
8
Quantum Correlations

In this chapter, we use BST to analyze the phenomenon of quantummechan-
ical (QM) correlations. Our hope is that our BST analysis, based on rig-
orously developed notions of transitions, propensities, and funny business,
sheds some light on these puzzling phenomena. We conceive of this project
as a modest one: we do not aim to produce a general “BST interpretation of
QM” or anything similar.We study how themachinery of BST can be applied
to themodeling of the strange correlations that QMpredicts and which have
been sowell confirmed experimentally, andwhat we can learn from attempts
at getting rid of the correlations via extended models.

Quantum mechanical correlations seem to be ideally suited for descrip-
tion and analysis in the BST framework. They concern events occurring in
space and time, such as the selection of measurement parameters, measure-
ments, or various possible detection events. The spatio-temporal features
of the set-up matter, as some of the events involved are space-like related.
And the correlations involve modal issues of possibility and impossibility,
or of grades of possibility. We have already mentioned purely modal QM
correlations whenmotivating the investigation of what we have calledmodal
funny business (MFB) in BST (Chapter 5.1) via the quantum-mechanical
EPR set-up. That set-up involves an entangled particle pair, leading to
perfect anticorrelations between space-like separated measurements (see
Figure 5.1, p. 107): some joint outcomes are impossible even though the
individual outcomes are separately possible. A more complex, but also more
interesting case of modal correlations is the so-called Greenberger-Horne-
Zeilinger (GHZ) set-up, which involves an entangled three-particle state for
which, again, some individually possible measurement outcomes are jointly
impossible. Of course, this has more than a whiff of MFB about it. The GHZ
set-up will play a prominent role in our discussions in Section 8.3, especially
in Section 8.3.3.

Apart from modal correlations, and more in the focus of discussions
in the philosophy of physics, QM also predicts space-like probabilistic
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correlations, which we have called probabilistic funny business (PFB; see
Chapter 7.2.6). In such correlations, joint results of individually possible,
space-like related outcomes are possible all together, but the degree to
which they are possible—their joint causal probabilities or propensities—
cannot be derived from the probabilities of the individual outcomes taken
separately. An important set-up in this regard is the so-called Bell-Aspect
set-up, which will be a focus for our discussions of PFB in Section 8.4,
especially in Section 8.4.4.

Since the famous EPR paper by Einstein et al. (1935), but especially
following the ground-breaking works of John Bell in the 1960s (see Bell,
1987a), quantum correlations have been analyzed in terms of the possibility
of introducing an additional explanatory structure, that of the so-called hid-
den variables. The question from the title of the EPR paper, “Can quantum-
mechanical description of physical reality be considered complete?”, can be
answered by studying which extensions, or completions, of the quantum-
mechanical surface description of a QM correlation experiment are empir-
ically viable. Over the years, starting with Bell’s results, there have been a
large number of “no go” theorems concerning the introduction of certain
classes of hidden variables for various set-ups. In the BST framework, we
can study the introduction of hidden variables as structure extensions that
lead from a BST surface structure to an enlarged “hidden” structure that has
more desirable features than the surface structure. Ideally, while the surface
structure harborsMFB (or PFB), the extended structure represents the same
surface phenomena, but is free from MFB (or PFB). The “no go” theorems
say that this is not always possible.

In BST, we can reproduce these results in a framework representing both
the spatio-temporal and the modal aspects. The BST versions of the “no
go” theorems we derive show why it is impossible to explain certain cases
of modal or probabilistic funny business by invoking hidden variables, and
which modal, causal, propensity-related, and spatio-temporal features of
our world these theorems rely on. Another significant contribution of a
BST analysis, in our view, lies in the fact that we can spell out in formal
detail what it means to analyze a set-up as an experiment, and which role
this plays in the derivation of the “no go” results. It turns out that it is
crucial to keep two types of indeterminism separate: indeterminism due to
an experimenter’s selection of measurement parameters, and indeterminism
due to Nature’s choice of a measurement result. BST makes room for a
transparent representation of this distinction.
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Our analysis in this chapter is framed in terms of QM, but our analysis of
structure extensions vis-à-vis modal or probabilistic funny business is of a
general nature. It can be applied to any case inwhich onewonderswhether or
not funny business is, as it were, empirically inevitable. Quantummechanics
is just the theory that gives us the strongest reasons for thinking that this
may be so.

8.1 Introducing quantum correlation experiments

Put in abstract terms, a quantum correlation experiment has the following
general form.The experimental set-up contains a source of systems (think of
entangled pairs or n-tuples of particles) that are channeled into two or more
stations, assigned to experimenters Alice (A), Bob (B), Carol (C), etc. The
measurements conducted at each of the stations can be varied. In the fairly
simple Bell-Aspect set-up, each experimenter is in control of two alternative
settings of her measurement apparatus, 1 and 2 for Alice and 3 and 4 for
Bob, and each of the possible measurements has two possible individual
outcomes, ‘+’ and ‘−’. For a given two-particle state, quantum mechanics
predicts which joint outcomes are possible for given settings, and what the
probabilities for these joint outcomes are. A single run of the experiment can
thus be described by listing the selected settings together with the results
obtained with these settings. So, in a set-up with just two experimenters,
a+1 b−3 describes a run in which Alice selected setting 1, Bob selected setting
3, Alice obtained result ‘+’, and Bob obtained result ‘−’. The Bell-Aspect set-
up is pictured schematically in Figure 8.1.

What we have just described schematically is an experiment rather than
a collection of natural happenings. The idea behind doing experiments is
to pose questions to Nature by exerting control over the conditions and
then observing what happens. Intervention is crucial to an experiment, yet
conceptually it cannot be determined or dictated by Nature. There must be
a certain independence between what happens anyway and which questions
are asked in an experiment. In basic BST terms, we can incorporate the
distinction between natural happenings and experimental interventions by
distinguishing between two types of local choices: Some of these choices are
assumed to be under experimental control, while the rest of the indetermin-
ism in the model is due to Nature alone. This way of describing experiments
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Figure 8.1 Schematic illustration of the Bell-Aspect quantum correlation exper-
iment. Experimenters Alice (a) and Bob (b) choose settings (1 or 2 for Alice, 3 or
4 for Bob) for their experiments, which have outcomes ‘+’ or ‘−’. Left: Schematic
illustration of the modal splitting involved. Right: Space-time diagram for the
history including the joint outcome a+1 b−3 .

is in fact deeply ingrained in the whole quantum correlation literature. Here
are some relevant quotes. Einstein et al. (1935) speak of the consequences of
performing different measurements:

We see therefore that, as a consequence of two different measurements
performed upon the first system, the second system may be left in states
with two different wave functions. On the other hand, since at the time of
measurement the two systems no longer interact, no real change can take
place in the second system in consequence of anything that may be done
to the first system. (Einstein et al., 1935, p. 779)

Bell (1987b) speaks of the freedom of experimenters:

It has been assumed that the settings of instruments are in some sense
free variables—say at the whim of experimenters—or in any case not
determined in the overlap of the backward light cones. Indeedwithout such
freedom I would not know how to formulate any idea of local causality,
even the modest human one. (Bell 1987b, p. 61)

Similar remarks can be found in papers in experimental physics. For
example, Aspect et al. (1982b) mention “other choices of orientations”.
In our schematic set-up, we thus contrast the selection of settings, which is
under experimental control, and the chancy occurrence of the measurement
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outcomes, which is due to Nature. Experimental control does not have to
mean that the selection of settings is due to a human agent.1 A distinctive
feature of experimental control, which enters as an assumption in the
derivation of results about the possibility or impossibility of certain types
of hidden variables, such as the derivation of Bell-type theorems (see
Section 8.4), is that the selection of settings must be independent of the
physical state of the system on which the experiment is performed—
including a hypothetical full state that adds hidden variables. Typically,
this independence is understood as the existence of truly indeterministic
processes of the selection of settings whose outcomes are, in particular, not
influenced by the values of any hidden variables.2 In contrast to the settings,
the measurement outcomes may of course depend upon, or even to be
dictated by, the full physical state including the values of hidden variables.

8.2 On the BST analysis of quantum correlations

Since Einstein, Podolski and Rosen’s (1935) seminal paper, quantum cor-
relations have been viewed as mysterious; they seem spooky, or “spukhaft”,
as Einstein had it.3 After all, such correlations coordinate remote space-like
separated measurement results, like a+1 and b−3 in our schematic illustration,
without the possibility of physical interaction. In some experiments, the
spatial distance between the results is enormous.⁴ BST has two resources
to represent correlations between space-like related measurement results,
modal funny business (MFB) and probabilities funny business (PFB). The
first approach applies to quantum-mechanical correlations only if some joint
outcomes are assigned probability zero. On that modal (MFB) approach,
probability zero is interpreted as meaning that a joint outcome is impos-
sible, while a non-zero probability signals that a joint outcome is possible.

1 The experiment of Aspect et al. (1982a), with semi-random selections of settings produced by
an optical process, was viewed as incorporating a type of experimental control that constituted a
decisive improvement over earlier experiments in which the settings were fixed for whole series of
runs of the experiment. Even so, direct human control seems to be the conceptual gold standard
for such experiments, despite the fact that the quality of the randomness produced by humans, as
assessed via statistical tests, is much inferior to other sources of randomness. For a recent large-
scale experiment using direct human control for the selection of parameters in quantum correlation
experiments, see Abellán et al. (2018).

2 For a dissenting view, see Esfeld (2015).
3 See footnote 2 in Chapter 5.
⁴ As of Spring 2019, the longest distance is 144 km on the ground (Scheidl et al., 2010) and

1200 km by satellite communication (Yin et al., 2017).
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Measurement events are represented as transitions, and a set-up with modal
correlations can be analyzed using the resources developed in Chapter 5.The
second approach applies to all cases of quantum-mechanical correlations,
including, but not limited to those in which probabilities zero and one occur.
On that probabilistic (PFB) approach, probabilities of joint outcomes are
interpreted as (single case) propensities, which can be analyzed using the
framework developed in Chapter 7.2.6.

According to quantummechanics, remote correlations can indeed be per-
fect (at least in theory), meaning that the probability of the joint occurrence
of two specific, individually possible results can be zero. This implies that
knowing her own result, an experimenter can immediately predict a remote
result. This looks as if quantum correlations could beat the limit of the speed
of light that is imposed on physical interactions by the special theory of
relativity. This leads to the worry of whether quantum correlations indicate
a conflict between the theories of relativity and of quantum mechanics, and
in particular, whether they permit superluminal signaling. The consensus
is that while entanglement can be used to greatly enhance the security of
communication (Colbeck and Renner, 2012), it does not provide a resource
for superluminal communication.There are space-like correlations involved,
but these cannot be exploited by the experimenters to send signals. More
generally, the consensus appears to be that there is no logical conflict
between relativity and quantum mechanics, and that the two theories live in
a kind of peaceful coexistence, as argued first by Shimony (1978). Needless
to say, as this very phrase is reminiscent of Cold War talk,⁵ the implication
is that there are decisive conflicts between the two theories, but these are not
lethal, as they do not amount to a head-on contradiction. Thus, the phrase
also suggests some hope of resolving the conflict via a future unified theory
encompassing large- and small-scale phenomena together.⁶

⁵ Shimony attributed the phrase to Chairman Khrushchev; “mirnoye sosushchestvovaniye”, as it
is called in Russian, was part of Soviet propaganda in the Cold War and afterward.

A key element in Shimony’s (1978) peaceful coexistence strategy is to uphold one premise of Bell’s
theorem (the independence of measurement outcomes from the choice of remote settings), while
rejecting a mathematically similar premise that remote measurement outcomes are independent
from each other (for a precise statement of these premises, see Def. 8.24 for Parameter Independence
and Def. 8.22 for Outcome Independence, both discussed in Section 8.4). This suffices to block
the derivation of Bell’s theorem, while prohibiting faster than light signalling. Given the mentioned
similarity of the two premises, the move is nevertheless controversial.

⁶ Given more recent developments, like the Colbeck-Renner (2011) proof of a Bell-type the-
orem, or purported progress with Bohmian analyses of EPR correlations (for a survey, see, e.g.,
Maudlin 2019, ch. 4), the idea of peaceful coexistence now looks more complicated than ever. For a
recent reassessment, see Butterfield (2018).
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Correlations between space-like separated events raise the question of
explanation and especially of constraints on explanations that relate to
“locality.” If correlated events are space-like separated, a correlation cannot
be explained via direct physical interactions—at least this is the consensus
view. An explanationwould thus have to come from an extended description
of the states of the system involved, as already argued byEinstein et al. (1935).
The big question is, of course, which extensions are admissible conceptually
and empirically, and which kind of explanation they can provide. The initial
thrust of the quest for hidden variables is often interpreted as an attempt to
eliminate the indeterminism of quantum mechanics, or to reduce quantum-
mechanical probabilities to epistemic phenomena.⁷ Over the years, however,
it has become clear that the real challenge is to explain away any supposed
“non-locality” of quantummechanics, not the theory’s indeterminism.Thus,
one constraint on the hidden-variable completions of quantum mechanics
is that the resulting models be “local”, where the informal notion of locality
must bemade precise in someway. A natural way to explainQMcorrelations
locally is to postulate common causes lying in the past of correlated events,
or to postulate instructions that the correlated particles carry along from the
source to the measurement. Starting with the work of John Bell in the 1960s
(see Bell, 1987a), it has become clear that postulating such hidden variables
is not a merely metaphysical maneuver, but can have implications that can
be tested empirically. Given the well-established empirical fact that observed
correlations vindicate the predictions of QM,⁸ the issue has become less one
of extending the quantum-mechanical formalism, but of coming upwith any
viable account of the observed correlations at all. For such an account to
count as explanatory, it has to fulfill certain structural constraints that are
either physically or philosophically motivated. Crucially, they include the

⁷ Einstein is often attributed with the slogan “God does not play dice”, but the interpretation of
this slogan is controversial. In a letter to Max Born dated December 4, 1926, Einstein writes: “Die
[Quantenmechanik] liefert viel, aber demGeheimnis des Alten bringt sie uns kaumnäher. Jedenfalls
bin ich überzeugt, daß der nicht würfelt.” See Einstein et al. (1971, p.90): “[Quantummechanics] says
a lot, but does not really bring us any closer to the secret of the ‘old one’. I, at any rate, am convinced
that He is not playing at dice.”

⁸ Awhole literature is devoted to the important question of whether the possible “loopholes” often
present in actual experiments can be and have been closed. For example, if detection efficiency is too
low, it is impossible to check whether the runs registered constitute a fair sample of all really possible
runs. For a discussion of loopholes, see, e.g., Myrvold et al. (2019). Over the years, substantial
progress in closing these loopholes has been made. Some recent experiments have been claimed
to be “loophole-free” (Giustina et al., 2013; Hensen et al., 2015; Shalm et al., 2015). It appears that at
least the scientific community is convinced that in these experiments, the issues of loopholes have
been dealt with satisfactorily, so that the quantum-mechanical predictions are really empirically
vindicated.
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independence of experimenters’ choices of measurement parameters from
the particles’ state.

The basic local features of BST can help to analyze the quest for local
explanations. In BST, all possible events are well-defined spatio-temporal
objects. If such an event is an indeterministic choice point, it has possible
outcomes that occur after it in the BST pre-causal ordering. This basic
locality is supplemented by two restricted and well-defined varieties of non-
locality: BST permits modal as well as probabilistic funny business (see
Chapter 5 and Chapter 7.2.6, respectively). With these resources, BST is able
to resolve issues that are outside the scope of other rigorous, but purely
probabilistic frameworks available in the literature.⁹ The BST resources
will be especially helpful when tackling the independence of experimental
interventions and natural indeterminism.This independence has at least two
aspects. First, an experimenter, who has a range of possible measurement
parameters to choose from, should not be restricted in her choice. This
might perhaps sound overly broad: undoubtedly, Nature limits our ways,
and it may not be possible to construct an experimental set-up in which one
can ask Nature different questions by selecting alternative parameters. The
independence that is at stake here, however, is more specific: given that an
apparatus is in place that affords the choice of different parameters, there
must be no surreptitious or hidden limitation of the experimenters’ choices
in any given run of the experiment. The other aspect goes in the opposite
direction: the experimenter must not be able to restrict or influence Nature’s
choices at remote (space-like separated) events.

The notion of independence still needs to be made formally precise in a
way that accords with the general framework that is used, but here we can
already formulate a template for the independence condition, which we will
later call C/E independence:

Definition 8.1 (Target notion of C/E independence). Let W = ⟨W,<⟩ be a
BST92 structure with two disjoint sets of choice points, C,E ⊆ W , where C
represents the choices of experimenters and E represents indeterminismdue
to Nature. The structure is said to be C/E independent iff for any consistent
subsets C0 ⊆C and E0 ⊆ E , the outcomes of C0 and the outcomes of E0 are
independent in the relevant (modal or probabilistic) sense.

⁹ For such accounts, see, e.g., Hofer-Szabó et al. (1999) and Pitowsky (1989).
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We already said that our analysis focuses on the representation of the
possible single runs of quantum correlation experiments. Each single run is
a complex spatio-temporal happening that involves the particles’ emission
from the source, the selection of measurement settings, concrete measure-
ment processes and detection events, and perhaps more. A satisfactory
account of these possible single runs cannot be a mere list of them, and a
satisfactory account of an experiment must be more than a mere chronicle
of the mentioned characteristics of the actual runs. The challenge is to
come up with a law-like account (i.e., one that is in some sense stable
under counterfactual variations). Our BST analysis offers a way to represent
arguments along these lines in full formal detail.

Themain formal tool thatwewill use is that of a structure extension.Given
a BST surface description of a QM correlation experiment—more or less, a
compilation of the really possible runs and their spatio-temporal features—
we can study ways of extending the surface structure via hidden variables, or
instruction sets. The idea is that such an extended structure could show that
the modal or probabilistic funny business present in the surface structure is
only apparent, and how the surface correlations can come about on the basis
of hidden structure without such troublesome correlations.

