p(X1 = γ1) · p(X2 = γ2) · p(X3 = γ3).

Thismeans that for the T ∈ S such that T =CC(I1 � Ô1
γ1
)∪CC(I2 � Ô2

γ2
)∪

CC(I3 � Ô3
γ3
) we have, via the marginal probabilities:

p(T ) ̸= p(
∪
{T ′ ∈ S |CC(I1 � Ô1

γ1
)⊆ T ′}) ·

p(
∪
{T ′ ∈ S |CC(I2 � Ô2

γ2
)⊆ T ′}) ·

p(
∪
{T ′ ∈ S |CC(I3 � Ô3

γ3
)⊆ T ′}).

This formula says that the probability of the joint (triple) outcome of the
three SLR events I1, I2, and I3 that corresponds to T does not factor into the
probabilities of the three component single outcomes. A concrete system that
shows such behavior will be discussed in Chapter 8.4.

We devote the rest of this chapter to a discussion of Humphreys’s paradox.
We will illustrate how our rigorous theory of causal probability can be
employed to handle the problem, thereby also making good on our second
condition of adequacy.

7.3 Fending off objections to propensities

As mentioned in Chapter 7.1.1, we consider two conditions of adequacy
for our theory of causal probability: the formal condition of fulfilling Kol-
mogorov’s axioms, and the condition of adequately responding to philo-
sophical objections leveled against the notion of causal probabilities, or
propensities. In the previous section we dealt with the first condition, show-
ing how to define general causal probability spaces that fulfill the standard
axioms of probability theory (starting with Def. 7.4 and Lemma 7.1). In this
section we tackle the second task. The challenge we are facing is that our
theory belongs to the category of theories of propensities, and propensities
do not have a good reputation in philosophy. Propensity theories are often
criticized on the grounds of certain “paradoxes” put forward by Humphreys
(1985) and others. The aim of this section is to exhibit the reasons why
these objections do not apply to our theory of propensities. In order to
grasp propensities fully, we begin with a short survey of propensity-related
concepts.
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7.3.1 Some remarks on propensities

In the philosophical literature, propensities are typically assigned to singular
entities. The English language suggests that these entities are objects, pro-
cesses, or singular events.2⁷ Propensities can be graded in degrees of more
or less, high or low, etc., which makes them at least similar to probabilities
in this respect.

Propensities are valenced toward the future and they relate to a time-
asymmetric situation. In 1973, Eddy Merckx has a propensity to win the
Tour de France the next year; but after winning it in 1974, he does not have
a propensity for having won the Tour in 1974. Pure probability theory is
incapable of making such a distinction. The notion of a BST transition,
however, is directly built on possibilities for the future and thereby provides
the necessary resources to express the future-directedness of propensities.

As argued in Popper’s (1959) influential essay on propensities, propen-
sities are unashamedly indeterminist, since they “influence future situations
without determining them”. There being a propensity for such and such may
make it likely, but is not itself a guarantee. Further, propensities are objective
(Popper, 1959, p. 32). Both ideas suit causal probabilities of BST.

A further important issue that we want to stress is that there is always
some causal claim involved in an ascription of propensity. Salmon (1989,
p. 86) writes as follows: “Propensities, I would suggest, are best understood
as some sort of probabilistic causes”. BST theory makes good on this claim
by building causal probability spaces directly out of the material provided by
the BST analysis of indeterministic causation.

7.3.2 Humphreys’s paradox

As propensities come in grades and are assignable to singular entities, a
natural move, taken by Popper and others, is to identify propensities with
a sub-species of probabilities. Propensities are put forward as providing
an objective single-case interpretation of certain probabilities. Of course,
everybody agrees that not all probabilities could be propensities, as there

2⁷ Phrases suggesting that propensities are ascribed to singular events are harder to find inEnglish.
Our usage of ascribing propensities to singular events, however, follows standard philosophical
usage.
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are, for example, also subjective probabilities, but the claim is that some
probabilities are indeed propensities, and all propensities are probabilities.

The underlying idea that propensities are probabilities was fundamentally
questioned by Humphreys’s (1985) paper “Why propensities cannot be
probabilities”, which launched an intense discussion of the relation between
these two concepts. Humphreys’s claim can either be read as arguing that
probability theory in its present form cannot serve as a true theory of
propensities, or as arguing that the notion of a propensity as a specific kind
of probability makes no sense. Many parties to the debate subscribe to the
latter view.

Humphreys always has in mind that propensities are conditional, as
in “there is a propensity Pr for an electron in the metal to be emitted,
conditional upon the metal being exposed to light above the threshold
frequency” (Humphreys, 1985, p. 558), and so his notation is generally
of the form Pr(A | B).2⁸ The principal lemma for Humphreys’s claim that
propensities cannot be probabilities is that Bayes’s theorem fails for propen-
sities. More generally, his strategy is to take issue with the idea that the
inversion principles of probability theory apply to conditional propensities.
Here “inversion” means that p(A | B) and p(B | A) are equally grammatical
and inter-definable. The conclusion Humphreys draws is that “the theory
of probability [is] an inappropriate constraint on any theory of single-case
propensities” (Humphreys, 2004, p. 945).