We begin our work in the setting of modal correlations in Chapter 8.3.We
then move to probabilistic correlations in Chapter 8.4. In our exposition, for
simplicity’s sake we stick to the BST92 framework

8.3 Explaining modal correlations via instruction sets

The motivation for wanting to get rid of modal correlations is, bluntly
speaking, that we seem unable to understand how they could occur. If two
distant events each have a number of different possible outcomes and these
events cannot causally influence one another, then how could some joint
outcomes be impossible? But that is exactly the situation that we seem to be
facing in certain quantumcorrelation experiments, andwhichwe have called
modal funny business (MFB).The task of getting rid ofMFB is, therefore, the
following: Given a BST structure ⟨W,<⟩ that harbors MFB, we ask whether
there is a different BST structure ⟨W ′,<′⟩ that is free from MFB while still
representing the same facts. This means that we take the initially given BST
structure to be a representation of surface facts only, and that we look for an
extension of that structure that consists of copies of histories of the surface
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structure that are differentiated by hidden factors. The idea is that while
each history in the surface structure describes the empirically accessible
facts about one possible run of the experiment in question, each history in
the extended structure describes such a possible run together with hidden
factors that are posited to explain the modal correlations present in the
surface structure. In agreement with widespread usage, we call these hidden
factors instruction sets, or deterministic hidden variables.1⁰ Technically, the
overall idea is to replace one model of a quantum correlation experiment,
the surface model, by an extended model that does not contain modal funny
business and in which additional instruction sets prescribe the outcomes of
measurements (Nature’s choices). Such a prescription has to be given for any
possible choice of measurement parameters by the experimenter. In general,
therefore, an instruction set has to have a counterfactual character; it has to
include instructions, not all of which can be realized together.

Indeed, instruction sets without such a counterfactual character appear
fishy. As we said earlier and as we will prove below (Theorem 8.2), the
following maneuver is always possible. Assume that all the choice points in
a BST structure ⟨W,<⟩ that models an experiment lie above some event e∗,
forming a set E for which e∗ < E . Take all the histories h that contain e∗—
under our assumptions, this is the full set Hist(W )—and create a unique label
ĥ for each history.Then build a new structure in which each history h, which
we can write as {a | a ∈ h}, is replaced by a labeled copy h′ =df {⟨a, ĥ⟩ |
a ∈ h}. Adjust the ordering such that above e∗, the labeled copies are all
kept separate, splitting at e∗ only. Then the extended structure will have no
choice points apart from e∗, so that there can be no modal correlations in
the extended structure, but all the histories of the surface structure will still
be represented.

Such an extension is formally possible, but it is not considered to be
satisfactory as a possible representation of the hidden structure of a quan-
tum experiment. Such extensions are commonly called superdeterminis-
tic or conspiratorial, and the reason for this negative verdict is that they

1⁰ As we said, the BST analysis in this section is special because it proceeds in terms of modal
correlations, targeting the underlying structure of possibilities. Usual analyses of hidden variables, on
the other hand, take an underlying uncorrelated structure of possibilities for granted and introduce a
probability distribution over the hidden factors to explain surface correlations. On that probabilistic
approach, a difference is made between stochastic hidden variables, which fix probabilities for
measurement outcomes, and deterministic hidden variables, which dictate unique measurement
results. For obvious reasons, such deterministic hidden variables are also called instruction sets.
See, e.g., Fine (1982, p. 291), who writes of “response functions (giving the λ -determined responses
to the measurements)”, or Mermin (1981, p. 403), who uses the language of “instruction sets”.
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eliminate the experimenter’s freedom to choose measurement parameters.
In a superdeterministic extension, the instruction sets that are selected at e∗

not only instruct Nature on the outcomes of themeasurements, but they also
instruct the experimenter onhow to choose themeasurement parameters. So
the instructions encode a conspiracy between the measurement parameters
and the measurement outcomes. This goes against the basic assumption
that an experimental outcome is Nature’s answer to a question that the
experimenter has freely chosen to ask.11 A satisfactory extension of a surface
structure, in contrast, has to retain the experimenter’s freedom to choose
measurement parameters.

Translated into BST terminology, this means that in the description of
the surface structure, we have to distinguish between two kinds of choice
points: those that represent Nature’s choices of the measurement outcomes
(E), and those representing the experimenter’s independent choices (C) of
experimental parameters. Furthermore, an extension of a surface structure
will be satisfactory to the extent to which it eliminates the disturbing MFB
among outcomes of members of E while retaining the independence of the
choices at members of C.

We will discuss the issue of introducing instruction sets in BST structures
in two steps. In Section 8.3.1 we first discuss the general idea of extending
a BST surface structure, using the notion of generic instruction sets. Such
instruction sets are not fit to be used in real applications, but they allow us
to define the general formal procedure of extending a surface structure and
to prove a number of important general results about such extensions. For
example, we can establish Theorem 8.1, which says that extended structures
are again BST92 structures. The general discussion paves the way for our dis-
cussion of the more specific (and actually useful) notions of non-contextual
and contextual instruction sets in Section 8.3.2.

Formally, our point of departure is what we will call a BST92 surface struc-
ture, in which there is indeterminism induced by experimenters’ choices
(C) as well as indeterminism produced by Nature (E). The motivation for
embarking on the project of a structure extension has to come from some
instances of MFB present in the surface structure involving the members
of E : some experimental outcomes are modally correlated. (If that is not
so, there is no incentive to modify the given surface structure, as it already
contains a proper causal account of the possible experimental outcomes.)

11 See Section 8.1 for some quotes backing this claim.
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While removing the MFB present in E , we want to retain the freedom of the
experimenters’ choices.

In defining a BST92 surface structure, the guiding idea is that we are here
considering BST as a formal tool for modeling. This means that idealizing
assumptions are warranted, as we are only concerned with the experiment
in question. We will assume that there are only finitely many choice points
in W and that each of them is only finitely splitting. We will also assume
that in the model, all choice points are either due to Nature (providing
measurement outcomes) or due to the experimenter (providing choices
of measurement parameters). Furthermore, the experimenters’ choices of
measurement parameters must of course be made before the respective
measurement with the chosen parameters occurs. Formally, this means that
any choice point under the experimenters’ control (c ∈ C) must be below
some measurement choice point (e ∈ E).

Definition 8.2. A BST92 surface structure is a quintuple ⟨W,<,e∗,E,C⟩,
where ⟨W,<⟩ is a BST92 structure, e∗ ∈ W is a deterministic point in W ,
and E,C ⊆ W are two finite sets of finitely splitting choice points fulfilling
the conditions that E ̸= /0, E ∩C = /0, and that E ∪C is the set of all choice
points in W . With respect to the ordering, we demand e∗ < E (i.e., for any
e ∈ E , we have e∗ < e), and for any c ∈C theremust be some e ∈ E for which
c < e. For future use we define

T̃E =df {e�H | e∈E,H ∈Πe}; SE =df {T ⊆ T̃E |T maximal consistent}.

Note that T̃E and SE are finite by our assumptions.Wewill drop the subscript
E if it is clear from context.

Here are some simple facts about the structure of the set S of maximal
consistent sets of transitions with initials from E .

Fact 8.1. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure, let T ∈ S, and let
h1,h2 ∈ H(T ). With respect to the splitting of h1 and h2, the following holds:
(1) If h1 ⊥c h2, then c ∈C. (2) If h1 ⊥c h2, then there is some e ∈ E for which
c < e, but there is no e ∈ E for which e ∈ h1 ∪h2 and for which c < e.

Proof. (1) Let Thi =df {e�Πe⟨hi⟩ | e∈E∩hi} be the sets of transitions on hi

that have initials in E (i = 1,2). By hi ∈ H(T ), we have T ⊆ Thi , and as T is a
maximal consistent set of transitions with initials in E , in fact Th1 = T = Th2 .
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So h1 and h2 cannot split at amember of E . As E∪C is the set of choice points
in W , it must be that c ∈C.

(2) By the definition of a BST92 surface structure, for any c ∈C there must
be some e ∈ E for which c < e. By (1), we have e ∈ h1 iff e ∈ h2 for members
e ∈ E . And if e ∈ h1 ∩h2 and c < e, then h1 ≡c h2.

As we said, the idea of adding instruction sets is to explain away surface
MFB via a hidden structure that provides instructions at e∗ for what should
happen at the choice points in E (which represent Nature’s choices). Such
instructions have to be counterfactual in the sense of allowing for different
choices of the experimenters via the choice points in C. In addition, there
should be no MFB between the choices of the measurement settings and
the measurement outcomes—this would contradict the basic idea that the
choice of measurement settings is completely independent of the outcomes
that Nature provides. The following definition captures this idea.

Definition 8.3 (C/E independence). We say that a BST92 surface structure
⟨W,<,e∗,E,C⟩ violatesC/E independence iff there are two consistent, non-
empty sets of transitions, TC, with initials ETC ⊆ C, and TE , with initials
ETE ⊆ E , for which TC ∪TE is combinatorially consistent but inconsistent, so
that TC ∪TE constitutes a case of combinatorial funny business (see Def 5.6).
We say that a BST92 surface structure (or its set E) satisfiesC/E independence
iff it does not violate it.

In the following we develop the idea of instruction sets in a number
of ways. In Section 8.3.1 we exhibit the formal procedure of extending a
surface structure with respect to an unconstrained notion of instruction sets,
which we call generic instruction sets. In Section 8.3.2 we then focus on two
actually useful types of instruction sets, non-contextual and contextual ones.
In Section 8.3.3 we then turn to the analysis, both in terms of non-contextual
and contextual instruction sets, of the GHZ experiment, which is a well-
known example of modal correlations due to quantum entanglement. We
provide a brief summary in Section 8.3.4.

8.3.1 Extensions of a surface structure by generic instruction sets

Generic instruction sets are defined to be, quite simply, subsets of S, that is,
sets of maximal consistent sets of transitions with initials from E , the set of
Nature’s choice points.
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Definition 8.4 (Generic instruction set). Let ⟨W,<,e∗,E,C⟩ be a BST92
surface structure. A generic instruction set for ⟨W,<,e∗,E,C⟩ is any non-
empty subset λ of S, i.e., λ ⊆ S and λ ̸= /0. We write Ig for the set of all
generic instruction sets.

Note that this definition implies, trivially, that any consistent set of
transitions can be expanded to a generic instruction set. The notion of
a generic instruction set is too wide for applications. The set S generally
contains maximal consistent subsets T1, T2 that are openly contradictory,
prescribing opposite outcomes to each of their initials, and by Def. 8.4, a
generic instruction set may contain both T1 and T2. In due course, we will
exclude such instruction sets from consideration. We work with the notion
of a generic instruction set here in order to show that a substantial part of the
theory of instruction sets in BST can be developed without any commitment
as to the nature of the instruction sets. The first example of such a general
definition concerns the notion of matching:

Definition 8.5 (Matching). Let λ ∈ Ig be a generic instruction set and h a
history in W . We define thematching set for h to be Th =df {e � Πe⟨h⟩ | e ∈
E ∩h}. We say that h matches λ iff λ contains the matching set for h, i.e., iff
Th ⊆

∪
λ . As a stylistic variant, we also say that λ matches h.

By this definition, if a history h contains no elements of E , then Th = /0,
and any instruction set λ ∈ Ig matches h. For the general case, we can also
show that there are always matching pairs of histories and instruction sets.

Fact 8.2. (1) For any history h inW there is some generic instruction setλ ∈ Ig

that matches h. (2) Let λ ∈ Ig and T ∈ λ , and let h be a history. If h ∈ H(T ),
then h matches λ . (3) For any generic instruction set λ ∈ Ig, there is some
matching history h.

Proof. (1) Let h ∈ Hist(W ) be given. The matching set for h, Th of Def. 8.5, is
consistent, so it can be extended to some maximal consistent set T ∈ S. The
set λ =df {T} is already a generic instruction set according to Def. 8.4. The
instruction set λ (and any of its extensions) matches h because Th ⊆

∪
λ .

(2) Let λ ∈ Ig and T ∈ λ be given. The set T is consistent. Assume that
h ∈ H(T ), and consider the matching set for h, Th of Def. 8.5. As h lies in
all outcomes of transitions of T , which all have initials in E , it must be that
T ⊆ Th. Now T is a maximal consistent subset of T̃ , so Th, which is also
consistent, cannot be a proper superset of T , so that T = Th. From T ∈ λ we
have T ⊆

∪
λ , so that indeed Th ⊆

∪
λ , i.e., h matches λ .
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(3) As λ ̸= /0, there is some T ∈ λ , which is consistent. Take h ∈ H(T ); the
claim follows directly from (2).

If a history h in a BST92 surface structure matches an instruction set
λ , this means that λ provides a direction (a possible outcome) at each
member e ∈ E that occurs on h, and that direction is “to stay on h” (Πe⟨h⟩).
The instruction set λ is, as it were, h-friendly. Given the generality of the
definition of a generic instruction set, however, the set of transitions

∪
λ

may in such a case also contain a different, incompatible transition with
initial e, e � H with H ̸= Πe⟨h⟩. So, on the generic approach, an instruction
set can match a history even though the instructions do not dictate that
the history occur—they only have to allow for the history to occur. This
feature of the possibility of different instructions for the same initial is
what distinguishes non-contextual from contextual instruction sets: for the
former, an instruction at one ofNature’s choice points e∈E has to be unique,
while for the latter, it may depend on the context and thus fail to be unique.

Given the notion of matching, we can work toward our definition of an
extended structure (Def. 8.7). In an extended structure, we replace elements
a ∈ W of the surface structure with labeled elements ⟨a,L⟩. The labels
represent instruction sets, which will be implemented as new elementary
outcomes of e∗. So for a > e∗, the label L has to be some λ ∈ Ig. For a ̸> e∗,
on the other hand, an outcome at e∗ can have no causal influence on a; in
this case we use the label L = /0, just in order to preserve a uniform format
for the members of the extended structure. Formally, we build the extended
structure from lifted histories, which are defined as follows:

Definition 8.6 (Lifted history). Let h be a history in W matching a generic
instruction set λ . Then we define the lifted history φλ (h) to be

φλ (h) =df {⟨a, /0⟩ | a ∈ h,a ̸> e∗}∪{⟨a,λ ⟩ | a ∈ h,a > e∗}.

Using these lifted histories, we define the extended BST structure based on
a BST92 surface structure as follows:

Definition 8.7 (Extended structure). Let WS = ⟨W,<,e∗,E,C⟩ be a BST92
surface structure, and let Ig be its set of generic instruction sets. We define
the extended structure WE = ⟨W ′,<′⟩ corresponding to WS to be the union
of all lifted histories together with an ordering relation that respects that
events can be multiply copied with different instruction sets.
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W ′ =df
∪

h∈Hist(W ), λ∈Ig matching h

φλ (h);

⟨e1,L1⟩<′ ⟨e2,L2⟩ iff e1 < e2 and (L1 = /0 or L1 = L2);

WE =df ⟨W ′,<′⟩.

The different copies of elements above e∗ are not order related. The
following fact about elements of an extended structure shows how elements
of W ′ come from lifted histories:

Fact 8.3. Let WE = ⟨W ′,<′⟩ be the extended structure based on a BST92
surface structure WS = ⟨W,<,e∗,E,C⟩. Then ⟨a,L⟩ ∈ W ′ iff either (a ̸> e∗

and L = /0) or (a > e∗ and there is some history h matching λ for which a ∈ h).

Proof. For a ̸> e∗, the “⇒” direction follows by Def. 8.7. For the “⇐” direc-
tion, note that a belongs to some history h ∈ Hist(W ), and by Fact 8.2(1),
there is some λ ∈ Ig matching h.

For a > e∗, the claim follows immediately from Def. 8.7.

We are working toward our first main result about extended structures,
Theorem 8.1, which says that these are also BST92 structures. As a simple
first step, we can show that some basic properties of the ordering < carry
over to <′ immediately:

Fact 8.4. Let WE = ⟨W ′,<′⟩ be the extended structure based on a BST92
surface structure WS = ⟨W,<,e∗,E,C⟩. Then ⟨W ′,<′⟩ is a non-empty, dense,
strict partial ordering.

Proof. Left as Exercise 8.1

Wenowhave to characterize the histories in the extended structure, so that
we can prove further BST92-relevant properties. We split the crucial history
lemma (Lemma 8.1) into two facts. The one direction is the following.

Fact 8.5. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure, let h ∈ Hist(W ),
and let λ ∈ Ig be a generic instruction set matching h. Then the set φλ (h) is
maximal directed, i.e., it is a history in the extended structure ⟨W ′,<′⟩.

Proof. Let A′ =df φλ (h) be the lifted history.We first show that A′ is directed:
Let ⟨e1,L1⟩,⟨e2,L2⟩ ∈ A′ (where Li = λ or /0 depending on whether or
not ei > e∗, i = 1,2). These elements of A′ were lifted from elements
e1,e2 ∈ h, and as h is directed, there is some e3 ∈ h for which e1 6 e3
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and e2 6 e3. The corresponding element ⟨e3,L3⟩ of A′ is 6′-above the two
mentioned elements of A′, as one can easily verify by the definition of the
ordering.

Assume now for reductio that A′ is not maximal directed, i.e., that there is
a proper superset A′′ ) A′, A′′ ⊆W ′, that is also directed. As a subset of W ′,
A′′ has elements ⟨a,L⟩, where L = /0 iff a ̸> e∗. We define the set A =df {a ∈
W | there is some ⟨a,L⟩ ∈ A′′}. We consider two cases.

Case 1: If A′ contains some element ⟨a0,λ ⟩, then any ⟨a,L⟩ ∈ A′′ for which
a > e∗ must satisfy L = λ ; this follows by directedness of A′′ and by the
definition of the ordering. So if ⟨a,L⟩,⟨a,L′⟩ ∈ A′′, then L = L′; the labels of
elements of A′′ are unique. We can show that the set A ⊆W defined above is
directed: Pick e1,e2 ∈ A, so that the respective ⟨e1,L1⟩,⟨e2,L2⟩ are members
of A′′. As A′′ is directed, these two members have a common upper bound
⟨e3,L3⟩ ∈ A′′, so that there is e3 ∈ A that is a common upper bound of e1 and
e2 inW . Now there is some ⟨e0,L0⟩ ∈ A′′ \A′ by our reductio assumption, so
that A contains some member e0 ̸∈ h. So A is a proper superset of h that
is also directed, which contradicts the definition of histories as maximal
directed sets.

Case 2: If A′ contains only elements that have the label /0, the directed
proper superset A′′ (whose existence constitutes our reductio assumption)
might also contain only elements that have the label /0. So the labels of
elements of A are unique in A′′, and we can reason as in case 1. It might
be, however, that A′′ contains an element ⟨a0,λ ′⟩ with λ ′ ̸= /0. In this case
we cannot guarantee that λ ′ = λ . But it must still be that any ⟨a,L⟩ ∈ A′′ for
which a > e∗ must satisfy L = λ ′, again by directedness and by the definition
of the ordering. So in this case too, the labels of elements of A are unique,
and we can again reason exactly as in case 1.

For the second direction of the history lemma, we have to use the assump-
tion that the indeterminism in W is finite.12

Fact 8.6. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure. Let A′ ⊆ W ′ be
maximal directed. Then there is some h ∈ Hist(W ) and some λ matching h
such that A′ = φλ (h).

12 It is instructive to see how infinite structures can cause trouble here. If, for example, there is an
infinite chain of choice points from C that has no maximum in the set called A in the proof below, it
may be impossible to find a history containing all of A that matches a given instruction set λ .
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Proof. Let A =df {a ∈W | ⟨a,L⟩ ∈ A′}. As in the proof of Fact 8.5, using the
definition of the ordering <′ we can establish that A is directed.

We show that (*) there is some a∗ ∈ A for which any h∗ ∈ Ha∗ contains all
of A. Consider the set of past cause-like loci for members of A,

B =df
∪
a∈A

{c ∈W | c < a and there is some h for which h ⊥c Ha}.

Note that B contains only indeterministic events, so by the finiteness of
indeterminism inW , B is finite of size N. For each of the finitelymany ci ∈ B,
we can pick some ai ∈ A for which ci < ai (i= 1, . . . ,N). At this point we also
tend to a subtlety concerning the labels of elements of A′, as our sought-after
element a∗ ∈ A must admit a label that is appropriate for all of A. So if A′

contains some element ⟨a,L⟩with L ̸= /0, then this L ∈ Ig must be unique in
the directed set A′ by the definition of the ordering, and so we let a0 =df a.
Otherwise, all elements of A′ have the label /0, and a0 is not needed; for a
uniform construction, we simply set a0 =df a1. The element a0 thus keeps
track of which labels occur in A′. As A is directed, there is some a∗ ∈ A
for which all the finitely many ai < a∗ (i = 0, . . . ,N), and thereby ci < a∗

(i= 1, . . . ,N). Now pick some hA ∈H[A]; such a history exists as A is directed.
Consider an arbitrary h∗ ∈ Ha∗ . Note that by the choice of a∗, for any ci ∈ B
we have h∗ ≡ci hA because ai ∈ h∗ ∩ hA and ci < ai. We claim that A ⊆ h∗.
Assume not, then theremust be some a ∈ A\h∗, whence a ∈ hA \h∗. By PCP,
theremust then be some c < a for which h∗ ⊥c hA and in fact h∗ ⊥c Ha, so by
the definition of B, c∈ B.This implies that c= ci for some i∈ {1, . . . ,N}, but
we have established h∗ ≡ci hA, contradicting h∗ ⊥c hA. So indeed, any history
h∗ that contains a∗ contains all of A. Now as a∗ ∈ A, we have ⟨a∗,L⟩ ∈ A′ with
L = /0 or L = λ for some λ ∈ Ig. Given the way the element a0 was picked,
in the former case all elements of A must have the label /0 in A′; pick some
h∗ ∈ Ha∗ . By Fact 8.2(1), we can pick some λ that matches h∗. In the latter
case, as ⟨a∗,λ ⟩ ∈ W ′, by Fact 8.3 there is some h∗ ∈ Ha∗ that matches λ . In
both cases, we have a history h∗ ∈ Ha∗ that matches λ , and by (*), that h∗

contains all of A.
So by Fact 8.5, the set A∗ =df φλ (h∗) is a maximal directed subset of W ′,

and as A ⊆ h∗, we have that A∗ is a superset of A′. Now as A′ is maximal
directed, it has to be that A∗ = A′, i.e., A′ = φλ (h∗).

Given the two above Facts, we have established our history lemma:
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Lemma8.1. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure.The setA′ ⊆W ′

is a history inW ′ (maximal directed) if and only if there is some h ∈ Hist(W )

and some generic instruction set λ matching h such that A′ = φλ (h).

Proof. The two directions have been shown as Facts 8.5 and Facts 8.6.

Now we can go on to show that extended structures are in fact BST92
structures:

Theorem 8.1. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure, and let
⟨W ′,<′⟩ be the corresponding extended structure. Then ⟨W ′,<′⟩ is a BST92
structure.

Proof. By Fact 8.4, ⟨W ′,<′⟩ is a dense, strict partial ordering. It remains to
prove that there are infima for lower bounded chains and history-relative
suprema for upper bounded chains, that Weiner’s postulate holds, and that
the prior choice postulate, PCP92, is satisfied. Given Lemma 8.1, all these
properties of ⟨W ′,<′⟩ can be lifted from the respective properties of ⟨W,<⟩.
We ask the reader to supply details via Exercise 8.2.

Note that in the whole series of proofs leading up to Theorem 8.1, apart
frombeing a subset of S, the inner structure of the instruction sets has played
no role. This means that we are free to work with more restrictive notions
of instruction sets in real applications without having to revisit the whole
construction.

8.3.1.1 The possibility of superdeterministic extensions

While motivating the distinction between Nature’s choices at e ∈ E and
experimenters’ choices at c ∈C, we pointed to the possibility of superdeter-
ministic extensions. We are now in a position to define them in more formal
detail.

The basic idea of a superdeterministic extension of a surface structure
is that all of the choice points in the structure are taken care of via the
instruction sets at e∗. A single choice at e∗ determines all the outcomes of all
the choice points in its future. Formally speaking, we have such a situation
in case C = /0 and the event e∗ is in the common past of all the choice points
(e∗ < E). One might say that this amounts to taking the experimenters to be
part of Nature, so that the instruction sets pertain to their actions as well as
to the experimental outcomes. As we remarked, this move is generally not
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considered to be satisfactory.13 Here we are only concerned with spelling out
what the move amounts to in the BST framework.1⁴

In case C = /0, the set T̃ of transitions from members of E is the total set
of indeterministic transitions in W , TR(W ) = T̃ . Accordingly, any member
T ∈ S singles out exactly one history from Hist(W ), which we denote hT ;
that history’s matching set is again T itself:

for T ∈ S, H(T ) = {hT} and ThT = T.

Accordingly, any T ∈ S matches exactly one history, viz., hT . In this case,
each appropriate instruction set should single out exactly one history. This
amounts to taking superdeterministic instruction sets to be singletons of
members of S:

Definition 8.8 (Superdeterministic instruction set). Let ⟨W,<,e∗,E,C⟩ be
a BST92 surface structure in which C = /0. A superdeterministic instruction
set for ⟨W,<,e∗,E,C⟩ is a singleton λ = {T}with T ∈ S. We write Is for the
set of all superdeterministic instruction sets.

As we have already remarked, all of our above results about structure
extensions stay in place for restrictions of generic instruction sets, including
superdeterministic instruction sets. So, for a BST92 surface structure ⟨W,<,

e∗,E,C⟩ with C = /0, the superdeterministic extension is well-defined:

Definition 8.9. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure in which
C = /0, and let Is be its set of superdeterministic instruction sets. The corre-
sponding superdeterministic extension is the extended structure ⟨W ′,<′⟩ of
Def. 8.7, replacing Ig by Is.

Given these definitions, we can establish our main theorem about
superdeterministic extensions:

Theorem 8.2. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure in which
C = /0, and let ⟨W ′,<′⟩ be its corresponding superdeterministic extension.Then
⟨W ′,<′⟩ is a BST92 structure without MFB in which there is exactly one choice
point, ⟨e∗, /0⟩. Furthermore, there is a bijection between the sets of histories
Hist(W ) and Hist(W ′).

13 For an interesting dissenting voice, see Adlam (2018), who combines a notion of global
determinism with a reassessment of quantum correlations from a perspectivalist point of view.

1⁴ We are convinced that our formal analysis provides useful material for a discussion of the status
of experiments in the free will debate, but we leave this matter to one side here.
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Proof. As we noted, ⟨W ′,<′⟩ is a BST92 structure by Theorem 8.1. Any
history h ∈ Hist(W ) matches exactly one instruction set λh =df {Th}, so by
Lemma 8.1, the mapping

h 7→ φλh
(h)

is a bijection between Hist(W ) and Hist(W ′). Note that E ̸= /0, so the set S
has at least two members. Accordingly,W andW ′ have at least two histories.
Let h′1,h

′
2 ∈ Hist(W ′) with h′1 ̸= h′2; by the previous observation, we must

have h′i = φλi(hi) for hi ∈ Hist(W ) and λi = {Thi} (i = 1,2), λ1 ̸= λ2. By
the definition of the ordering, the point ⟨e∗, /0⟩ is maximal in h′1 ∩h′2; that is,
a choice point for the arbitrary histories h′1,h

′
2 ∈ Hist(W ′). As W ′ contains

only one choice point, there can be no MFB in W ′.

The upshot of this result is simple: if a quantum correlation experiment is
modeled in such a way that instruction sets (deterministic hidden variables)
are allowed to determine not just measurement outcomes but also all of the
experimenters’ choices (C = /0), then one can replace the surface structure,
no matter how many cases of modal funny business it contains, with a
very simple structure that represents the same surface facts (has exactly
isomorphic histories) while pulling together all indeterminism to a single
point in the past of E . This result is not surprising, but it is good as a
reality check for our formal approach before we embark on a more general
discussion of splittings induced by instruction sets.

8.3.1.2 Splitting in extended structures: The general case

In the general case, C ̸= /0, and we need to characterize the splitting of
histories in an extended structure in relation to the splitting of histories in
the initially given surface structure. Our aim was that an extended structure
should be instructed to behave in some specific way toward the members
of E (Nature’s choices should be guided by the instruction set: ideally,
Nature will have no choice at all apart from the splitting at e∗), whereas the
indeterminsm outside of E should be retained (experimenters should still be
free to choose measurement settings at choice points c ∈C, no matter which
instruction set for Nature has been given at e∗). The lemma below shows
to what extent these aims can be accomplished for generic instruction sets.
Thiswill also provide helpful guidance toward the construction of practically
useful notions of instruction sets later on.
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Lemma 8.2. We consider a pair of histories inW and a corresponding pair of
histories inW ′, as provided by Lemma8.1: Let h1,h2 ∈Hist(W ), letλ1,λ2 ∈ Ig

be instruction sets, letλi match hi, and set h′i =df φλi(hi) (i= 1,2).The splitting
of histories inW and inW ′ can be characterized as follows:

(1) As to splitting at e∗, we have h1 ≡e∗ h2, and we have h1 ≡⟨e∗, /0⟩ h2 iff
λ1 = λ2.

(2) Let c ̸> e∗ and c ̸= e∗ (which implies c ̸∈ E). We have h1 ≡c h2 iff
h′1 ≡⟨c, /0⟩ h′2.

(3) Let c ̸∈ E and c > e∗ and assume λ1 = λ2 = λ . Then h1 ≡c h2 iff
h′1 ≡⟨c,λ ⟩ h′2.

(4) Let c ∈ E (hence c > e∗) and λ1 ̸= λ2. If h1 ⊥c h2, then neither
h′1 ⊥⟨c,λ1⟩ h′2 nor h′1 ⊥⟨c,λ2⟩ h′2, but h′1 ⊥⟨e∗, /0⟩ h′2.

(5) Let c ∈ E , λ1 = λ2 = λ , and assume that
∪

λ contains no blatantly
inconsistent transitions with initial c. Then it cannot be that h1 ⊥c h2,
nor that h′1 ⊥⟨c,λ ⟩ h′2.

(6) Let c ∈ E , λ1 = λ2 = λ , and assume that
∪

λ contains two blatantly
inconsistent transitions c � Πc⟨h1⟩ ∈ T1, c � Πc⟨h2⟩ ∈ T2, with
T1,T2 ∈ λ . Then h1 ⊥c h2, and h′1 ⊥⟨c,λ ⟩ h′2.

(7) Let c ∈ E , λ1 = λ2 = λ , and h1 ≡c h2. Then h′1 ≡⟨c,λ ⟩ h′2.

Proof. (1) By definition e∗ is deterministic, so h1 ≡e∗ h2. And by the def-
inition of the ordering, if λ1 ̸= λ2, there is no e > e∗ and no label L for
which ⟨e,L⟩ ∈ h′1 ∩ h′2. On the other hand, h1 ≡e∗ h2 implies that there is
e ∈ h1 ∩ h2 with e∗ < e. So if λ1 = λ2 = λ , we have ⟨e,λ ⟩ ∈ h′1 ∩ h′2, and
hence h′1 ≡⟨e∗, /0⟩ h′2.

(2) Let c ̸> e∗, so c ∈ hi iff ⟨c, /0⟩ ∈ h′i (i = 1,2). If c ̸∈ h1 ∩ h2, both
undividedness claims are trivially false, so assume c ∈ h1∩h2, which implies
that we have ⟨c, /0⟩ ∈ h′1 ∩ h′2 as well. We have to show that h1 ≡c h2 iff
h′1 ≡⟨c, /0⟩ h′2.
“⇒”: Assume h1 ≡c h2 but h′1 ̸≡⟨c, /0⟩ h′2, which by the above implies h′1 ⊥⟨c, /0⟩
h′2. By h1 ≡c h2, there is a ∈ h1 ∩h2 above c. If a ̸> e∗, then ⟨a, /0⟩ ∈ h′1 ∩h′2
and ⟨c, /0⟩ <′ ⟨a, /0⟩, contradicting h′1 ⊥⟨c, /0⟩ h′2. If a > e∗, we will find some
a′ > c for which a′ ̸> e∗. To this end consider a maximal chain l containing
c and a. Then l′ =df {x ∈ l | x > e∗} is a non-empty chain (it contains a) that
is lower bounded by c, so it has an infimum i. By density, there is some a′

for which c < a′ < i, and a′ ̸> e∗. Thus, ⟨a′, /0⟩ ∈ h′1 ∩h′2 and ⟨c, /0⟩<′ ⟨a′, /0⟩,
contradicting h′1 ⊥⟨c, /0⟩ h′2.
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“⇐”: Assume h′1 ≡⟨c, /0⟩ h′2 but h1 ̸≡c h2. The latter implies h1 ⊥c h2. The
former must be witnessed by some ⟨a,L⟩ ∈ h′1 ∩ h′2, where ⟨c, /0⟩ <′ ⟨a,L⟩.
Hence, by the definition of the ordering, a ∈ h1 ∩ h2 and c < a, which
contradicts h1 ⊥c h2.

(3) This is shown exactly as (2). We show that if c ̸∈ h1 ∩ h2, then the
equivalence holds trivially (each side is false). Next we show that c ∈ h1 ∩h2

iff ⟨c,λ ⟩ ∈ h′1 ∩ h′2. Finally, we run two reductio arguments: (1) assume
h1 ≡c h2 but h′1 ̸≡⟨c, /0⟩ h′2 and (2) assume h′1 ≡⟨c, /0⟩ h′2 but h1 ̸≡c h2. Both
assumptions lead to a contradiction, as in (2).

(4) Let c > e∗ and λ1 ̸= λ2. Assume h1 ⊥c h2. Note that h′1 and h′2
contain different copies of c, ⟨c,λ1⟩ ̸= ⟨c,λ2⟩, so the presupposition for being
undivided (h′1 ≡⟨c,λi⟩ h′2) and for splitting (h′1 ⊥⟨c,λi⟩ h′2) is violated, so none
of these can hold (i = 1,2). In this case, by the definition of the ordering,
⟨e∗, /0⟩ is maximal in the intersection of h′1 and h′2, i.e., h′1 ⊥⟨e∗, /0⟩ h′2.

(5) Assume for reductio that h1 ⊥c h2. This implies that τ1 =df (c �
Πc⟨h1⟩) ̸= τ2 =df (c � Πc⟨h2⟩). But as h1 and h2 both match λ by assump-
tion and c ∈ h1∩h2, it has to be that τ1 ∈

∪
λ (by matching h1) and τ2 ∈

∪
λ

(by matching h2), which contradicts the assumption that
∪

λ contains no
blatantly inconsistent transitionswith initial c.The assumption that h′1 ⊥⟨c,λ ⟩
h′2 can be dealt with via that former case: It cannot be that h1 ∩ h2 contains
some a > c, for then ⟨a,λ ⟩> ⟨c,λ ⟩, showing h′1 ≡⟨c,λ ⟩ h′2. So h1 ⊥c h2, and
we continue as above.

(6) As λ matches both h1 and h2, the existence of such blatantly inconsis-
tent transitions implies h1 ⊥c h2. Thereby we have ⟨c,λ ⟩ ∈ h′1 ∩ h′2. Now it
cannot be that h′1 ≡⟨c,λ ⟩ h′2: this would imply that there is ⟨a,λ ⟩ ∈ h′1∩h′2 for
which ⟨a,λ ⟩ > ⟨c,λ ⟩, so that there is a ∈ h1 ∩ h2 with a > c, contradicting
h1 ⊥c h2. Thus, h′1 ⊥⟨c,λ ⟩ h′2.

(7) As h1 ≡c h2, there is c1 > c such that c1 ∈ h1 ∩ h2. Hence ⟨c,λ ⟩ <
⟨c1,λ ⟩ and ⟨c1,λ ⟩ ∈ h′1 ∩h′2. Thus, h′1 ≡⟨c,λ ⟩ h′2.

Let us summarize these results in plain English. The biggest change that a
structure extension brings concerns e∗. The event e∗ is deterministic in the
original structure by assumption, but its counterpart ⟨e∗, /0⟩ is a new seed
of Nature’s indeterminism in the extended structure, with its elementary
outcomes playing the role of instruction sets (clause 1). Next, there are no
changes with respect to choices in the region not above e∗ (excluding e∗

itself), by clause (2). As noted, such choices cannot involve members of E ,
as e∗ < E . Together with clause (3), clause (2) implies that choices outside of
E are preserved with respect to all appropriate instruction sets λ . Note that



246 branching space-times

counterparts of clauses (2) and (3) also hold for the splitting relations ⊥c

and ⊥⟨c,L⟩. Clause (4) shows that the structure extension leads to different
copies of members of E for different instruction sets, placing the respective
splitting at ⟨e∗, /0⟩. Clauses (5) and (6) point to an important distinction that
we will spell out below, when we specify two useful notions of instruction
sets, viz., contextual vs. non-contextual ones. The difference between them
lies exactly in whether

∪
λ is allowed to contain blatantly inconsistent pairs

of transitions (contextuality) or not (non-contextuality). Clauses (5) and (6)
inform about the consequences.They say that in the absence of contextuality
(in the absence of blatantly inconsistent pairs of transitions with a given
initial c in

∪
λ ), Nature’s choice at c ∈ E is completely removed and replaced

by the new splitting at ⟨e∗, /0⟩ (clause (5)), while splittings at a member c ∈ E
are retained in case an instruction set λ does not give a unique verdict for
what has to happen at c.