To give a preview of our response to the objection, we agree with
Humphreys that the five assumptions of his argument listed below lead
to a contradiction. We take issue with them, however, via an analysis of
what they could mean. In this analysis, our main goal is not to focus on an
exegesis of Humphreys’s semi-formal notation, but to attempt to construct a
probability space in which all of the assumptions hold. As the assumptions
are contradictory, we know that the attempted construction has to fail.
By learning how it fails, we will learn which assumptions are untenable, and
why. In this context, our causal probability spaces are highly relevant, as they
can represent all the causal relations in Humphreys’s photon story explicitly.
We will argue that his problematic assumptions (iii) and (CI), see below,
misrepresent the causal settings of his story. In fact, we already discussed
a part of the problem in Chapter 7.2.3. We will thus reject the mentioned

2⁸ We uniformly write Pr(A | B) for the propensity in order to heighten the contrast with the
standard probability-theory notation for conditional probabilities, p(A | B).
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assumptions, and we will show how to represent Bayesian inversion in
BST causal probability spaces. This means that the inversion principles
which Humphreys blames for the contradiction are not problematic for
propensities understood as BST causal probabilities. In Chapter 7.3.4 we
analyze a more complex Humphreys-inspired case to further highlight the
workings of causal probability spaces in the handling of inversion, and of
conditional propensities.

emit

drift offdrift off

impinge

reflectmirror

transmit

Figure 7.3 A nanosecond in the life of a photon. See the main text for details.

Humphreys’s photon argument. Humphreys tells a story in which a
Bayesian calculation gives the wrong answer. The story concerns a photon.2⁹
Figure 7.3 tells of a photon that has just been emitted in a laboratory. The
photon either Impinges (= I) on a half-silvered mirror, with propensity
q, or it drifts off somewhere. If it impinges on the mirror, it has a fixed
propensity p to be Transmitted (= T ) straight ahead through the mirror and
onto a detector, and also of course a companion propensity of r = (1− p)
to wind up Reflected (= R) off to the right. Figure 7.3 spells this out in a
two-dimensional spatial diagram, looking at the apparatus from above.

The list below gives the assumptions of Humphreys’s argument. The first
four items on the list, namely, (i)–(iii) and (CI), are intended by Humphreys
as local assumptions, governing just the emit-impinge-transmit set-up that
is depicted in Figure 7.3. The rest, (TP) and (MP), express general prin-
ciples of probability theory, including conditional-probability theory. The
hypothesis under consideration is whether a theory of propensities can serve
as an interpretation of conditional-probability theory. On the basis of that

2⁹ We take a few liberties with the story, such as not explicitly mentioning the background
conditions holding at time t1. The changes we make are irrelevant to the structure of the argument.
Our identification of non-transmission (T t3 ) with reflection (Rt3 ) below is based on Humphreys’s
(1985) glosses on pp. 561 and 526.
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hypothesis, according to Humphreys, those six assumptions should hold
good for conditional propensities. Humphreys (1985), however, derives a
contradiction and enters this as an argument that classical probability theory
does not give a correct account of conditional propensities.

(i) Prt1(Tt3 | It2) = p, p > 0. [The propensity at t1 for T to occur at t3
conditional upon I occurring at t2 is p.]

(ii) Prt1(It2) = q, 0 < q < 1. [The propensity at t1 for I to occur at t2 is q.]

(iii) Prt1(Tt3 | It2) = 0. [The propensity at t1 for T to occur at t3 conditional
upon I occurring at t2 is 0.]

(CI) Prt1(It2 | Tt3) = Prt1(It2 | T t3) = Prt1(It2). [The propensity for a particle
to impinge upon the mirror is unaffected by whether the particle is
transmitted or not.]

(TP) Prti(At j) = Prti(At j | Btk) · Prti(Btk) + Prti(At j | Btk) · Prti(Btk). [A
version of the principle of total probability is assumed for propensities.]

(MP) Prti(At j Btk) = Prti(Btk At j) = Prti(At j | Btk) ·Prti(Btk). [The standard
definition of conditional probabilities is assumed for propensities.]

The notation Prti(At j | Btk) is to be read as “the propensity at time ti for A
to occur at time t j, conditional upon B occurring at time tk” (cf. Humphreys,
1985, p. 561). Times are as follows: t0 is the last moment before emission, t1
is a time just after emission, t2 is the time of impingement/no impingement,
It2 is the (possible) event of the photon impinging upon the mirror at time
t2, and It2 is the (possible) event of the photon failing to impinge on the
mirror at t2, as it drifts off a moment before. t3 is the time of transmission/no
transmission. Tt3 is the (possible) event of the photon being transmitted
through themirror at time t3. T t3 is the (possible) event of the photon failing
to be transmitted through the mirror at t3 after impinging on the mirror, so
T t3 = Rt3 , the (possible) event of the photon being reflected at t3.