Earlier, we defined the notion of C/E-independence for BST92 surface
structures (Def. 8.3). The guiding idea was that experimenters’ choices
(outcomes of choice points c ∈ C) should be independent of the outcomes
of Nature’s choices at choice points e ∈ E . A BST92 surface structure isC/E-
independent iff there is no modal funny business involving outcomes of
both members of C and members of E . With respect to the splitting in the
extended structure, a similar question can be asked: are there modal correla-
tions involvingNature’s choice of an instruction set at the new splitting point
⟨e∗, /0⟩, or Nature’s remaining choices above e∗, and sets of experimenters’
choices? The following definition provides the relevant notion of C/Ext-
independence.1⁵

Definition 8.10 (C/Ext independence). We say that an extended structure
⟨W ′,<′⟩ derived from a BST92 surface structure ⟨W,<,e∗,E,C⟩ violates
C/Ext independence iff there is a case of MFB that involves some C-based
and some E-based transitions in one of the following two ways:

(1) There is some λ ∈ Ig and a transition

τλ
e∗ = ⟨e∗, /0⟩� Π⟨e∗, /0⟩⟨φλ (h)⟩, with h ∈ He∗ ,

and a consistent, non-empty set of transitions T ′
C with initials ⟨c,L⟩, c∈C0 ⊆

C and L ∈ { /0,λ}, for which T ′
C ∪ {τλ

e∗} is combinatorially consistent but

1⁵ As with other definitions and results in this general part, we write it out using generic
instructions sets for concreteness, but the definition is exactly the same for other types of instruction
sets.
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inconsistent, thus constituting a case of combinatorial funny business (see
Def 5.6).

(2) There is some λ ∈ Ig, a consistent, non-empty set of transitions T ′
E

with initials ⟨e,L⟩, e ∈ E0 ⊆ E and L ∈ { /0,λ}, and a consistent, non-empty
set of transitions T ′

C with initials ⟨c,L⟩, c ∈C0 ⊆C and L ∈ { /0,λ}, for which
T ′

C ∪T ′
E constitutes a case of combinatorial funny business.

We say that the extension satisfies C/Ext independence iff it does not
violate it.

Here we cannot yet prove any general results aboutC/Ext-independence,
apart from the following triviality:

Fact 8.7. A superdeterministic extension isC/Ext independent.

Proof. The only choice point in such an extension is ⟨e∗, /0⟩, so there can be
no MFB in a superdeterministic extension.

8.3.2 Non-contextual and contextual instruction sets

So far, we have discussed two extreme cases of structure extensions: generic
ones (Ig), in which there are no constraints on instruction sets at all, and
superdeterministic ones (Is), in which instructions pertain to all choice
points in the surface structure, so that an instruction set given out at the
new splitting point ⟨e∗, /0⟩ amounts to the selection of a single history. We
already pointed out that these two extreme cases are not satisfactory from a
philosophical point of view. The challenge for a useful notion of instruction
sets is to steer between these two extremes and to offer instruction sets
that are comprehensive enough to allow for the free choice of experimen-
tal parameters while still providing useful guidance for the outcomes of
Nature’s choice points. In terms of structure extensions, this translates into
two demands: (1) to allow for surface structures in which C ̸= /0 (unlike
in superdeterminism) and (2) to provide a determinate outcome at the
members of E that occur, given the instruction set λ .

Demand (2) is still a bit vague, and there is a good reason for that, as there
appear to be two ways to fulfill it: the alreadymentioned non-contextual and
contextual approaches to instruction sets. In line with the previous notation,
we denote the sets of these instruction sets, which will again be sets of
subsets of S, as In and Ic, respectively. It is easiest to explain non-contextual



248 branching space-times

instruction sets first, as these are more tightly constrained than the properly
contextual ones. A non-contextual instruction set λ provides instructions
for all or for a part of Nature’s choice points e ∈ E , specifying exactly
one outcome of e for a transition λ (e) = e � H , H ∈ Πe. A contextual
instruction set, on the other hand, may specify different outcomes for one
and the same choice point e ∈ E , but not arbitrarily: if there is a difference in
outcome, there must also be a difference in the measurement context (hence
the name).

8.3.2.1 Non-contextual instruction sets

We first define non-contextual instruction sets.

Definition 8.11 (Non-contextual instruction sets). Given a BST92 surface
structure ⟨W,<,e∗,E,C⟩, the set of sets of transitions λ ⊆ S is a non-
contextual instruction set for ⟨W,<,e∗,E,C⟩ iff λ is maximal with respect
to the conditions that (1)

∪
λ is not blatantly inconsistent and (2) for every

consistent set of initials of transitions in
∪

λ , the respective set of transitions
(which is uniquely determined by (1)) is also consistent. We write In for the
set of all non-contextual instruction sets.

To unpack this definition, by condition (1), any λ can be viewed as a
partial function from E into T̃ , providing exactly one transition with initial e
for every e ∈ Eλ , where Eλ ⊆ E is the set of initials of transitions in

∪
λ . We

will write λ (e) = τ to indicate that τ is the unique transition with the initial
e that occurs in

∪
λ , and we extend this notation to sets of initials, so that

for E0 ⊆ Eλ , λ (E0) = T0 means that T0 ⊆
∪

λ is the unique set of transitions
with initials in E0 that occur in λ . So condition (2) can be written as follows:
if E0 ⊆ Eλ is consistent, then λ (E0)⊆ T̃ is also consistent.

We can characterize condition (1) of Def. 8.11 also in a different way,
which paves the way for a generalization to contextual instruction sets. The
relevant fact is this:

Fact 8.8. For λ ⊆ S, define H(λ ) =
∪

T∈λ H(T ). For a set λ ⊆ S,
∪

λ is
blatantly inconsistent iff there are h1,h2 ∈ H(λ ) for which h1 ⊥e h2 for some
e ∈ E . Accordingly,

∪
λ is not blatantly inconsistent iff for all h1,h2 ∈ H(λ )

and for all c ∈W , if h1 ⊥c h2, then c ∈C.

Proof. “⇒”: Assume that
∪

λ is blatantly inconsistent, and let a witnessing
pair be τ1 = e � H1 ∈ T1 ∈ λ and τ2 = e � H2 ∈ T2 ∈ λ , H1 ̸= H2. Let
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h1 ∈ H(T1) and h2 ∈ H(T2); then e ∈ h1 ∩ h2 and Πe⟨h1⟩ = H1 ̸= H2 =

Πe⟨h2⟩, i.e., h1 ⊥e h2.
“⇐”: Assume that there are h1,h2 ∈ H(λ ) for which h1 ⊥e h2 for some

e ∈ E . Then there must be T1,T2 ∈ λ for which (e � Πe⟨hi⟩) ∈ Ti (i = 1,2),
and Πe⟨h1⟩ ̸= Πe⟨h2⟩. As

∪
λ ⊇ T1 ∪T2, the set

∪
λ contains two different

transitions with initial e and is, therefore, blatantly inconsistent.

This fact says that if a non-contextual instruction set λ is truly counterfac-
tual (that is, if it has at least two different elements), then the difference is due
to what happens outside of E : the corresponding histories split at elements
of C only. As we will see, contextual instruction sets relax this condition by
allowing that the corresponding histories may split at members of C and at
members of E .

In our discussion of generic instruction sets we remarked that such
instruction sets can be built from any consistent set of transitions. A similar,
but more specific result also holds for non-contextual instruction sets; it is
worth spelling out in detail.

Fact 8.9. Let T ⊆ T̃ be a consistent set of transitions with initials ET ⊆ E .
Then there is some non-contextual instruction set λ ∈ In for which ET ⊆ Eλ
and λ (ET ) = T .

Proof. Thegiven T can be extended to amaximal consistent set T ∗ ∈ S. Note
that λ0 =df {T ∗} fulfills the conditions (1) and (2) of Def. 8.11: (1) holds
by construction, and (2) is trivial as T ∗ is consistent. There is a maximal
extension of λ0, λ ∈ In, which retains conditions (1) and (2). As a superset
of λ0, for λ we have Eλ ⊇ Eλ0 ⊇ ET . And by the choice of λ0 and by (1), it
must be that λ (ET ) = λ0(ET ) = T .

Here is another simple fact about non-contextual instruction sets.

Fact 8.10. Let λ ∈ In. (1) The set of transitions
∪

λ = λ (Eλ ) is downward
closed, i.e., if τ ∈

∪
λ and for some τ ′ ∈ T̃ we have τ ′ ≺ τ , then τ ′ ∈

∪
λ . (2)

For T ∈ S, we have T ∈ λ iff T ⊆
∪

λ .

Proof. (1) This claim follows directly from Def. 8.11, as any T ∈ S is down-
ward closed by maximality.

(2) “⇒”: If T ∈ λ , then clearly any element of T is in
∪

λ .
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“⇐”: Let T ⊆
∪

λ , so
∪
(λ ∪{T}) =

∪
λ . As

∪
λ fulfills the conditions

(1) and (2) of Def. 8.11,
∪
(λ ∪{T}) fulfills these conditions as well, and so

T ∈ λ follows by maximality of λ .

The definition of a non-contextually extended structure follows our tem-
plate of structure extensions from Section 8.3.1. The definitions of matching
and of lifted histories (Defs. 8.5 and 8.6) remain unaltered. We write out the
definition of the extended structure for the sake of completeness.

Definition 8.12. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure and let
In be its set of non-contextual instruction sets. The corresponding non-
contextual extension is the extended structure ⟨W ′,<′⟩ of Def. 8.7, replacing
Ig by In.

Theorem 8.1 applies and shows that such ⟨W ′,<′⟩ is again a BST92
structure. Furthermore, the histories h ∈ Hist(W ) and h′ ∈ Hist(W ′) are
related by Lemma 8.1. For the splitting of these histories, clauses (1)–(5)
of Lemma 8.2 are relevant; clause (6) is excluded as for λ ∈ In, the set of
transitions

∪
λ cannot be blatantly inconsistent by Def. 8.11. This implies

that in an extended structure based on non-contextual instruction sets, there
can be no MFB between outcomes of members of E any more, independent
of such MFB in the surface structure: the respective copies of members
of E are no longer choice points. There is, however, a new choice point
⟨e∗, /0⟩ ∈W ′, and the crucial question is whether an extended structure will
exhibit C/Ext independence. As we will show in our discussion of the GHZ
experiment in Section 8.3.3,C/Ext independence can fail even if the surface
structure is C/E independent. So, while the extension by non-contextual
instruction sets is well-defined for any BST92 surface structure, it will not
always be satisfactory (see Theorem 8.3).

8.3.2.2 Contextual instruction sets

Contextual instruction sets relax a constraint on the non-contextual ones:
the prescribed outcome for some e ∈ E need not be unique, but may depend
on the context provided by outcomes ofC. In contrast to generic instruction
sets, for which there are no constraints, contextual instruction sets are,
however, constrained: if they specify different outcomes for some e ∈ E ,
theremust also be a difference in the outcome of some c∈C. In the following
definition, this is spelled out as the condition of C-splitting.
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Definition 8.13 (Contextual instruction sets). Let ⟨W,<,e∗,E,C⟩ be a
BST92 surface structure. We say that λ ⊆ S is a contextual instruction set for
⟨W,<,e∗,E,C⟩ iff λ is maximal with respect to the following condition of
C-splitting: For any two T1,T2 ∈ λ , T1 ̸= T2, the T1- and T2-histories split at
a member of C, i.e.,

∀T1,T2 ∈ λ [T1 ̸= T2 →∀h1 ∈ H(T1)∀h2 ∈ H(T2)∃c ∈C [h1 ⊥c h2]].

We write Ic for the set of all contextual instruction sets. We call an instruc-
tion set λ ∈ Ic properly contextual iff it provides inconsistent instructions
for at least one e ∈ E , i.e., iff

∪
λ is blatantly inconsistent.

Contextual instruction sets can be constructed starting from any consis-
tent set of transitions. That is, we have the following analogue of Fact 8.9:

Fact 8.11. LetT ⊆ T̃ be a consistent set of transitions.There is some contextual
instruction set λ ∈ Ic for which T ⊆

∪
λ .

Proof. Left as Exercise 8.3.

It is also clear that contextual instruction sets are downward closed
(see Fact 8.10(1)).

Many further remarks on contextual instruction sets parallel our remarks
for non-contextual ones. The definition of a contextually extended struc-
ture follows our template of structure extensions from Section 8.3.1. The
definitions of matching and of lifted histories (Defs. 8.5 and 8.6) remain
unaltered. We write out the definition of the extended structure for the sake
of completeness.

Definition 8.14. Let ⟨W,<,e∗,E,C⟩ be a BST92 surface structure and let
Ic be its set of contextual instruction sets. The corresponding contextual
extension is the extended structure ⟨W ′,<′⟩ of Def. 8.7, replacing Ig by Ic.

Theorem 8.1 applies and shows that such ⟨W ′,<′⟩ is again a BST92
structure. Furthermore, the histories h ∈ Hist(W ) and h′ ∈ Hist(W ′) are
related by Lemma 8.1. For the splitting of these histories, all of the clauses
(1)–(6) of Lemma 8.2 may be relevant. If there are properly contextual
λ ∈ Ic, then in an extended structure there are choice points, apart from
those based on elements of C, of the form ⟨e,λ ⟩ ∈ W ′ (besides ⟨e∗, /0⟩ ∈
W ′), so that the crucial question of C/Ext independence becomes more
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complex. As we will show in our discussion of the GHZ experiment in
Section 8.3.3, it can happen that a surface structure is C/E independent,
while the extended structure violates C/Ext independence. So, while the
extension by contextual instruction sets is well-defined for any BST92 surface
structure, it will not always be satisfactory (see Theorem 8.4).

8.3.2.3 On the interrelation of different types of instruction sets

We have provided four different definitions of instruction sets, each sin-
gling out a unique set of subsets of S for a given BST92 surface structure
⟨W,<,e∗,E,C⟩, with the proviso that superdeterministic instruction sets are
defined only ifC = /0. In that case, it turns out that the non-contextual and the
contextual instruction sets are singletons of elements of S, thus coinciding
with the superdeterministic instruction sets.

Fact 8.12. LetW = ⟨W,<,e∗,E,C⟩ be a BST92 surface structure withC = /0,
so that E is the set of all choice points inW . Then the superdeterministic, non-
contextual, and contextual instruction sets coincide, i.e., Is = In = Ic.

Proof. There can be no contextual instruction set λ ∈ Ic that contains more
than one member of S, as the condition of external splitting is impossible
to fulfill given C = /0. Thus, the λ ∈ Ic are singletons of elements of S. By
Fact 8.8, the same holds for non-contextual instruction sets λ ∈ In. So,
any instruction set, superdeterministic, non-contextual, or contextual, is a
singleton of an element T ∈ S.

The corresponding superdeterministic extended structure has already
been discussed in Section 8.3.1.1: by Lemma 8.2, it contains just one choice
point, ⟨e∗, /0⟩, which has as many outcomes as there are histories in the
surface structure.Thus, in this superdeterministic extended structure, every-
thing is decided at ⟨e∗, /0⟩. By the assumption C = /0, there is no agent-
induced indeterminism in the surface structure, nor is there such indeter-
minism in the extended structure.

In the general case, the four notions of instruction sets single out different
subsets of S, but they nest in the sense that instruction sets of a more
restricted type can be extended to instruction sets of a looser type. The
following lemma spells this out in formal detail.

Lemma 8.3 (Nesting of types of instruction sets). The sets of instruction sets
Is, In, Ic, and Ig nest in the following way: (1) IfC = /0, so that Is is defined,



quantum correlations 253

we have Is = In = Ic ⊆ Ig. (2) For each λ ∈ In, there is some λ ′ ∈ Ic for
which λ ⊆ λ ′. (3) For each λ ∈ Ic, there is some λ ′ ∈ Ig for which λ ⊆ λ ′.

Proof. (1) The two equalities have been established via Fact 8.12. The inclu-
sion is trivial, as Ig is the set of all subsets of S.

(2) It is easy to prove that each λ ∈ In fulfills the condition of C-splitting:
As

∪
λ contains no blatantly inconsistent transitions, there can be no T1,T2

such that histories h1 ∈ H(T1), h2 ∈ H(T2) split at a member of E at all.
(See also Fact 8.8.)

(3) As any λ ∈ Ic is a subset of S, λ itself is already a member of Ig, which
comprises all subsets of S.

8.3.3 Instruction sets for GHZ

In this section we put the concept of structure extension to work on a well-
known example.Wewill use it to analyze the three-particle GHZ experiment
(Greenberger et al., 1989) in the form presented by Mermin (1990). In this
experiment, a source emits triples of particles that fly to remotemeasurement
stations. Each triple is in the quantum state

λ = 1/
√

2(|+⟩ |+⟩ |+⟩− |−⟩|−⟩|−⟩), (8.1)

which is a vector in the 8-dimensional Hilbert space H = H2 ⊗H2 ⊗H2.
At each station i (i = 1,2,3), the experimenter can choose to measure
the spin projection on the direction xi or yi, where xi is the direction
perpendicular to the plane of flight, whereas yi is in the plane of flight,
perpendicular to the trajectory of the ith particle. For each measurement
setting, xi or yi, there are two alternative possible outcomes, x+i and x−i , or
y+i and y−i .

Taking the description of the experimenter’s choices and alternative mea-
surement outcomes at face value, there are two layers of choice points: the
experimenter’s choices at the three stations correspond to C = {c1,c2,c3},
and the measurements at the three stations, with the two possible directions
xi and yi, correspond to E = {x1,y1,x2,y2,x3,y3}. The choice of direction
is obviously prior to the respective measurements, i.e., ci < xi and ci < yi

(i = 1,2,3). We can select a location for e∗ that is in the past of all of E , yet
SLR to all of C, which corresponds to the spatio-temporal arrangement of
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the particle source. Thus we have specified elements e∗, E , and C for a valid
BST92 surface structure.