The contradiction thatHumphreys (1985) derives from the above assump-
tions is this: We have

Prt1(It2 | Tt3) = Prt1(It2) = q < 1



probabilities 205

by (CI) and (ii). But by (TP) and (MP) (or, equivalently, by Bayes’s Theorem)
and (i), (ii), and (iii) we get

Prt1(It2 | Tt3)=
Prt1(Tt3 | It2) ·Prt1(It2)

Prt1(Tt3 | It2) ·Prt1(It2)+Prt1(Tt3 | It2) ·Prt1(It2)

=
pq

pq+0
=1.

7.3.3 Our diagnosis of Humphreys’s paradox

We turn to our evaluation of the preceding assumptions. It has been noted
that the notation used has some shortcomings.3⁰ We will not focus on this
line of criticism here, although, for the record, the problematic assumption
(iii) that we will discuss is also the target of the mentioned notation-driven
criticism. One further notational worry can also be put to rest: the notation
It2 seems to involve the negation, or the complement, of a singular event,
which may not be well-defined. We can, however, identify It2 with the well-
defined event of the photon drifting off just before hitting the mirror, which
we take to be the single alternative to It2 .

The bottom line to our diagnosis is that Humphreys fails to motivate his
assumptions by indicatingwhat they could refer to in someprobability space.
In fact, there is no probability space which satisfies all the assumptions. This
can either mean that there is no classical probability space for propensities
(which is Humphreys’s diagnosis),31 or that the assumptions are causally
flawed. The latter is our diagnosis. Our positive contribution will be to point
out which two assumptions are flawed: Assumption (iii), which happens to
be numerically salvageable on our analysis, suggests inappropriate causal
assumptions, and assumption (CI) fails both causally and numerically. In
addition, we can show which correct principles lie behind these problematic
assumptions, thus (we hope) removing thewhiff of a paradox from them.On
top of this diagnosis, we will show how the BST theory of causal probabilities
allows for the construction of an adequate probability space.

3⁰ Miller (1994, p. 113) suggests a modified reading of Prti (At j | Btk ), namely “The propensity of
the world at time ti to develop into a world in which A comes to pass at time t j , given that it (the
world at time ti) develops into a world in which B comes to pass at the time tk”. He also shows that
inversion holds after the modification. A detailed discussion of Humphreys’s and Miller’s notations
is provided in Belnap (2007).

31 Humphreys holds that standard probability theory is “an inappropriate constraint on any theory
of single-case propensities” (Humphreys, 2004, p. 945).
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We start with assumption (iii), which says: Prt1(Tt3 | It2) = 0. Presumably,
Prt1(Tt3 | It2)must be zero becauseTt3 cannot occur togetherwith It2 , because
impinging (It2 rather than It2) is a causal precondition of transmission.
Writing Pr(AB) to signify the probability of the joint occurrence of A and
B, this means Prt1(Tt3It2) = 0.

In the same vein, since reflection (Rt3 , assumed in the story to be identical
to T t3 ; see Humphreys, 1985, pp. 561 and 563) cannot occur together with
It2 , we should also have Prt1(Rt3 | It2) = 0, and so Prt1(Rt3It2) = 0. But then,
as reflection at t3 means no transmission at t3, and vice versa, we should
have Prt1(It2) = Prt1(Tt3It2) + Prt1(Rt3It2), and therefore it should be that
Prt1(It2)=0, in contradiction to assumption (ii).

The background of this calculation is exactly the problematic construction
that we discussed in our story “Variant 2: Mail gets lost” in Section 7.2.2
(p. 177): a probability space involving causally impossible elements in its
sample space. A significant problem with Humphreys’s analysis is therefore
that the sample space that his notation suggests is inadequate—it fails to
properly reflect the causal relations in the photon story. In the spirit of a
standard Cartesian product construction, that notation requires there to
be the 2 × 2 fine-grained combinations of impinge/not impinge at t2 and
transmit/reflect at t3:

It2Tt3 , It2Rt3 , It2Tt3 , It2Rt3 .

These should make up the sample space of the underlying probability space
and thus should have probabilities assigned that add up to one. However,
given Humphreys’s photon story, the last two combinations are causally
impossible. Humphreys has to assign them probability zero.This assignment
then has numerical consequences that contradict the causal story: the occur-
rence of event It2 appears to be inevitable, as the corresponding marginal
probability is one.

The problematic consequence of (iii), inevitability of the occurrence of
event It2 , follows from (CI) as well; the problem here is the mirror image of
the problem we have just discussed. Given that It2 is compatible with both
Tt3 and with Rt3 , it is correct to calculate the marginal probability according
to principle (TP) as follows:

Prt1(It2) = Prt1(It2 | Tt3) ·Prt1(Tt3)+Prt1(It2 | Rt3) ·Prt1(Rt3),
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as we will confirm in our analysis below. On that basis, however, assumption
(CI) implies

Prt1(It2) = Prt1(It2) ·Prt1(Tt3)+Prt1(It2) ·Prt1(Rt3),

from which it follows that

Prt1(Tt3)+Prt1(Rt3) = 1.