In our BST92 analysis we represent the indeterminism in the experiment
by transitions, first from an experimenter’s indecision ci at station i to one of
the selected settings, xi, or yi, and then from the measurement with a given
setting, say xi, to one of its outcomes, x+i or x−i . To simplify the notation, we
will write cx

1 for the transition c1 �Πc1⟨x1⟩ and y−2 for y2 �Πy2⟨y
−
2 ⟩, and so

on.1⁶ So we have the following indeterministic transitions in our structure:

cx
1,c

y
1, cx

2,c
y
2, cx

3,c
y
3 (transitions due to agents);

x+1 ,x
−
1 ,y

+
1 ,y

−
1 , x+2 ,x

−
2 ,y

+
2 ,y

−
2 , x+3 ,x

−
3 ,y

+
3 ,y

−
3 (transitions due to Nature).

Figure 8.2 provides a schematic picture of the two layers of indeterminism.

c1

x1 y1

+ − + −

c2

x2 y2

+ − + −

c3

x3 y3

+ − + −

Nature

Experimenter

Figure 8.2 Schematic diagram of the GHZ experiment. Choice points ci are
the experimenters’ selections of measurement directions xi or yi, and xi (or
yi) are choice points with possible outcomes ‘+’ or ‘−’ determined by Nature
(i = 1,2,3).

To exclude the possibility of physically transmitted causal influences in
this experiment, the following SLR relations are assumed: (1) between the
different experimenter’s choices (e.g., c1 SLRc2), (2) between an experi-
menter’s choice and a remotemeasurement (e.g., c1 SLRx2), and (3) between
measurements in different stations (e.g., x1 SLRy3).

So far, there is nothing strange or curious about this experiment. You
could think of the source as emitting triples of marbles in the three direc-
tions, with the experimenters selecting to measure their size or color, for
example. The quantum-mechanical strangeness of the GHZ experiment
lies in the fact that only some, but not all triples of joint transitions to
experimental outcomes such as ⟨x−1 ,y

−
2 ,y

+
3 ⟩ are possible, even though all

individual transitions to the outcomes (such as x−2 ) are possible. Given the

1⁶ That is, in the latter case we use the expression ‘y−2 ’ both for the transition from initial y2 to its
‘−’ outcome and for the ‘−’ outcome itself. It will always be clear from context what is meant.



quantum correlations 255

state of Eq. 8.1 and directions xi, yi, quantum mechanics assigns non-zero
probabilities to 48 out of the 64 possible triples. But for the 16 other triples,
quantum mechanics assigns probability zero. In our current modal frame-
work we interpret these probabilistic verdicts as verdicts about possibility
and impossibility: triples of the first kind are consistent, while triples of the
second kind are inconsistent.1⁷ Read in this way, quantummechanics implies
that there are modal correlations among the measurement outcomes. These
can be described by the following two simple rules:

(yy) A triple with two y’s and one x is consistent iff it includes an even
number of minuses.

(xxx) A triple with all three x’s is consistent iff it includes an odd number
of minuses.

The rules imply, among other things, that there is no history that includes
the transitions x+1 , x+2 , and x+3 together. This lacking history indicates com-
binatorial funny business, as the set of transitions T =df {x+1 ,x

+
2 ,x

+
3 } is

combinatorially consistent (for the initials x1,x2,x3, we have xi SLRx j for
each pair i, j, i ̸= j), but H(T ) = /0. As we indicated, and as one can check
via the rules (yy) and (xxx), MFB in this structure is in fact ubiquitous.
In total, 64 combinations of transitions are combinatorially consistent (23

combinations of initials by 23 outcome combinations), but only 48 of these
satisfy both rules, so there are 16 cases of MFB.

Via the above discussion we have defined our BST92 surface structure for
GHZ:1⁸

Definition 8.15. The surface structure for GHZ is the BST92 surface
structure ⟨W,<,e∗,E,C⟩ discussed above, in which C = {c1,c2,c3},
E = {x1,y1,x2,y2,x3,y3}, and e∗ < E and e∗ SLRC. There are the further
SLR relations noted above (e.g., c1 SLRc2, c1 SLRy2, x1 SLRy2). The
structure has exactly those 48 histories that satisfy the two given rules (yy)
and (xxx).

We can now study structure extensions.

1⁷ The experiment can also be analyzed probabilistically in BST—see Section 8.4.3 for a BST
approach to probabilistic hidden variable models.

1⁸ In order not to bury the important message of our discussion under a mound of formalism, we
do not define the ordering in the structure fully formally, relying instead on the specification of the
relevant SLR relations. It is possible to provide a fully formal specification, e.g., as a Minkowskian
Branching Structure as discussed in Chapter 9.1.
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8.3.3.1 The superdeterministic extension

We mention, only to leave it to the side, the issue of a superdeterministic
extension. As C ̸= /0, our given BST surface structure does not allow for a
superdeterministic extension according to Def. 8.8, but it could be modified
in the following way: move e∗ to the past such that the new e′∗ < C, and
then set E ′ =df E ∪C and C′ =df /0. The structure ⟨W,<,e′∗,E ′,C′⟩ is a
BST92 surface structure that allows for a superdeterministic extension. In
that extension, the 48 histories then split at ⟨e′∗, /0⟩, and any outcome of
⟨e′∗, /0⟩ fixes both the experimenter’s choice of settings (xi or yi) and the
respective measurement outcomes (x+i or x−i , for example). This extended
structure is philosophically and physically unilluminating: it summarizes
which individual runs of the experiment are possible, but it does not describe
the experiment as an experiment any more. A useful extension needs to
stick with the given surface structure in which the experimenter’s choices
of measurement directions are formally distinguished from Nature’s choices
of the measurement outcomes.

8.3.3.2 C/E independence

Before we move to the construction of non-contextual and contextual struc-
ture extensions for GHZ, we have to discuss the crucial issue of C/E
independence. When specifying the rules (yy) and (xxx), we noted that
these rules amount to the introduction of MFB among the measurement
outcomes—there are subsets of T̃ , such as {x+1 ,x

+
2 ,x

+
3 }, that are combi-

natorially consistent but inconsistent. What about MFB involving choice
points for the selection of settings ci and for the selection of measurement
outcomes x j? By the given SLR relations, and as the choice points xi and yi

are incompatible (i = 1,2,3), a combinatorially consistent set that includes
transitions both from C and from E has to have one of the following
schematic forms (where α,β ,γ stand for x or y, and m,n stand for + or −),
leading to a total of 144 sets:

cα
1 ,c

β
2 ,γ

m
3 ; cα

1 ,β
m
2 ,cγ

3; αm
1 ,c

β
2 ,c

γ
3; αm

1 ,β
n
2 ,c

γ
3; αm

1 ,c
β
2 ,γ

n
3 ; cα

1 ,β
m
2 ,γn

3 .

That is, such a set either specifies two outcomes for the experimenter’s
selection of parameters at two of the stations (e.g., cx

1,c
x
2) and one outcome

of a specific measurement at the third station (e.g., x+3 ), or it specifies one
outcome of parameter selection (e.g., cx

3) and two outcomes of specific
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measurements at the other two stations (e.g., x+1 ,x
+
2 ). Obviously, by the

downward closure of histories, if such a set includes a specific outcome such
as x+3 , this implies the corresponding choice of measurement setting, in this
case, cx

3. By Lemma 5.2, however, such a downward extension preserves both
consistency and combinatorially consistency, so we can save the labor of
writing out the additional transitions (e.g., we stick to our cx

1,c
x
2,x

+
3 in place

of the longer cx
1,c

x
2,c

x
3,x

+
3 ).

Given the structure of the combinatorially consistent sets mixing tran-
sitions from C and from E and the structure of the rules (yy) and (xxx),
it is easy to see that these mixed sets are all consistent, so that there is no
case of MFB among these sets. That is, the GHZ surface model satisfies C/E
independence:

Fact 8.13. The GHZ surface structure defined in Def. 8.15 satisfies the condi-
tion ofC/E independence of Def. 8.3.

Proof. We check three exemplary cases. (1) For T1 = {cx
1,c

x
2,x

+
3 }, we need

to take heed of the (xxx) rule. The set of outcomes x−1 ,x
+
2 ,x

+
3 satisfies that

rule, so there is a corresponding history hx−x+x+ ∈ H(T1). (2) For T2 =

{cx
1,y

−
2 ,c

y
3}, we need to take heed of the (yy) rule. The set of outcomes

x−1 ,y
−
2 ,y

+
3 satisfies that rule, so there is a corresponding history hx−y−y+ ∈

H(T2). (3) For T3 = {x+1 ,x
−
2 ,c

x
3}, we again need to take heed of the (xxx) rule.

The set of outcomes x+1 ,x
−
2 ,x

+
3 satisfies that rule, so there is a corresponding

history hx+x−x+ ∈ H(T3). The structural point is that a set that includes
transitions both from C and from E always leaves at least one outcome ±
unspecified, and so if one of the rules (yy) or (xxx) applies, that outcome can
be chosen accordingly. The upshot is that any combinatorially consistent set
of transitions involving both C and E as initials is consistent.

This factmay raise the hope that an extension of theGHZ surface structure
that removes the troublesome cases ofMFB could still satisfy the companion
notion of C/Ext independence (Def. 8.10). The crucial question is whether
this is possible and, if so, for which type of instruction sets.

8.3.3.3 Non-contextual instruction sets for GHZ

The idea of an instruction set is to provide guidance for Nature’s choice
points e ∈ E in a way that is independent of the experimenters’ choices at
c∈C. Non-contextual instruction sets are such that an instruction set λ ∈ In

specifies exactly one outcome for each initial in its domain, so that λ can also
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be read as a partial function from E to T̃ .The set-up of GHZ is simple in this
respect, because it is layered: the experimenter selects three parameters xi or
yi (i = 1,2,3), and then Nature provides one of the possible joint outcomes.
TheMFB is among themembers of T̃ only, as we have just shown (Fact 8.13).

Intuitively, one would expect a non-contextual instruction set to be a
function that specifies maximal information, meaning that it specifies one
outcome each for each of x1, . . . ,y3. The sobering fact is that this is not
possible in a way that satisfies the GHZ rules.

Fact 8.14. There is no way to specify one outcome each for the six possible
measurements x1, . . . ,y3 in such a way that both rules (yy) and (xxx) are
fulfilled.

Proof. There are eight six-element sets of outcomes that satisfy the (yy) rule:
in total, there are 26 = 64 possible combinations, and the (yy) rule cuts this
number down by a factor of 23 = 8, as it imposes three parity constraints.
We list the eight satisfactory combinations here. The first line gives those for
which the outcomes of x1 and y1 agree; the second line gives those for which
x1 and y1 disagree.

{x+1 x+2 x+3 y+1 y+2 y+3 } {x+1 x−2 x−3 y+1 y−2 y−3 } {x−1 x+2 x−3 y−1 y+2 y−3 } {x−1 x−2 x+3 y−1 y−2 y+3 }
{x+1 x−2 x−3 y−1 y+2 y+3 } {x+1 x+2 x+3 y−1 y−2 y−3 } {x−1 x−2 x+3 y+1 y+2 y−3 } {x−1 x+2 x−3 y+1 y−2 y+3 }.

As one can see by inspection, none of these eight sets satisfies the (xxx) rule,
as the number of minuses on the x-outcomes is always zero or two.

Before this background, it is interesting to ask what the non-contextual
instruction sets look like for GHZ and which effects it has that these sets
are not maximally specific. Our result is that a non-contextual extension
for GHZ introduces C/Ext dependence despite the surface structure’s C/E
independence.

Instruction sets λ ∈ In are subsets of S maximal with respect to two
conditions spelled out in Def. 8.1: (1) such a set must provide a unanimous
instruction for each e ∈ E covered, so that

∪
λ is not blatantly inconsistent,

and (2) such a set must actually provide instructions for consistent sets of
initials (i.e., if E0 ⊆ Eλ is consistent, then so is the corresponding set of
transitions λ (E0)).

The set S has 48 members, each corresponding to a history in the surface
structure (e.g., T0 =df {x+1 ,x

+
2 ,x

−
3 } ∈ S). It is instructive to see, for example,
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what happens if one extends T0 to a non-contextual instruction set λ . We
provide one illustration; by Fact 8.14, all alternative attempts at constructing
an instruction set will end up in a similar predicament. Consider first, as a
warm-up, a construction that is constrained only by condition (1). Basically,
the task is to select outcomes for y1, y2, and y3, as the outcomes for the x’s
are already fixed. So let us try, for example, y+1 , y−2 , and y+3 . The members of
S that correspond to this selection are the following:

{x+1 ,x
+
2 ,x

−
3 },{x+1 ,x

+
2 ,y

+
3 },{x+1 ,y

−
2 ,x

−
3 },{y+1 ,x

+
2 ,x

−
3 },

{y+1 ,x
+
2 ,y

+
3 },{y+1 ,y

−
2 ,x

−
3 },{y+1 ,y

−
2 ,y

+
3 }.

What is missing from this list is a set that provides guidance as to the
selection of settings x1,y2,y3—the set that would have to be included, as
forced by no blatant inconsistency, is {x+1 ,y

−
2 ,y

+
3 }, but this set violates the

(yy) rule, and so there is no history in the GHZ surface structure that
includes it.

For the real instruction sets, we have to consider both conditions (1) and
(2). Obviously, the resulting λ coming from T0 is a subset of the set displayed
above. The result is

λ = {{x+1 ,x
+
2 ,x

−
3 },{x+1 ,x

+
2 ,y

+
3 },{y+1 ,x

+
2 ,x

−
3 },{y+1 ,x

+
2 ,y

+
3 }}. (8.2)

For example, the set {x+1 ,y
−
2 ,x

−
3 }, which is the third one displayed above,

cannot be included because given the two previous sets {x+1 ,x
+
2 ,x

−
3 } and

{x+1 ,x
+
2 ,y

+
3 }, adding it violates condition (2): the set of initials {x1,y2,y3}

would otherwise be a consistent subset of the set of initials of these three
sets of transitions, and the corresponding set of transitions, {x+1 ,y

−
2 ,y

+
3 },

violates the (yy) rule. The reader is invited to check that the given λ
cannot be extended while still satisfying both conditions (1) and (2);
see Exercise 8.5.

Note that when viewed as a partial function, λ is defined on five out of the
six members of E , viz., x1,x2,x3,y1,y3. By Fact 8.14, that is the maximum
domain for a consistent partial function. Lacking an outcome instruction
for y2, our displayed instruction set λ does not provide instructions for
four out of the eight possible selections of settings. Thus, the extended
structure violates C/Ext independence: if Nature selects our instruction set
λ at ⟨e∗, /0⟩, then the experimenter must be prohibited, among other things,
from choosing the parameters y1, y2, and y3. At any rate, the choice of y2
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must be prevented somehow. Formally, to show how our definitions apply,
we can spell out this result in the form of the following “no go” Theorem:

Theorem 8.3. There are no non-contextual hidden variables for the GHZ
experiment.

More precisely: For the GHZ surface structure ⟨W,<,e∗,E,C⟩ defined
in Def. 8.15, which is C/E-independent, the extension by non-contextual
instruction setsIn results in an extended structure ⟨W ′,<′⟩ that violatesC/Ext
independence (Def. 8.10).

Proof. The C/E-independence of the surface structure has been shown via
Fact 8.13. To proveC/Ext dependence formally, consider the non-contextual
instruction set of Eq. (8.2) discussed above,

λ = {{x+1 ,x
+
2 ,x

−
3 },{x+1 ,x

+
2 ,y

+
3 },{y+1 ,x

+
2 ,x

−
3 },{y+1 ,x

+
2 ,y

+
3 }}.

The set of transitions in W ′ (where we abbreviate the outcomes in a
mnemonic way)

T = {⟨e∗, /0⟩� Hλ ,⟨c1, /0⟩� Hy,⟨c2, /0⟩� Hy,⟨c3, /0⟩� Hx}

is combinatorially consistent, as all initials are pairwise SLR , but it is
inconsistent, as no history h matching λ includes the transitions cy

1 , cy
2 ,

and cx
3 .

That is, the extended structure is conspiratorial, and the process of
extending the surface structure turns out to be a cure worse than the
disease: from an initially hard-to-understand case of modal funny business
without any Nature-experimenter conspiracies, the process of structure
extension has created a structure inwhich themodal funny business between
Nature’s outcomes is removed at the expense of introducing modal funny
business between Nature’s single choice and the experimenter’s choice
of measurement parameters. This is certainly not a satisfactory kind of
structure extension.

8.3.3.4 Contextual instruction sets for GHZ

The failure of the non-contextual approach to GHZ motivates the use of
contextual instruction sets. These are subsets of S that are less strictly
constrained than non-contextual sets, as the instructions given for Nature’s
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choice points may depend on the measurement context. For the GHZ set-
up, such a measurement context consists of exactly one choice of direction
x or y at each station i = 1,2,3. As with the previous case of non-contextual
instruction sets, it is instructive to check in formal detail what the structure
extension turns out to be like.

By Def. 8.13, a contextual instruction set is a subset of S that is maximal
with respect to what is there called C-splitting. It is easy to check that the
sets of transitions T1,T2 ∈ S are C-splitting exactly if they differ in at least
one measurement parameter. Thus, for example, the sets {x+1 ,x

+
2 ,x

−
3 } and

{x+1 ,x
+
2 ,y

+
3 } are C-splitting, but the sets {x+1 ,x

+
2 ,x

−
3 } and {x−1 ,x

+
2 ,x

+
3 } are

not. Any selection of parameters allows for a consistent choice by Nature, as
one can see by inspecting the (yy) and (xxx) rules, and there are no further
constraints on contextual instruction sets. Thus, a contextual instruction set
for GHZ has exactly eight elements, one for each possible combination of
parameter choices, x1x2x3,x1x2y3, . . . ,y1y2y3. A fortiori, such an instruction
set provides information pertaining to all six possible measurement choice
points E = {x1, . . . ,y3}. By Fact 8.14, it is impossible to specify one outcome
each for all six possible measurements in such a way that the (yy) and (xxx)
rules are satisfied. Therefore, any λ ∈ Ic has to be properly contextual, i.e.,∪

λ must be blatantly inconsistent. Here is one exemplary λ ∈ Ic:

λ ={{x−1 ,x
−
2 ,x

−
3 },{x−1 ,x

−
2 ,y

−
3 },{x−1 ,y

−
2 ,x

−
3 },{x−1 y−2 y+3 },

{y+1 ,x
−
2 ,x

−
3 },{y+1 ,x

−
2 ,y

−
3 },{y+1 ,y

−
2 ,x

−
3 },{y−1 ,y

−
2 ,y

+
3 }}.