As the occurrence of It2 is a causal precondition of the occurrence of either
Tt3 or Rt3 , it again follows, absurdly, that the occurrence of It2 is inevitable
at t1.

Given a 2×2 Cartesian product space, both assumption (iii) and assump-
tion (CI) thus allow one to argue that Prt1(It2) = 1, in contradiction to
assumption (ii). The Cartesian product space is, however, clearly causally
inadequate. Given the causal details of the story there are just three, not four,
really possible combinations of the four events in question:

It2Tt3 , It2Rt3 , It2 .

These objects, or rather the corresponding sets of basic transitions, form
the base set S of an adequate causal probability space according to Def. 7.4.
Notably, the causally impossible combination It2Tt3 is missing from S, so
Humphreys’s premise (iii) is not even statable without further analysis.

We can construct an adequate causal probability space to substantiate our
point. To begin with the impingement It2 , which is supposed to have a single
alternative, It2 , we assume that there is a choice event e1 with exactly two
possible outcomes HI ,HĨ ∈ Πe1 , to be read as “impingement” and “drifting-
off”, respectively. These outcomes give rise to two basic transitions, τ I

1 =

e1 � HI and τ Ĩ
1 = e1 � HĨ .

In a similar vein, as Tt3 and Rt3 are the only alternatives at t3 and each can
only occur in the outcome It2 , we posit a second choice event e2 that is above
e1 in the It2-outcome and that has exactly the two basic outcomes HT ,HR ∈
Πe2 . The resulting basic transitions are τT

2 = e2 � HT and τR
2 = e2 � HR.

We now exhibit a causal probability space CPS = ⟨S,A , p⟩ that is adequate
to represent the photon story. According to Def. 7.4, given the set of initials
E = {e1,e2}, the base set S is
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S = {{τ I
1},{τ I

1,τT
2 },{τ I

1,τR
2 }}.

The algebra A is the power-set of S, A = P(S), and the full measure p
on A is generated from the measure on the elements of S in the standard
way, assuming that the three causal alternatives that make up the set S are
assigned propensities by µ , so that

p(τ I
1) = µ(τ I

1); p({τ I
1,τT

2 }) = µ({τ I
1,τT

2 }); p({τ I
1,τR

2 }) = µ({τ I
1,τR

2 }).

Note that Postulate 7.1 implies

µ({τ I
1,τT

2 }) = µ(τ I
1) ·µ(τT

2 ) and µ({τ I
1,τR

2 }) = µ(τ I
1) ·µ(τR

2 ),

and Postulate 7.4 implies

µ(τ I
1) = µ({τ I

1,τT
2 })+µ({τ I

1,τR
2 }).

These relations carry over to the measure p, noting (in accordance with our
discussion in Section 7.2.5) that the BST transition τ I

1 is represented in CPS
as a fine-grained element of A , viz., as {{τ I

1,τT
2 },{τ I

1,τR
2 }}.

As Humphreys alleges that propensities do not satisfy the standard inver-
sion principles of probability theory, it will be useful to show that in our
causal probability space, inversion is not problematic at all. To illustrate, here
is how our theory relates the conditional probabilities of impingement and
transmission in both ways.

As we just said, the concrete event τ I
1 of the photon impinging on the

mirror at time t2 is represented inCPS not by an element of the sample space,
but by the following element of the event algebra A :

ICPS = {{τ I
1,τT

2 },{τ I
1,τR

2 }},

which consists of the two elements of the sample space that include the
“impinge” transition τ I

1. The concrete event of the photon being transmitted
through the mirror at time t3 is represented by the following element of the
event algebra A :

TCPS = {{τ I
1,τT

2 }},
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which consists of the single element of the sample space that includes the
“transmit” transition τT

2 . Note that this element of the sample space also
includes the “impinge” transition, as this transition is a causal precondition
of the “transmit” transition that is represented in our probability space.
The “transmit” transition, of course, has lots of other preconditions, such
as the installation of the apparatus, but these are not represented in our
locally based probability space CPS. In precisely the same way, the “reflect”
transition is represented as RCPS = {{τ I

1,τR
2 }}.

With a view to conditional probabilities, we next need to find out which
element of the event algebra corresponds to the conjunctive event “impinge
and transmit”. As our algebra A is just the power set algebra of S, this is
simple: we have

ICPSTCPS = {{τ I
1,τT

2 },{τ I
1,τR

2 }}∩{{τ I
1,τT

2 }}= {{τ I
1,τT

2 }}= TCPS.

Note that ICPS is a proper superset of TCPS, so assuming that there is a non-
zero probability for reflection, probability theory alone suffices to guarantee
that p(TCPS)< p(ICPS).