(8.3)

To see that λ is properly contextual, note that

∪
λ = {x−1 ,x

−
2 ,x

−
3 ,y

−
1 ,y

−
2 ,y

+
3 ,y

−
3 },

so that there are two different outcomes prescribed for y3 ∈ E , depending
on the context (compare the second and the fourth elements displayed,
{x−1 ,x

−
2 ,y

−
3 } and {x−1 ,y

−
2 ,y

+
3 }). By Lemma 8.2(6), this means that the ele-

ment ⟨y3,λ ⟩ ∈ W ′ in the contextual extension ⟨W ′,<′⟩ remains a choice
point.

Now given our λ and looking at the instance of blatant inconsistency just
described, one sees that the outcome of y3 depends on which measurement
parameter is chosen at station 2. (Our λ also includes a case of sensitivity for
the choice of station 1.) Such a dependence looks as if the structure extension
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has introduced novel cases of MFB between experimenters’ choices and
some of Nature’s choices, thus showing that the attempt to provide instruc-
tion sets for GHZ in the contextual way is also futile. The following “no go”
Theorem spells out in formal detail that this is indeed the case.

Theorem 8.4. There are no contextual hidden variables for the GHZ
experiment.
More precisely: For the GHZ surface structure ⟨W,<,e∗,E,C⟩ defined in

Def. 8.15, which is C/E-independent, the extension by contextual instruction
sets Ic results in an extended structure ⟨W ′,<′⟩ that violatesC/Ext indepen-
dence (Def. 8.10).

Proof. The C/E-independence of the surface structure has been shown via
Fact 8.13. To prove C/Ext dependence formally, consider the contextual
instruction set λ of Eq. (8.3) discussed above and the following set of
transitions in W ′ (where we abbreviate the outcomes in an obvious way):

T = { ⟨c1, /0⟩� Hx,⟨c2, /0⟩� Hx,⟨y3,λ ⟩� H+}.

That set is combinatorially consistent, as all initials are pairwise SLR , but it
is inconsistent: a history h′ including these transitions would have to include
⟨y3,λ ⟩, so by Fact 8.3, there would have to be some h ∈ Hist(W )matching λ
for which h′ = φλ (h). Furthermore, {x1,x2,y3} ⊆ h, by the members of T .
Now the only history in W that matches λ and which contains these three
measurement initials is hx−x−y−, for which the initial y3 has outcome ‘−’;
but by the third element of T , y3 would have to have outcome ‘+’.

That is, similarly to the case of non-contextual instruction sets, the struc-
ture extended by contextual instruction sets is conspiratorial, and the process
of extending the surface structure turns out to be a cure worse than the
disease: from an initially hard-to-understand case of modal funny business
without any Nature-experimenter conspiracies, the process of structure
extension has created a structure inwhich themodal funny business between
Nature’s outcomes is removed at the expense of introducing modal funny
business between one of Nature’s remaining choice points and the experi-
menter’s choice of measurement parameters. Again, this is certainly not a
satisfactory kind of structure extension.
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8.3.4 Summary of the BST approach to modal
structure extensions

In this part of our investigation of quantum correlations and their modeling,
we chose an approach that is specific to BST, as it uses the formally well-
defined notion of modal funny business to motivate structure extensions, to
define them, and to gauge their success.

We provided a template for the general case of structure extensions,
showing how these create BST92 structures from BST92 surface structures.
Our framework allowed us to specify exactly what a superdeterministic
(or conspiratorial) extension is, and it allowed us to discuss the issue of
dependence and independence between experimenters’ andNature’s choices
in formal detail. We spelled out general conditions of adequacy for structure
extensions, which require that such an extension should not introduce novel
cases of modal funny business involving choices of the experimenters and
outcomes provided by Nature: the objective is to remove surface MFB by (1)
modifying choices given by Nature, while (2) leaving experimenters’ choices
intact.

We defined the well-known approaches of non-contextual and contextual
structure extensions in the BST framework. In order to put our definitions
to the test, we tackled the GHZ experiment, which is known not to admit
sensible hidden variable extensions. We could reproduce these findings in
the form of two formally well-specified no go-theorems.

The upshot is that BST allows for structure extensions, both contextual
and non-contextual, that are always well-defined. Whether they are
satisfactory or not, however, depends on the set-up in question. There
are quantum set-ups that exhibit modal correlations that cannot be
satisfactorily explained via structure extensions, neither non-contextual
nor contextual ones.

8.4 Probabilistic correlations

Our task in the following sections is to investigate whether it is possible
to explain probabilistic funny business (PFB) by invoking probabilistic hid-
den variables. This task sounds technical, but it concerns a non-technical
philosophical problem. We will define the notion of extending BST92 struc-
tures with probabilistic hidden variables for the explanation of PFB. This
notion is required to fulfill a number of intuitive desiderata concerning
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explanatoriness as well as the modal and spatio-temporal features of the
phenomena in question. The technical task of defining structure extensions
is motivated by the philosophical question of whether our world fulfils
the mentioned desiderata. The literature on Bell-type theorems suggests an
answer in the negative, and our analysis will support that verdict. Yet, the
negative answer merely marks the point where our real investigation starts.
We want to find out exactly which features of our world enforce this negative
answer. Given BST, we have at our disposal a mathematically rigorousmodal
and spatio-temporal framework with gradable possibilities (propensities).
Our hope is that this rich framework can deliver a precise answer as to why
certain cases of PFB do not allow for explanatory extensions by probabilistic
hidden variables. Before we embark on our analysis, we provide a brief
discussion of the notion of probabilistic hidden variables.

8.4.1 Probabilistic hidden variables

In our analysis of modal correlations (Section 8.3), surface structures were
extended by instruction sets, or deterministic hidden variables. Such instruc-
tion sets determine the measurement results, given the measurement set-
tings. In contrast, probabilistic hidden variables work indeterministically:
they do not fully determine a result, but instead they have a propensity
to bring about a result. In the extreme, there can of course also be the
“deterministically looking” propensities zero or one.

If the explanation of a case of PFB by means of probabilistic hidden
variables is feasible, one can argue that the PFB is merely epistemic, as it will
then be absent at the deepest level at which the hidden variables operate, and
arise only at a shallower surface level, at which the distribution of hidden
variables is averaged over. In studying this problem, we will use a format
parallel to the one used in Section 8.3. We will assume that there is a surface
structure, in this case a probabilistic BST92 surface structure harboring PFB,
and we will ask whether this structure can be appropriately extended, so
that the original PFB is removed in the resulting extended structure. As we
appeal to probabilistic hidden variables, we donot aim to remove chanciness:
instead, the aim is rather to remove the probabilistic surface correlations via
an explanatory extension.

In contrast to our analysis in Section 8.3, which only made sense for
structures in whichMFB is present, in what follows we assume noMFB.This
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is in line with our analysis of probabilistic BST structures in Chapter 7. In
particular, we assume NO MFB in the initial BST92 structure that represents
phenomena with probabilistic funny business. When constructing an initial
structure to represent phenomena that appear to lack some joint outcomes,
like in the GHZ case discussed in Section 8.3.3, we will nevertheless rep-
resent such joint outcomes as possible in our initial BST92 structure, but we
will assign thempropensity zero to represent their absence.Thismove is very
much in line with quantum mechanics, whose actual empirical predictions
are always probabilistic.

The obvious aim of an explanatory probabilistic structure extension is to
remove PFB. The extended structure, which must not harbor PFB, must of
course adequately represent the probabilistic data encoded in the surface
structure, including the probabilistic correlations. If an extension is suc-
cessful, the surface probabilities will be recovered by collecting together the
non-problematic probabilities in the extended structure. There are several
constraints that limit the range of possible extensions. An important feature
of our approach is the distinction between indeterminism resulting from
experimental control and Nature’s indeterminism, formally represented by
sets of choice points C and E in the surface structure (see, e.g., Def. 8.2).
Quantum mechanics predicts, and experiments confirm, probabilistic
correlations between measurement outcomes, so that a structure extension
would mainly operate on elements of E . However, this may also have
some side-effects for the behavior of the choice points from C in the
extended structure, and not all such side effects will be tolerable. An obvious
desideratum is to require that the removal of PFB should not compromise
the freedomof the experimenters. Another desideratumof this type is that in
the extended structure, the experimental results should be independent
from the remote choices of the experimenters—the motivation being
that “remote” is identified with space-like relatedness and that faster-than-
light signalling is prohibited. In the literature, the first desideratum is spelled
out via a condition known as NoConspiracy, whereas the other desideratum
goes by the name of Parameter Independence. (There is also a third
condition that is frequently used in the literature, Outcome Independence:
see Def. 8.22.) The independence that is invoked in these postulates can be
interpreted modally or probabilistically, and thus the exact mathematical
formulation is far from straightforward. The formal rigor of BST helps to
state the conditions precisely and to analyze the proofs of theorems in which
they are assumed. See Defs. 8.22 and 8.24 for our formulations.
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We will analyze set-ups with differing degrees of complexity. The
concrete way to analyze cases of PFB may depend on the complexity (or
on our decision to acknowledge the complexity) of the set-up in question.
The simplest case of PFB corresponds to an experiment with two fixed
measurements performed in space-like separated regions. Such a set-up is
represented in BST92 by a surface structure with a single case of PFB; that
is, with a family of transitions with pairwise SLR initials (see our schematic
representation of the EPR set-up, Figure 5.1, p. 107). As no choices of agents
are present (there is no selection of alternative measurement settings), the
setC of the experimenter-controlled choice points is empty,C = /0.The set E ,
on the other hand, consists of the two SLR choice points corresponding to
the initials of the transitions from themeasurements to their possible results.
It will not be surprising to learn that in such a case, a successful extension
of the surface structure by probabilistic hidden variables is always possible.

More complex set-ups involve incompatible measurements, that is, mea-
surements that cannot all occur together. Such set-ups can include the
selection of the measurement settings by an experimenter at a choice point
c ∈ C. The spatio-temporal ordering brings in yet another dimension of
complexity, as there can be several experimenters, and their selections
of parameters may be SLR . We may thus have several instances of PFB
involving the results of pairwise incompatible experiments. BST represents
such a set-up by several families of transitions, with the initials of the
transitions from each family being SLR , and there always being some choice
points responsible for the incompatibility of the initials of transitions from
different families. These choice points can correspond to experimenter-
induced selections of measurement settings. Similarly to our analysis in
Section 8.3, we then face the task of spelling out, and of checking, the
requirement of the independence of experimenters’ and Nature’s choices,
thus making precise the general notion of C/E independence of Def. 8.1.

8.4.2 Extension of a probabilistic surface structure

Generally speaking, to explain probabilistic correlations between remote
outcomes in BST, we first need to represent the phenomenon in question
in a probabilistic BST surface structure, and then extend this structure in
such a way that the extended structure harbors no correlations. In this
section we discuss how an initial probabilistic BST92 structure, possibly
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containing probabilistic funny business, can be extended to a structure with
a probabilistic hidden variable. As the journey to our target is rather lengthy,
we offer a preview.

Starting with an initial BST92 structure with a case of PFB (but No MFB),
our first task is order-theoretical: we introduce a multiplied structure that
corresponds to the initial one, and we show it to be a BST92 structure. Apart
from having some parts of the initial structure multiplied, this extended
structure contains an extra choice point. The outcomes of this choice point
together with propensities for these outcomes will serve as values of the
hidden variable.1⁹ Apart from this extra choice point, the extended structure
will be shown to be conservative with respect to the relations of branching
and undividedness present in the initial structure.

Our guiding idea is that there should be no correlations in the probability
space and among the random variables in the extended structure, but these
objects have to correspond to the PFB-infested probability space and random
variables in the surface structure. We discuss the correspondences between
various objects in the surface structure and in the extended structure,
defining corresponding transitions, corresponding probability spaces, and
corresponding random variables.

The notion of correspondence is needed to formulate a restriction on
the function µ ′ that generates the causal probability spaces in the extended
structure.We explain what it means that the propensity assignment µ ′ in the
extended structure adequately represents the propensity assignment µ in the
surface structure. Finally, we introduce the BST92 notion of a structure with
a probabilistic hidden variable for PFB that incorporates two desiderata: (1)
the adequate representation of probabilities from the surface structure and
(2) no correlations among the hidden variables corresponding to the random
variables exhibiting PFB in the surface structure.

To give a roadmap of our formal construction, Def. 8.16 introduces
probabilistic BST92 surface structures, which form a subclass of probabilistic
BST92 structures specified in Def. 7.3. Definition 8.18 then explains the
notion of an N-multiplied structure corresponding to a probabilistic BST92
surface structure. At that stage it is not yet decided whether the latter
structure fulfils the axioms of BST92. This issue is decided by Theorem 8.5,
which says that an N-multiplied structure corresponding to a probabilistic

1⁹ Although there is a certain ambiguity in the literature whether to use the plural, “hidden
variables”, or the singular, we say “values of a (single) hidden variable” since the outcomes of a choice
point are representable by a single random variable.
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BST92 surface structure is a BST92 structure. The question whether it is a
probabilistic BST92 structure is still left open. To handle the latter question,
we need the notion of an adequate propensity assignment, which is the
subject of Def. 8.20. This definition concerns a probabilistic BST92 surface
structure (with its propensity function µ) and a corresponding N-multiplied
BST92 structure. The definition spells out what it takes for µ ′, defined on the
transitions of the latter structure, to be adequate for the surface structure and
N, the size of multiplication. With the notion of adequacy to hand, our next
Lemma 8.5 says that an N-multiplied BST92 structure corresponding to a
surface structure, taken together with a propensity function adequate for the
surface structure and for the size N, is a probabilistic BST92 structure. At this
stage we finally have established the notion of an N-multiplied probabilistic
BST92 structure corresponding to a probabilistic BST92 surface structure.
Our construction ends with Def. 8.22, which singles out, from among the
N-multiplied probabilistic BST92 structures corresponding to a given surface
structurewith a case of PFB, the structures with a probabilistic hidden variable
for the given case of PFB.

We will now develop the above-mentioned formal machinery. First, we
define the notion of a probabilistic BST92 surface structure:2⁰

Definition 8.16. A probabilistic BST92 surface structure is a sextuple ⟨W,<,

µ,e∗,E,C⟩, where ⟨W,<,µ⟩ is a probabilistic BST92 structure as in Def. 7.3,
e∗ ∈W is a deterministic point inW , and E,C ⊆W are disjoint sets of choice
points that jointly comprise all choice points inW , e∗ <E (i.e., for any e∈E ,
we have e∗ < e), and inW there are only finitelymany choice points, and each
one is only finitely splitting.

Exactly as in the modal case discussed in Section 8.3, E represents Nature-
given indeterminism, whereas C represents indeterminism related to the
experimenters’ choices of parameters.

We next introduce the auxiliary notion of a lifted history, which we then
use to define an N-multiplied structure.

Definition 8.17 (Lifted history). Let W = ⟨W,<,µ,e∗,E,C⟩ be a proba-
bilistic BST92 surface structure and let h ∈ Hist(W ). The lifted history φn(h)

2⁰ In contrast to the non-probabilistic surface structures of Def. 8.2, we do not require here that
every point inC be below some point in E , as this condition does not play any role in the arguments
that follow. The assumption that e∗ is deterministic is not essential, but it simplifies the calculations
considerably.
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for n ∈ N is defined as:

φn(h) =df {⟨x,0⟩ | x ∈ h∧ x ̸> e∗}∪{⟨x,n⟩ | x ∈ h∧ x > e∗}.

Note that if e∗ ̸∈ h, then φn(h) = {⟨x,0⟩ | x ∈ h}= φm(h) for any m,n ∈ N.

Definition 8.18 (N-multiplied structure). Let W = ⟨W,<,µ,e∗,E,C⟩ be a
probabilistic BST92 surface structure.The N-multiplied structure correspond-
ing to W is W ′ = ⟨W ′,<′⟩, where

W ′ =df
∪

h∈Hist(W ),n∈{1,...,N}
φn(h),

and the ordering <′ is given by

⟨x1,n⟩<′ ⟨x2,m⟩ ⇔df x1 < x2 and (n = m or n = 0),

where n,m ∈ {0,1, . . . ,N}.

We need to show next that an N-multiplied structure is a BST92 structure.
The first step toward this objective is the following lemma:

Lemma 8.4. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure and W ′—the N-multiplied structure corresponding to W . Then

(1) For every history h ∈ Hist(W ) the set φn(h) is a maximal directed
subset ofW ′, i.e., a history inW ′.

(2) For every maximal directed subset A′ ⊆ W ′ there is a history h ∈
Hist(W ) and n ∈ {1, . . . ,N} for which A′ = φn(h).

Proof. See Appendix A.4.

Our next fact tells us about choice points in the N-multiplied structure
corresponding to a probabilistic BST92 surface structure.

Fact 8.15. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure, and let W ′ be the N-multiplied structure corresponding to W . Then

(1) for every n∈{1, . . . ,N} and every h1,h2 ∈He∗ :φn(h1)≡⟨e∗,0⟩ φn(h2).
(2) for every n,m ∈ {1, . . . ,N} such that n ̸= m and every h ∈ He∗ :

φn(h)⊥⟨e∗,0⟩ φm(h).
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(3) ⟨e∗,0⟩ is a choice point with N outcomes Π⟨e∗,0⟩⟨φn(h)⟩, where h is an
arbitrary history from He∗ ;

(4) for every n ∈ {1, . . . ,N}, every e ∈ W , and every h1,h2 ∈ Hist(W ):
h1 ⊥e h2 iff φn(h1) ⊥⟨e,l⟩ φn(h2), where l = n iff e∗ < e, and l = 0
otherwise;

(5) for every m,n, l ∈ {1, . . . ,N} with m ̸= n, every e ∈ W such that
e∗ < e, and every h1,h2 ∈ Hist(W ): neither φm(h1)≡⟨e,l⟩ φn(h2), nor
φm(h1)⊥⟨e,l⟩ φn(h2);

(6) for everym,n∈ {1, . . . ,N}withm ̸= n, every e ̸> e∗, and every h∈He:
φm(h)≡⟨e,0⟩ φn(h).