We can now calculate conditional probabilities in our space in the stan-
dard way.The probability of impingement conditional on transmission turns
out to be one, as it should, because impingement is a causal precondition of
transmission that is represented in CPS:

p(ICPS | TCPS) =
p(ICPSTCPS)

p(TCPS)
=

p(TCPS)

p(TCPS)
= 1.

On the other hand, given impingement, transmission is contingent:

p(TCPS | ICPS) =
p(TCPSICPS)

p(ICPS)
=

p(ICPSTCPS)

p(ICPS)
=

p(TCPS)

p(ICPS)
< 1.

These conditional probabilities clearly fulfill Bayes’s theorem. As a sanity
check, here is how to calculate p(ICPS | TCPS) (see below for the expansion of
the denominator via the law of total probability):

p(ICPS | TCPS) =
p(TCPS | ICPS) · p(ICPS)

p(TCPS)
=

p(TCPS)
p(ICPS)

· p(ICPS)

p(TCPS)
= 1.
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It will be illuminating now to look at Humphreys’s assumption (iii), which
involves a causally impossible combination of events. In our framework, we
have

TCPSICPS = {{τ I
1,τT

2 }}∩{{τ I
1}}= /0.

As /0 is a valid element of the event algebra A , with probability p( /0) = 0 by
normalization, this implies p(TCPSICPS) = 0, and accordingly,

p(TCPS | ICPS) =
p(TCPSICPS)

p(ICPS)
= 0,

in accordwith the numerical claimofHumphreys’s assumption (iii).We even
recapture the relevant instance of the law of total probability,

p(TCPS) = p(TCPS | ICPS) · p(ICPS)+ p(TCPS | ICPS) · p(ICPS),

because the first term evaluates as

p(TCPS | ICPS) · p(ICPS) =
p(TCPSICPS)

p(ICPS)
· p(ICPS) = p(TCPSICPS) = p(TCPS),

and the second term is zero, as we have just shown.
As we pointed out earlier, however, the causal structure of the set-up is

misrepresented by the suggestion that one should work with the Cartesian
product of impinge/not impinge and transmit/reflect. Numerically, this
misrepresentation shows up as a problem with assumption (CI). To repeat,
(CI) says

Prt1(It2 | Tt3) = Prt1(It2 | Rt3) = Prt1(It2).

In our preceding discussion, we have already evaluated the first term
involved, and the calculation for the second term is exactly analogous. So,
on our analysis,

p(ICPS | TCPS) = 1; p(ICPS | RCPS) = 1; but p(ICPS) = q < 1.

Assumption (CI) is therefore not just causally, but also numerically incorrect
on our analysis, and this is how Humphreys’s contradiction is avoided. In
order to dispel the air of paradox, we should also be able to point out
which correct principles lie behind assumption (CI). For starters, it is correct
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that the propensity at t1 (in our analysis, at initial event e1) for I to occur
is independent of what happens afterward. As we indicated above, there
is a number q = µ(τ I

1) that represents the causal probability of the local
indeterministic transition from initial e1 to the outcome “impinge”, and we
followHumphreys’s assumption that 0< q< 1 (the photon is neither certain
to impinge nor certain not to impinge). That number q is the number it is,
and it describes a local propensity of a concrete event. In this sense, the gloss
ofHumphreys’s assumption (CI) holds on our analysis as well: the propensity
to impinge in unaffected by whether the particle is transmitted or not. But,
as we have just shown, the equation (CI) does not hold. One might think
that the following (fallacious) reasoning provides good intuitive support
for (CI):

There is a number q = µ(τ I
1), the propensity for the photon to impinge,

and given that the photon has impinged, there is a number p = µ(τT
2 ) for

the photon to be transmitted. The propensity for the photon to impinge
and then to be transmitted is µ(τ I

1,τT
2 ) = µ(τ I

1) · µ(τT
2 ), by the Markov

condition. So we can calculate the propensity for the photon to impinge,
conditional on its being transmitted, as

µ(τ I
1 | τT

2 ) =
µ(τ I

1,τT
2 )

µ(τT
2 )

=
µ(τ I

1) ·µ(τT
2 )

µ(τT
2 )

= µ(τ I
1),

in support of (CI); and the calculation involving R is analogous.

The problem with this argument is that it fails to take into account how the
transitions in question are represented, skipping a crucial step in deriving
a mathematically well-defined probability measure p on the algebra A of
a probability space from the propensity function µ . It is correct that µ
assigns a value between 0 and 1 to basic transitions and to sets of basic
transitions (with the proviso that µ need not be a total function). But it
is not correct to assume that µ itself is a probability measure. We already
pointed out in Section 7.1.3 that this assumption is untenable. There is some
work involved in using the Nature-given causal probabilities (propensities)
µ to construct causal probability spaces, and that work depends crucially on
how the relevant transitions are represented. Once an adequate probability
space has been constructed, all assumptions of probability theory, including
conditional probability theory and its inversion principles, hold without any
reservations.
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At this point we can take up the discussion of case 2 of representing BST
transitions in causal probability spaces from Section 7.2.5. The issue with
the fallacious reasoning above is exactly that the “transmit” transition τT