Proof. See Appendix A.4.

The N-multiplied structure adds to the surface structure a choice point
⟨e∗,0⟩ with N outcomes Π⟨e∗,0⟩⟨φn(h)⟩, where h is any history from He∗ .
Once the propensities are added, these outcomes will play the role of values
of a hidden variable. Note the difference between clauses (4) and (5)—the
former concerns identical superscripts, and the latter is stated for different
superscripts. This reflects the fact that any e above e∗ is copied into N “new”
events ⟨e,n⟩, each occurring in a separate history φn(h), so that it cannot
serve as a choice point (nor a point of undividedness) for histories with
different superscripts n,m.

To sum up Fact 8.15, as far as choice points are concerned, the
N-multiplied structure adds just one single choice point with N outcomes;
whatever is above the designated event e∗ in the surface structure is
multiplied N times: an l-fold choice point ismultiplied into N different l-fold
choice points, and a deterministic point is multiplied into N deterministic
points. In contrast, events that are not above e∗ are just copied, not
multiplied.

With these results to hand, in full analogy to Theorem 8.1, we can
prove that an N-multiplied structure corresponding to a probabilistic BST92
surface structure is again a BST92 structure.

Theorem 8.5. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure, and let W ′ be the N-multiplied structure corresponding to W . Then
W ′ is a BST92 structure.

Proof. See Exercise 8.6.
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Note that we have not yet established that an N-multiplied structure
corresponding to W is a probabilistic BST92 structure. This is essential for
analyzing probabilistic hidden variables. Before we prove the relevant result,
we need to introduce a number of auxiliary notions.

The first notion is that of correspondence. We will advance claims that
an N-multiplied structure has no PFB in the region corresponding to a
PFB-infested region of a surface structure. At the end of the day we will
claim that in the N-multiplied structure, transitions and random variables
that correspond, respectively, to troublesome transitions and troublesome
random variables in the surface structure, do not exhibit PFB. Toward this
end we need to explain correspondences between various kinds of objects
in a probabilistic BST92 surface structure and in the extended, N-multiplied
probabilistic structure. We begin with transitions:

Definition 8.19 (Corresponding transitions and sets thereof). Let W =

⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface structure, and let W ′ be
the N-multiplied structure corresponding to W .

Let τ = e � Πe⟨h⟩ ∈ TR(W ), T ⊆ TR(W ), and S ⊆ P(TR(W )) be,
respectively, a basic transition, a set of basic transitions, and a set of sets of
basic transitions in W . The corresponding objects, respectively, τn,T n and
Sn in W ′ are defined as follows, for n ∈ {1, . . . ,N}:

(1) τn = ⟨e, l⟩ � Π⟨e,l⟩⟨φn(h)⟩, where l = n iff e∗ < e, and l = 0
otherwise;

(2) T n = {τn | τ ∈ T} and
(3) Sn = {T n | T ∈ S}.

As to clause (1), since τ = e � Πe⟨h⟩, we have e ∈ h, and hence, with the
mentioned caveat about the location of e, ⟨e, l⟩ ∈ φn(h). Given Fact 8.15(4)
it is straightforward to see that τn is indeed a basic transition in W ′.

Observe that the corresponding basic transitions (and hence sets thereof)
are different, depending on the location of their initials. The difference is
explained by the following Fact:

Fact 8.16. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure, and let W ′ be the N-multiplied structure corresponding to W . For
e ∈W , τ = e � Πe⟨h⟩ ∈ TR(W ), and m,n ∈ {1, . . . ,N} with m ̸= n:

(1) If e∗< e, then τn=⟨e,n⟩�Π⟨e,n⟩⟨φn(h)⟩ ̸= ⟨e,m⟩�Π⟨e,m⟩⟨φm(h)⟩=τm.
(2) If e∗ ̸6 e, then τn=⟨e,0⟩�Π⟨e,0⟩⟨φn(h)⟩=⟨e,0⟩�Π⟨e,0⟩⟨φm(h)⟩=τm.
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Proof. (1) If e∗ < e, then e can be only associated with 1,2, . . . ,N, and
⟨e,m⟩ ̸= ⟨e,n⟩ for m ̸= n, so τm ̸= τn. (2) If e∗ ̸< e, e can be only associated
with 0; the claim then follows by Fact 8.15(6).

Thus, a basic transition (e � H) ∈ TR(W ) either has N copies or just
one copy in W ′, depending on whether e∗ < e or not. Note that the clauses
exclude the case e = e∗, for which a deterministic transition e∗ � He∗ gives
rise to N basic transitions ⟨e∗,0⟩� Hn, where Hn ∈ Π⟨e∗,0⟩.

We work toward assigning propensities to transitions in an N-multiplied
structure with a view to turning that structure into a probabilistic BST92
structure. With the concept of correspondence to hand, we define adequate
propensity assignments as follows:

Definition 8.20 (Adequate propensity assignment). Let W = ⟨W,<,

µ,e∗,E,C⟩ be a probabilistic BST92 surface structure, and let W ′ = ⟨W ′,<′⟩
be the N-multiplied BST92 structure corresponding to W . Let

E1 = {e ∈W | µ({e � H}) is defined for some H ∈ Πe};

by Postulate 7.2, µ is defined on any Y ⊆ T̃E1 , and hence on any element of
SE1 . We say that µ ′ : P(TR(W ′)) 7→ [0,1] is adequate for W and N iff

(1) µ ′ is defined for every basic transition ⟨e∗,0⟩ � Hn, where Hn ∈
Π⟨e∗,0⟩;

(2) µ ′ is defined on each T n corresponding to some T ∈ SE1 , and
• if there is an initial e ∈ ET such that e∗ < e, then

µ(T ) = ∑N
n=1 µ ′({⟨e∗,0⟩� Hn}) ·µ ′(T n);

• if there is no initial e ∈ ET such that e∗ < e, then µ(T ) = µ ′(T n);
(3) µ ′ is defined on every consistent set {⟨e∗,0⟩ � Hm} ∪ T n (where

m,n ∈ {1, . . . ,N}), as follows:

µ ′({⟨e∗,0⟩� Hn}∪T m) = µ ′({⟨e∗,0⟩� Hn}) ·µ ′(T m).

The conditions on µ ′ can be glossed as follows. The first clause requires
one to assign values only to the really new transitions (i.e., to transitions
having no corresponding transitions in the surface structure). The second
clause concerns counterparts of elements of SE1 . Its two parts reflect the
difference between corresponding transitions established in Fact 8.16. The
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first part concerns multiplied transitions, whereas the second concerns non-
multiplied transitions (note that in the second part, T n = T m for every
m,n < N). The last clause concerns the mixed case, that is, a set consisting
of a new transition and a counterpart of an “old” set (an element of SE1). In
the mixed case, the rule prescribes to multiply the probabilities, as, after all,
the indeterministic event ⟨e∗,0⟩ is posited to explain cases of PFB. Allowing
for probabilistic dependence between ⟨e∗,0⟩ and a counterpart of the “old”
set of transitions would contravene this project. The clause is nevertheless
controversial. As wewill see, it might encode some independence conditions
between C and E , and as we will argue in our analysis of the Bell-Aspect
experiment in Section 8.4.4, the condition might actually fail, showing
that the deep-structure explanation of Bell-Aspect that we are after is not
achievable.

Note that, although the conditions of Def. 8.20 concern elements of SE1 ,
they induce a propensity assignment to other sets corresponding to subsets
of T̃E1 and their combinations with new transitions as well. That is, for every
Y n ∈ TR(W ′) that corresponds to some Y ⊆ T̃E1 :

• µ ′(Y n) = ∑T∈SY µ ′(T n), where SY =df {T ∈ SE1 | Y ⊆ T}, and
• if {⟨e∗,0⟩� Hm}∪Y n is consistent, then

µ ′({⟨e∗,0⟩� Hm}∪Y n) = µ ′({⟨e∗,0⟩� Hm}) ·µ ′(Y n).

Moreover, a µ ′ that is adequate forW and N delivers the surface propensities
for any Y ⊆ T̃E1 , not just for elements of SE1 . This can be established as
follows:

∑
n6N

µ ′(Y n)µ ′({⟨e∗,0⟩� Hn}) = ∑
n6N

∑
T∈SY

µ ′(T n) ·µ ′({⟨e∗,0⟩� Hn}) =

∑
T∈SY

∑
n6N

µ ′(T n) ·µ ′({⟨e∗,0⟩� Hn}) = ∑
T∈SY

µ(T ) = µ(Y ).

(8.4)

Observe that adequate µ ′ is sensitive to details of the surface structure:
the values of µ , on which sets of transitions µ is defined, and the number
N that gives the size of multiplication. All other features of an N-multiplied
structure do not bring anything new, as they are copied from the surface
structure. This justifies our terminology of µ ′ being adequate to W and N.
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As expected, the notion of µ ′ being adequate for W = ⟨W,<,µ,E,C⟩
and N provides for the following: if one supplements W ′ with µ ′, creating
W ′ = ⟨W ′,<′,µ ′⟩, then the result will be a probabilisticBST92 structure.This
is what our next lemma establishes: a BST92 structure corresponding to a
probabilistic BST92 surface structure is a probabilistic BST92 structure in the
sense of Def. 7.3.

Lemma 8.5. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure, and let W ′ = ⟨W ′,<′⟩ be the N-multiplied BST92 structure corre-
sponding toW . Let the partial function µ ′ : P(TR(W ′)) 7→ [0,1] be adequate
for W and N. Then W ′′ =df ⟨W ′,<′,µ ′⟩ is a probabilistic BST92 structure.

We call W ′′ an N-multiplied probabilistic BST92 structure corresponding
to W .

Proof. See Exercise 8.7.

The requirement of an adequate propensity assignment is part of the
notion of an N-multiplied probabilistic BST92 structure corresponding to
W . Since the requirement is fulfilled by many (partial) functions µ ′ that are
adequate for a given surface probabilistic structure W and N, there aremany
N-multiplied probabilistic BST92 structures corresponding to W . However,
they all recapture the propensities of the surface structure, due to clause (2)
of Def. 8.20.

At this stage we have defined probabilistic BST92 surface structures and
the N-multiplied probabilistic BST92 structures corresponding to them. We
now define the remaining correspondences we need, first between probabil-
ity spaces and then between random variables.

Definition 8.21 (Corresponding probability spaces and corresponding ran-
dom variables). Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure, and let W ′ = ⟨W ′,<′,µ ′⟩ be an N-multiplied probabilistic BST92
structure corresponding to W . Let CPS = ⟨S,A , p⟩ be a causal probability
space, with S ⊆ TR(W ).

Then a triple CPSn = ⟨Sn,A n, pn⟩ with n 6 N is the n-th causal prob-
ability space corresponding to CPS iff Sn and A n correspond to S and A ,
respectively (in the sense of Def. 8.19), and pn is induced by the propensity
assignment µ ′ (n 6 N).

Further, for random variables X and Xn defined within the corresponding
probability spaces CPS and CPSn, respectively, we say that X and Xn corre-
spond iff X and Xn have the same range and
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for every T ∈ S : X(T ) = x whenever Xn(T n) = x,

where T n ∈ Sn is the set corresponding to T ∈ S.

Note that, typically, corresponding random variables have different prob-
abilities, i.e., p(X(T ) = x) ̸= pn(Xn(T n) = x), because typically µ assigns to
T a different propensity than µ ′ assigns to T n.

Having all the machinery in place, we can now apply it to a surface
structure with a case of PFB. To this end let us first recall our description
of PFB, as offered by Def. 7.7:

Given a probabilistic BST92 structure, a locus of PFB is provided by
pairwise SLR initial events I1, . . . , IK , each associated with a transition to
an unavoidable disjunctive outcome 1k with cardinality Γ(k). The set of
transitions {I1 � 11, . . . , IK � 1K} is said to exhibit PFB iff the random
variables {X1, . . . ,XK} are correlated. These random variables are defined
on the causal probability space CPS(E � 1E) = ⟨S,A , p⟩ determined by
the transition E � 1E , where E =

∪K
k=1 Ik and 1E = {

∪
Z | Z ∈ 11 × 12 ×

. . . ×1K}, by the formula:

Xk : S 7→ Γ(k) where for every T ∈ S : Xk(T ) = γ iff CC(Ik � Ôγ)⊆ T.
(8.5)

Having recalled the BST92 analysis of PFB, we end our construction by
singling out, from among the N-multiplied probabilistic BST92 structures
corresponding to a given surface structure that includes a case of PFB, a
structure with a probabilistic hidden variable for the given case of PFB.

Definition 8.22 (Structure with a probabilistic hidden variable for PFB).
Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface structure with
transitions {I1 � 11, . . . , IK � 1K}, where 1k = {Ôk,γ(k) | γ(k)∈ Γ(k)}, and
random variables X1, . . . ,XK of Def. 8.5 that exhibit PFB. Let also cll(Ik �
Ôk,γ(k))⊆ E , for every k 6 K and every γ(k) ∈ Γ(k).
A structure with a probabilistic hidden variable for the given PFB in W is an
N-multiplied probabilistic BST92 structure W ′ = ⟨W ′,<′,µ ′⟩ (for some N ∈
N) that corresponds to W and which satisfies the following condition:
for every n 6 N, the random variables Xn

1 , . . . ,X
n
K corresponding to

X1, . . . ,XK are independent. [Outcome Independence]
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To see that our condition captures the condition of Outcome Independence
as it is known from the literature, observe that each randomvariable Xk : S 7→
Γ(k) represents the results of a measurement Ik; a corresponding random
variable Xn

k represents the counterparts of these results in the N-multiplied
structure for the n-th value of the hidden variable. The initials I1, . . . , IK

are pairwise SLR, and so are their images. The statement that the latter
random variables are independentmeans that the probabilities of the images
of results in theN-multiplied structure (for each n6N) are independent (i.e.,
they multiply to yield the probability of the joint result). Observe that the
defined notion incorporates two conditions, Outcome Independence and
Adequate Propensity Assignment.

Note that the general procedure of N-multiplication can introduce a case
of PFB that has no counterpart in a surface structure. This is connected with
the fact that the factorization of propensities in the surface structure does
not guarantee the factorization of propensities in an N-multiplied structure.
That is, µ(T1 ∪T2) = µ(T1) · µ(T2) does not imply µ ′(T n

1 ∪T n
2 ) = µ ′(T n

1 ) ·
µ ′(T n

2 ), where Ti and T n
i are a set of transitions in the surface structure

and a set corresponding to it in an N-multiplied structure, respectively.
The adequacy condition only requires that the µ-propensity results as the
weighed average of the µ ′ propensities. Whether the notion of N-multiplied
BST92 probabilistic structure corresponding to a surface structure should
prohibit such new cases of PFB, depends on one’s attitude as to what the
notion is to achieve. If its aim is to remove the PFB, the prohibition is very
much in place. But if its aim is to explain the PFB in the surface structure, the
prohibition should not necessarily be imposed, as there might be no way to
account for the surface PFB apart from also acknowledging PFB on a deeper
level. In what follows, we do not impose the mentioned restriction.

Having explained our framework for the construction of a probabilistic
hidden variable for PFB, we finally turn to interesting real questions: Do
various set-ups with cases of PFB, of varying complexity, admit structures
with probabilistic hidden variables for their cases of PFB?

8.4.3 Single and multiple cases of PFB, and super-independence

Before we investigate BST92 structures with PFB, which come with specified
sets of experimenter-controlled choice points C and Nature’s choice points
E , we need to add more substance to the notion of C/E independence.
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We introduced C/E independence as a target notion in Def. 8.1, and we
already gave it a rigorous formulation in the context of deterministic hidden
variables (see Def. 8.3 for surface structures and Def. 8.10 for extended
structures). We now have to flesh out the notion in the context of prob-
abilistic hidden variables, by relating it to propensities. For this approach
to go through, however, we need to assign propensities to certain sets of
transitions that include both an agent-based transition and a Nature-given
transition. This move may be controversial, so we try to keep our commit-
ments to propensities of agent-based transitions minimal. In our view, an
unproblematic case is a transition I � Ô from before an experimenter’s
making a measurement decision to the occurrence a measurement result.
The set CC(I � Ô) contains both the experimenter-based transition and
a Nature-given transitions. In such a case, when a set T with “mixed”
transitions is identical to the set of causae causantes of some transition, itmay
(we think) have a propensity assigned. Once the propensity is assigned to
such a set, the notion C/E propensity independence is easily formalized, by
equating it with the factorization of propensities. (Note that by Postulate 7.2,
if a propensity is defined on a set, it is defined on any of its subsets.) These
ideas are reflected by the following definition:

Definition 8.23 (C/E propensity independence). Let W = ⟨W,<,µ,E,C⟩
be a probabilistic BST92 structure with two designated disjoint sets E,C of
choice sets such that E ∪C is the set of all choice points in W . We say that
W violates C/E propensity independence iff there is a transition Tr in W and
T = CC(Tr) with cll(T )∩C = C0 ̸= /0 and cll(T )∩E = E0 ̸= /0 such that
µ(T ) ̸= µ(TC0) ·µ(TE0), where TC0 is the subset of T with initials in C0, and
TE0 is the subset of T with initials in E0, i.e., TC0 =df {(e � H) ∈ T | e ∈C0}
and TE0 =df {(e � H) ∈ T | e ∈ E0}.

We say that a probabilistic BST92 structure (or its set E) satisfies C/E
independence iff it does not violate it.

In what follows we apply this definition to both probabilistic surface
structures and to N-multiplied probabilistic structures; for this reason we
have not included e∗ in the specification of W.

8.4.3.1 A structure with a single case of PFB

We first investigate a simple set-up that exhibits a single case of PFB and
which does not involve any relevant choices of experimenters. We produce a
probabilistic BST92 surface structure for this set-up and ask if it can be given
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an N-multiplied BST92 probabilistic structure with a probabilistic hidden
variable for this case of PFB.Theabsence of relevant choices of experimenters
means that C = /0 in the description of the surface structure for this set-up.
The following lemma proves that the answer to our question is “yes”, given
that some minor conditions on the surface structure are satisfied.