2
is not represented in isolation in a causal probability space that includes
the “impinge” transition τ I

1, which is a causal precondition of transmission.
There is no element of the event algebra A of CPS that represents the
“transmit” transition alone, and therefore, the above calculation involving
a conditional propensity is undefined in our CPS. It is correct, due to the
Markov condition, that

µ({τ I
1,τT

2 }) = µ(τ I
1) ·µ(τT

2 ). (7.8)

The propensity for the two-step transition from e1 (before impinging) to
transmission, which has the two causae causantes τ I

1 and τT
2 , factors into the

propensity for the photon to impinge and the propensity for the photon then
to be transmitted. It is, therefore, also correct to calculate

µ(τT
2 ) =

µ({τ I
1,τT

2 })
µ(τ I

1)
=

p(TCPS)

p(ICPS)
=

p(TCPS)

p(TCPS)+ p(RCPS)
.

In this calculation we have used the probability measure p defined on CPS
wherever possible. But the expression µ(τT

2 ), which is well-defined in the
probabilistic BST structure in which we are working, has no counterpart in
our causal probability space, which represents the two consecutive events of
impingement and transmission. In any such space, the transmission event is
not represented in isolation, but only together with its causal precondition,
impingement. Eq. 7.8 thus connects two different causal probability spaces.
Conditional probabilities, however, are only defined within one single prob-
ability space.

Viewed in this light, we can repeat our initial assessment thatHumphreys’s
claim, read charitably, is indeed correct: raw propensities are not prob-
abilities because there is no probability space whose measure they could
be. In order to show that, no Bayesian inversion is needed, however: it
is enough to note that two incompatible deterministic transitions, each of
which has propensity one, would have to give rise to a disjunctive event with
propensity 2 (see p. 165).Thus,Humphreys’s argument is a red herring. Once
propensities have been used to construct causal probability spaces, standard
probability theory holds, and there is no problem. Humphreys’s paradox is
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no threat to propensity theory as implemented via BST causal probability
theory.

7.3.4 Salmon’s corkscrew story: More on conditional
propensities and inversion

In this final section we will show how causal probability theory can also
handle Bayesian inversion in a more complex case. We will proceed in
terms of an analysis of Salmon’s (1989) corkscrew story, which provides a
standard case illustrating Bayesian inversion andwhich Salmon had invoked
in defending his reluctance to give a probabilistic reading to propensities.32
Here is how Salmon (1989, p. 88) put the matter.

Imagine a factory that produces corkscrews. It has two machines, one old
and one new, each of which makes a certain number per day. The output
of each machine contains a certain percentage of defective corkscrews.
Without undue strain, we can speak of the relative propensities of the two
machines to produce corkscrews (each produces a certain proportion of the
entire output of the factory), and of their propensities to produce defective
corkscrews. If numerical values are given,we can calculate the propensity of
this factory to produce defective corkscrews. So far, so good. Now, suppose
an inspector picks one corkscrew from the day’s output and finds it to be
defective. Using Bayes’s theorem we can calculate the probability that the
defective corkscrewwas produced by the newmachine, but it would hardly
be reasonable to speak of the propensity of that corkscrew to have been
produced by the new machine.33

In retelling the story, we shall rely on Figure 7.4. Each h j ( j = 1, . . . ,5) in
that figure is a history. e0 is a reference point event before all the action.
The ellipses are machines Mi (i = 1,2), with ei the (idealized) point event of
production by Mi. e3 is the choice for the Inspector to pick one out of the
two defective corkscrews. di [gi] is a defective [good] corkscrew produced

32 Salmon told (at least) two “inversion stories”, the can opener story, in Salmon (1984), and the
corkscrew story, in Salmon (1989). With these stories he subscribed to the position that propensities
“make sense as direct probabilities [ . . . ], but not as inverse probabilities (because the causal direction
is wrong)” (Salmon, 1989, p. 88).

33 Salmon’s language attaches propensities to things; without further comment, we translate his
story into language that attaches propensities to transitions.
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Figure 7.4 The Corkscrew Story. See main text for details.

by machine Mi. In turn, d∗
i (i = 1,2) stand for the Inspector’s picking of a

defective corkscrew produced by Mi from Box-α at e3. To simplify Salmon’s
story, we assume that each machine makes just one corkscrew per day. The
causal analysis of the story as pictured leads us to six basic transitions. First
there are four transitions related to the output (good or defective) of the
machines:

τ1 = e1 � g1, τ ′1 = e1 � d1, τ2 = e2 � g2, τ ′2 = e2 � d2. (7.9)

The remaining two basic transitions result from possible actions of the
Inspector, who ignores any good output in Box α , paying attention only
to defective corkscrews. Accordingly, she only has a choice if two defec-
tive corkscrews are in Box α , which occurs in histories h1 and h2. In
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these histories the Inspector indeterministically chooses which defective
corkscrew to transfer to Box β , and her two possible picks are represented
by two alternative basic transitions,

τ3 = e3 � d∗
1 and τ ′3 = e3 � d∗

2 . (7.10)

The following table gives exemplary values for the propensities of all the basic
transitions involved which we will use in our calculations below:

µ(τ1) = 0.4 = p1, µ(τ2) = 0.9 = p2, µ(τ3) = 0.7 = p3,

µ(τ ′1) = 0.6 = p′1, µ(τ ′2) = 0.1 = p′2, µ(τ ′3) = 0.3 = p′3.
(7.11)

From this information we can calculate the propensities of relevant non-
basic transitions, such as the transition e0 � d∗

1 from the initial state to the
inspector picking the first corkscrew.3⁴ To this end, one must first locate the
sets of causae causantes of these transitions:

CC(e0 � d∗
1) = {τ ′1,τ ′2,τ3}, CC(e0 � d∗

2) = {τ ′1,τ ′2,τ ′3}, (7.12)
CC(e0 � (g1 ∪d2)) = {τ1,τ ′2}, CC(e0 � (g2 ∪d1)) = {τ ′1,τ2}, (7.13)

CC(e0 � (g1 ∪g2)) = {τ1,τ2}. (7.14)

As an illustration, we will calculate the propensity of e0 � d∗
1 as repre-

sented in an adequate causal probability spaceCPS = ⟨S,A , p⟩. First, we list
the set of alternatives T̃ to elements of CC(e0 � d∗

1):

T̃ = {τ1,τ ′1,τ2,τ ′2,τ3,τ ′3}. (7.15)

Then, given the causal set-up of our story, the base set S, i.e., the set of
maximal consistent subsets of T̃ , is

S = {{τ1,τ2},{τ1,τ ′2},{τ ′1,τ2},{τ ′1,τ ′2,τ3},{τ ′1,τ ′2,τ ′3}}. (7.16)

A is then the set-theoretic Boolean algebra over S, as it should be. The
propensity of e0 � d∗

1 is thus to be analyzed in the probability space
⟨S,A , p⟩. Given the assignment of propensities µ stated in Eq. 7.11, we need

3⁴ Recall that the gi, di, and d∗
i are scattered outcome events, so if any two of them are consistent,

their set-theoretical union is a scattered outcome aswell. But if such a pair is inconsistent (like g1,d∗
1 ),

they do not yield a scattered outcome.
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to find the numerical value of p(e0 � d∗
1) = µ(e0 � d∗

1) = µ(CC(e0 �
d∗

1)) = µ({τ ′1,τ ′2,τ3}) = p({τ ′1,τ ′2,τ3}). To calculate this number, some
extra information is needed, over and above the propensities of the basic
transitions involved. If each individual causa causans works separately and
independently of each other, we may multiply probabilities of all ingredient
transitions. On the other hand, the SLR causae causantes could work jointly.
In that case, we have probabilistic funny business, and we cannot just
multiply probabilities.

Here we give the numerical values that result from the basic propensi-
ties of Eq. 7.11, the Markov condition (Postulate 7.1), and the reasonable
assumption of no probabilistic funny business:

p(e0 � d∗
1) = p′1 · p′2 · p3 = .6 · .1 · .7 = .042

p(e0 � d∗
2) = p′1 · p′2 · p′3 = .6 · .1 · .3 = .018

p(e0 � (g1 ∪d2)) = p1 · p′2 = .4 · .1 = .04

p(e0 � (g2 ∪d1)) = p′1 · p2 = .6 · .9 = .54

p(e0 � (g1 ∪g2)) = p1 · p2 = .4 · .9 = .36

Since our causal analysis requires that, given the occurrence of e0, exactly
one of the five scattered outcomes must occur, it is hardly a surprise that the
sum of these five propensities is 1 (see Postulate 7.3).

For future reference, let us calculate the propensity of the transition from
e0 to “the Inspector picks a defective corkscrew”. In our BST structure, this is
the transition from e0 to the disjunctive outcome Ŏ = {{d∗

1},{d∗
2}}, which

in CPS is represented as the element {{τ ′1,τ ′2,τ3},{τ ′1,τ ′2,τ ′3}} ∈ A . The
calculation of the probability is not difficult; just add, using the numerical
results above:

p(e0 � Ŏ) = .042+ .018 = 0.06. (7.17)

Returning to Salmon’s main problem, the crucial question of the story is
the following:

Question 7.3. What shall we say about the chosen corkscrew’s propensity
to have been made by M1?

Salmon’s answer is: “it would hardly be reasonable to speak of the propen-
sity of that corkscrew to have been produced by” M1 (Salmon, 1989, p. 88).
Indeed: would anyone want to say that the corkscrew lying quietly in their
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hand has a certain propensity to—what? A propensity to have been made
by machine M1 rather than M2? The reason why this answer sounds non-
sensical has precious little to do with propensities, probabilities, or Bayes:
It is a purely causal issue. The corkscrew has either been made by M1

or by M2, and even though the Inspector may not know which, that is a
settled matter.

Although the appeal to a past-directed propensity does not make sense,
we would still like to reformulate Question 7.3 in some propensity-
friendly way. We offer the following as an adequate replacement that
makes sense.

Question 7.4. What is the propensity for the event e0 (in Figure 7.4) to give
rise to the Inspector’s taking a corkscrew made by machine M1, given that e0

gives rise to his picking a defective corkscrew?

The two transitions involved are e0 � d∗
1 and e0 � Ŏ. In order to compute

the probability of the former conditional on the latter, we also need the
element of A that represents their intersection, which comes out as

{CC(e0 � d∗
1)}∩CC(e0 � Ŏ) = {{τ ′1,τ ′2,τ3}}= {CC(e0 � d∗

1)}.

Given all this, we can compute the probability of the Inspector taking a
corkscrew made by M1 conditional on the Inspector picking a defective
corkscrew:

p({{τ ′1,τ ′2,τ3}} | {{τ ′1,τ ′2,τ3},{τ ′1,τ ′2,τ ′3}}) =
p(e0 � d∗

1)

p(e0 � Ŏ)
=

0.042
0.06

= 0.7.

The inversion, although of little interest, makes perfectly good technical
sense as well:

p({{τ ′1,τ ′2,τ3},{τ ′1,τ ′2,τ ′3}} | {{τ ′1,τ ′2,τ3}}) =
p(e0 � d∗

1)

p(e0 � d∗
1)

= 1.

The propensity for e0 to give rise to “The Inspector taking a defective
corkscrew” given that e0 gives rise to “The Inspector taking a corkscrewmade
bymachine M1”, is a boring 1, since in our story, among the corkscrewsmade
by M1, the Inspector takes only defective corkscrews.We leave a sanity check
of the corresponding instance of Bayesian inversion as Exercise 7.4.
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7.4 Conclusions

In this chapter, we have used the analysis of causation in BST in terms of
causae causantes as a background for a formal theory of objective single-case
probabilities, or propensities, defined on BST transitions I � O∗. Working
from a set of simple examples, we established a number of constraints on
the (partial) propensity function µ that constitutes an additional ingredient
in a probabilistic BST structure (Def. 7.3). We distinguished the propensity
function µ from the probability measure p in causal probability spaces
according to Defs. 7.4 and 7.5, and we discussed in which way a BST
transition I � O∗ can be represented in different causal probability spaces
(Section 7.2.5). With a view especially to later applications (see Chapter 8),
we analyzed the notion of space-like probabilistic correlations, or proba-
bilistic funny business (Def. 7.7), in terms of the dependency of random
variables.

Our analysis fulfills two crucial conditions of adequacy, which in our view
singles it out from among other accounts of propensities. First, the formal
structures that we have defined, causal probability spaces, are standard Kol-
mogorovian probability spaces, showing how our causal probability theory
fits in with themainstream accounts of probabilities.Themain distinction to
standard approaches is the way in which probability spaces combine. As we
have shown, the standard Cartesian product construction is only adequate
if causally separated probability spaces with space-like related initials are
combined. In the general case, the adequate way to construct the sample
space of a causal probability space is to consider a set of causal alternatives
(Def. 7.2). Second, we showed that our account of propensities via causal
probability spaces is immune to the criticism of Humphreys’s paradox.
Conditional probabilities and Bayesian inversion constitute no problems
for our approach, and we were able to pinpoint exactly which assumption
for Humphreys’s impossibility result is fallacious. We ended by showing
in which way conditional propensities also make sense in more complex
scenarios.

To sum up, BST-based probability theory is not an alternative to stan-
dard probability theory, but a fine-grained application of it that makes
that theory able to treat objective single-case probabilities in a formally
perspicuous way.
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7.5 Exercises to Chapter 7

Exercise 7.1. Prove Lemma 7.2.

Hint: Consider the finite number of disjuncts separately and note that
these disjuncts are mutually exclusive, allowing for the summation of their
probabilities. A full proof is given in Appendix B.7.

Exercise 7.2. Let I1, I2, . . . , IK be a set of pairwise SLR initial events that
give rise to deterministic transitions to disjunctive outcomes I1 � 11, I2 �
12, . . . , IK � 1K . Let

1E = {
∪

Z | Z ∈ 11 ×12 × . . . ×1K}.

Prove that 1E is a disjunctive outcome and that E =df
∪K

k Ik and 1E form a
transition (i.e., that E is below 1E in the relevant sense of Def. 4.4), and that
that transition is deterministic.

Exercise 7.3. Exhibit the causal probability space induced by set
CC(e0 � g1) in the corkscrew story of Chapter 7.3.4 and then show how
this set, CC(e0 � g1), is represented in the probability space CPS defined
on the basis of Eq. 7.16.

Exercise 7.4. Perform a sanity check of the principle of Bayesian inversion
for the corkscrew story of Chapter 7.3.4; that is, verify that, with the appro-
priate A and B,

p(A | B) =
p(B | A)

p(B | A) · p(A)+ p(B | A) · p(A)
.
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