Lemma 8.6. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure in which transitions {I1 � 11, . . . , IK � 1K}with random variables
X1, . . . ,XK exhibit PFB, where 1k = {Ôk,γ(k) | γ(k) ∈ Γ(k)}, Γ(k) are index
sets and 1 6 k 6 K. Let cll(Ik � Ôk,γ(k)) ⊆ E for every k 6 K and every
γ(k)∈Γ(k) andC = /0.Then there exists a structurewith a probabilistic hidden
variable for this case of PFB. Moreover, the structure satisfies C/E propensity
independence.

Proof. See Appendix A.4.

This lemma says that if we focus on a single case of PFB, if only there is a
deterministic event below all cause-like loci involved in this case of PFB and
our common finitistic assumptions are satisfied, then there is a probabilistic
BST92 structure that explains away the PFB in question. The result holds no
matterwhat the background of the case of PFB consists of. In the background
there might be some other transitions, possibly forming other cases of PFB.
And, on some sets of such neglected transitions, µ might be undefined in the
surface structure. Still, we can ignore all such complexities, the lemma says,
and construct a probabilistic BST92 structure explaining away a single case
of PFB. The fact that µ might fail to be defined on a set of transitions has
an impact, however, on the feasibility of a more general result concerning
multiple cases of PFB.21 Accordingly, in our next result, we assume that µ is
defined on all consistent subsets of the set of all basic transitions.

8.4.3.2 A structure with multiple cases of PFB — super-independence

Given the success of the construction of a BST92 structure with a proba-
bilistic hidden variable for a set-up with a single instance of PFB and no
choices produced by agents, it is natural to ask whether the construction
can be successfully applied to set-ups with two or more instances of PFB.
This category includes set-ups with and without agent-based selections of
parameters.We can prove that all set-ups with finitelymany cases of PFB and

21 For starters, attempt to analyze two cases of PFB, one “above” the other, with some transitions
“between” the two, that do not form a set to which µ is assigned.
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no agent-based choices admit an N-multiplied BST92 probabilistic structure
in which the instances of PFB are removed. The sought-after N-multiplied
structure can be produced in a way that is quite similar to construction of
the quasi-deterministic structure investigated in the proof of Lemma 8.6.
The difference is that the present lemma concerns all basic transitions in the
surface structure, in contrast to just those onwhich µ is defined.The relevant
lemma is as follows.

Lemma 8.7. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface
structure harboring multiple cases of PFB for which C = /0. Let µ be defined
on every subset of TR(W ). Then there is an N-multiplied probabilistic BST92
structure corresponding to W that provides a hidden variable for every case
of PFB in W . Moreover, that extended structure satisfies C/E propensity
independence.

Proof. See Appendix A.4.

We will call the option of removing all cases of PFB, without paying
attention to other constraints, “super-independence”, in analogy to “super-
determinism”. Superdeterminism, as investigated in Section 8.3.1.1, is an
option for removing all the (finitely many) cases of MFB in a BST92 surface
structure in which C = /0. Theorem 8.2 shows that if our single aim is to
remove cases of surface MFB by positing instruction sets, we can always
achieve this by assuming that the experimenters’ choices are in fact due
to Nature (C = /0). Similarly, if our single aim is to explain away multiple
cases of PFB, we can always achieve this—we just need to assume that
no indeterminism comes from experimenters’ choices, so that C = /0. In
this case, any constraints related to members of C are satisfied vacuously.
Lemma 8.7 guarantees that such super-independent extensions always exist.

As we said repeatedly, the challenge in constructing hidden variable
extensions of surface structures consists in analyzing the set-ups in ques-
tion as experiments; that is, in a way that upholds a separation between
Nature’s and experimenters’ choices (C ̸= /0).We now turn to the Bell-Aspect
experiment,22 in which experimenters’ choices are present. It is generally
assumed that a good explanation of this experiment should accommodate
such choices, and superdeterministic or super-independent accounts are
dismissed as conspiratorial. We will show that the existence of an extended

22 The set-up was proposed in Bell (1964), and a breakthrough experiment with the set-up was
carried out by Aspect et al. (1982b).
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structure with a hidden variable, given the cases of PFB present in this exper-
iment, implies the so-called Bell-CH inequality. As the Bell-CH inequality is
violated by quantum mechanical predictions and in many experiments, we
arrive at a “no go” result concerning a propensity-based account of non-local
correlations. Our formal derivation of the Bell-CH inequality is standard,23
but our construction, which focuses on both the modal (propensity) and
spatio-temporal aspects, is novel. The thrust of our analysis is an attempt to
understand, having support of all the resources of BST, what the premisses
for the derivation of the Bell-CH inequality amount to. In this way we hope
to contribute to the answering of an ultimately metaphysical question: What
must our world be like for the Bell-CH inequality to fail?

8.4.4 The Bell-Aspect experiment

In the last section we developed the technique of structure multiplication.
A multiplied surface structure is intended to explain away instances of PFB
present in the surface structure. If successful, the construction permits one to
interpret PFB epistemically, by claiming that on a deeper level, as described
by the N-multiplied structure, there is no PFB. PFB can be seen only on a
less than fully fine-grained description of the phenomena; it comes from
averaging over the deep level probabilities.Wehave seen some successeswith
this program: We proved that any single case of PFB can be explained away
by N-multiplication. Also, we showed that, if we ignore agent-based choices
as a separate category (subsuming them under the category of Nature-
given indeterminism as well), any finite number of cases of PFB can be
explained away by the same method. Given the unproblematic development
of the technique and its initial successes, the rules of suspense suggest that
one should now expect a plot twist. The literature on mysterious quantum
correlations additionally enhances the feeling of an imminent catastrophe:
an inexplicable set-up with PFB is around the corner.

These feelings are fully justified. In this section we analyze an experiment,
the famous Bell-Aspect experiment, for which our N-multiplication
technique fails. We will prove, following similar arguments in the literature,
that there is no BST92 structure with a probabilistic hidden variable for the

23 Our derivation is a BST rendition of J. S. Bell’s reasoning sketched in the introduction to his
book (Bell, 1987a).



quantum correlations 281

cases of PFB present in this experiment. Acknowledging that our argument
is standard may raise doubts as to why to run it again. The argument has
a certain set of premises, so presenting it anew may show that some new
premises are needed, or, to the contrary, that some standard premises
are superfluous. We will, however, not present any such discoveries about
premises of this argument. We rerun the argument to see what it takes, in
terms of the modal, causal, propensity-like and spatio-temporal features of
our world, for the derivation to go through—or, to put it more technically,
to see what it takes for the argument’s premises to hold. BST is a suitable
framework to address these questions, as it offers all the resources needed
in an integrated framework and, importantly, it is mathematically rigorous.
Thus, it seem well-suited to address the question that Jeremy Butterfield
(1992) raised almost three decades ago: “Bell’s theorem: what does it take?”

Our plan is thus to run in the BST framework a standard argument
for a “no go” theorem for the existence of local hidden variables for the
Bell-Aspect set-up, relying on the Bell-CH inequality. We will identify
the premises in terms of BST notions, and, using BST resources, we will
investigate what these premises amount to. The aim is to shed some light
on what the theorem intimates about our world. What must our locally
indeterministic and relativistic world be like for the Bell-CH inequality
to fail?

8.4.4.1 The set-up of the Bell-Aspect experiment

The set-up of the Bell-Aspect experiment is outlined in Figure 8.1 (p. 226).
Here are some more details. A source emits pairs of particles with spin 1

2 ,
with each pair being in the singlet spin state alreadymentioned in Chapter 5,
written in the basis |±,±⟩= |±⟩1 ⊗|±⟩2 as

|ψ⟩= 1√
2
(|+,−⟩−|−,+⟩).

The members of each pair fly in opposite directions toward remote mea-
surement stations (wo)manned by Alice on the left and Bob on the right.
For each emission, in the left station there is Alice’s selection a of one of the
two settings, a1 or a2, of her measuring apparatus, and in the right station
there is Bob’s selection b of one of the two settings, b3 or b4, of his measuring
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apparatus.Themeasurement with the setting ai has two possible results, ai,+

or ai,−; the measurement with the setting b j has also two possible results,
b j,+ or b j,−. To write quantified formulas, we henceforth assume that the
range of i, i′ is {1,2}, the range of j, j′ is {3,4} and the range of m,m′ is
{+,−}. The relevant SLR relations are as follows. In each round of the
experiment, each selection event is SLR to the measurement event in the
remote station (i.e., a SLR b j and b SLR ai). Next, outcomes in different
stations are SLR (i.e., ai,m SLR b j,n). Also, a measurement event in one
station is SLR to an outcome of a measurement event in a remote station
(i.e., ai SLR b j,m′ and b j SLR ai,m ). Finally, there are non-local correlations:
for each pair (i, j), the remote results ai,m and b j,m′ are probabilistically
correlated. Such non-local correlations, if understood as reflecting under-
lying propensities, provide evidence for PFB. The Bell-Aspect experiment
involves two kinds of chanciness (like the GHZ experiment): experimenter-
induced indeterminism in transitions a � ai and b � b j, and Nature-given
chanciness to be seen in transitions ai � ai,m and b j � b j,m′ .

8.4.4.2 The surface structure for the Bell-Aspect experiment

We turn now to the construction of a probabilistic BST92 surface structure
representing the Bell-Aspect experiment, WBA = ⟨W,<,µ,e∗,E,C⟩.W must
contain at least 15 events, which we assume to be all point-like. These
are: a,b,ai,b j,ai,m, b j,m′ ,e∗ ∈ W . The ordering relations, including SLR
relations and compatibility, are specified as follows: a < ai, b < b j, ai < ai,m,
b j < b j,m′ , then Πa⟨a1⟩ ̸= Πa⟨a2⟩, Πb⟨b3⟩ ̸= Πb⟨b4⟩, Πai⟨ai,+⟩ ̸= Πai⟨ai,−⟩,
Πb j⟨b j,+⟩ ̸= Πb j⟨b j,−⟩. Next, a SLR b j, b SLR ai, ai,m SLR b j,m′ , and
ai SLR b j,m′ and b j SLR ai,m. And e∗ is SLR or below each of a,b but
e∗ < ai and e∗ < b j. It is easy to calculate that WBA has 16 histories that
can be identified via outcomes ai,m ∪ b j,m′ . The a and b-based transitions
are agent-induced, whereas the ai and b j-based transitions are thought of
as Nature-given. Accordingly, E = {a1,a2,b3,b4} and C = {a,b}. We may
further assume that the structure satisfies C/E propensity independence.2⁴
Thenext element, the propensity function µ , is assigned only to those objects
for which quantum mechanics offers numerical predictions. In this vein,
µ(ai ∪ b j � ai,m ∪ b j,m′) is identified with the QM probability for the joint

2⁴ For this assumptionwe need to define propensity on transitions based on subsets ofC, however.
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outcome (ai,m,b j,m′), and µ(ai � ai,m) is the QM probability for a single
outcome ai,m, and analogously for transitions based on b j.2⁵

The ordering relations and the splitting of histories allow us to speak
of a number of transitions: a � ai, b � b j, ai � ai,m and b j � b j,m′ .
Although this notation clearly suggests event-like transitions, we use it freely
to refer to the corresponding proposition-like transition, canonically written
as a � Πa⟨ai⟩, b � Πb⟨b j⟩, etc. The assumed idealizations imply that all
these transitions are basic, so for each transition its set of causae causantes
consists only of the set in question (i.e., we have identities likeCC(a � ai) =

{a � ai}).
Note that by constructing a surface probabilistic structure in accordance

with Def. 8.16, we decide to have just one point event e∗ to take care of four
cases of PFB present in the set-up. An alternative idea is to postulate four
such points, one for each case of PFB. We argue in App. A.4.1 that the option
with four events either reduces to our option with one event, or it gives up
on explaining PFB.

8.4.4.3 Probabilistic funny business

Our surface structure contains four cases of PFB, and we have to decide
whether to follow a “big space” approach, or, alternatively, a “small spaces”
approach (see Butterfield 1992). A “big space” approach takes the selection
events a and b to construct one “big” causal probability space based on tran-
sitions to disjunctive outcomes, a∪b� {ai∪b j | i∈ {1,2}, j ∈ {3,4}}.This
approach has a certain mathematical elegance, but disturbingly it assigns
propensities to sets like a� a1. Ideologically, onemight oppose to assigning
numerical propensities to agent’s choices, but even if one does not oppose to
such an assignment on ideological grounds, it is unclearwhere such numbers
could come from. We are thus after a “small spaces” approach, which
constructs four separate causal probability spaces, each based on transitions
Si j = {ai∪b j � {ai,m∪b j,m′ |m,m′ ∈{−,+}}} (for some fixed i and j).The
algebra Ai j of subsets of Si j is induced automatically, and the probabilities

2⁵ As the settings stand for directions of spin projection, the quantum mechanical probability for
a joint measurement on a pair in the singlet state is

pqm(ai,+,b j,+) =
1
2

cos2
(
∠(i, j)

2

)
,

which means that there are no correlations only if the angle ∠(i, j) between polarization directions
equals π/2. Angles in a typical Bell-type experiment are∠(1,3) = 2

3 π =∠(2,4),∠(1,4) = 4
3 π and

∠(2,3) = 0. Thus, for each of these angles there is PFB.
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pi j are induced by µ , the values of which are in turn dictated by quantum
mechanics. Importantly, for small probability spaces, we need no other
values of probabilities than those that are ascribed by quantum mechanics
to joint and single measurement results. In this “small spaces” approach,
experimenters’ choices are out of the picture, as transitions like a � ai

are not in the algebra of subsets of Si j. (Such transitions will nevertheless
return in our discussion, when we attempt to justify the assumptions of
Bell’s theorem or discussC/E independence.)The result of this construction
is that each case of PFB present in the Bell-Aspect set-up is analyzed in a
different probability space.

Given a causal probability space CPSi j = ⟨Si j,Ai j, pi j⟩, a case of PFB is
specified by transitions ai � 1ai and b j � 1b j , where 1ai = {ai,+,ai,−}
and 1b j = {b j,+,b j,−}. As for the associated random variables, there is a
certain subtlety in our notation, since we need to indicate the probability
space on which they are defined so as to distinguish Xi as defined on Si j and
Xi as defined of Si j′ . So we use extended subscripts, writing Xi,i j, to indicate
that the random variable in question is defined on the causal probability
space CPSi j. With this little notational complication, we assume that every
associated random variable has the same range Γ = {+,−}, and we define
it in accordance with Def. 7.7: For any T ∈ Si j,

Xi,i j(T ) = m iff ai � ai,m ∈ T and X j,i j(T ) = m′ iff b j � b j,m′ ∈ T. (8.6)

By the quantum mechanical probabilities for joint outcomes in the Bell-
Aspect experiment, the random variables Xi,i j and X j,i j are dependent.Thus,
ai � 1ai and b j � 1b j , together with the associated random variables Xi,i j

and X j,i j, exhibit PFB.

8.4.4.4 Derivation of the Bell-CH inequality

We now turn to the crucial question: is there a BST92 structure W ′
BA with a

probabilistic hidden variable for all four cases of PFB present in the surface
structureWBA?Wewill run a standard derivation of the Bell-CH inequality2⁶
within the BST framework, intended to show that the answer is in the
negative. To recall the logic of the argument, it attempts to show that if
the mentioned structure exists, then the Bell-CH inequality has to hold.
However, quantum mechanical predictions, supported by overwhelming

2⁶ See Clauser and Horne (1974); Myrvold et al. (2019).
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experimental evidence, show that the inequality is violated. Hence the
sought-after structure with a hidden variable for the four cases of PFB does
not exist. As our main task is the analysis of the premises of the derivation
from the perspective offered by BST, we present the derivationwithoutmuch
ado, to focus later on the justification of its premises.

As to the premises, apart from the conditions of Adequate Propensity
Assignment and Outcome Independence that are part and parcel of the
definition of a structure with a probabilistic hidden variable for PFB, we
assume a constraint known as Parameter Independence, which we define
as follows:

Definition 8.24 (Parameter Independence). Let CPSn
i j, CPSn

i j′ , and CPSn
i′ j

be causal probability spaces corresponding to spaces CPSi j, CPSi j′ , and
CPSi′ j, respectively, and Xn

i, i j, Xn
i′, i′ j, and let Xn

j′, i j′ be random variables cor-
responding to random variables defined by Eq. (8.6). Then we say that Xn

i, i j
and Xn

i, i j′ satisfy Parameter Independence iff for every m: pn
i j(X

n
i, i j = m) =

pn
i j′(X

n
i, i j′ = m). Analogously, Xn

j, i j and Xn
j, i′ j satisfy Parameter Independence

iff for every m: pn
i j(X

n
j, i j = m) = pn

i′ j(X
n
j, i′ j = m).

We now assume that there is a BST92 structure W ′
BA with a probabilistic

hidden variable for all four cases of PFB present in the surface structure
WBA and satisfying Parameter Independence. In more detail, W ′

BA is an N-
multiplied probabilistic BST92 structure that corresponds to the probabilistic
BST92 surface structureWBA. Our derivation starts from the arithmetical fact
that for any real numbers u,u′,v, and v′ from the unit interval [0,1],

−1 6 uv+uv′+u′v′−u′v−u− v′ 6 0. (8.7)

As values of probabilities fall into the unit interval, we next make these
substitutions:

u = pn
13(X

n
1,13 =+) u′ = pn

23(X
n
2,23 =+) (8.8)

v = pn
13(X

n
3,13 =+) v′ = pn

14(X
n
4,14 =+). (8.9)

Then, using Outcome Independence and Parameter Independence a few
times, we arrive at the following:

uv = pn
13((X

n
1,13 =+)∧ (Xn

3,13 =+)) (8.10)
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uv′ = pn
13(X

n
1,13 =+)pn

14(X
n
4,14 =+) = pn

14(X
n
1,14 =+)pn

14(X
n
4,14 =+) =

pn
14((X

n
1,14 =+)∧ (Xn

4,14 =+))

(8.11)

u′v′ = pn
23(X

n
2,23 =+)pn

14(X
n
4,14 =+) = pn

24(X
n
2,24 =+)pn

24(X
n
4,24 =+) =

pn
24((X

n
2,24 =+)∧ (Xn

4,24 =+))

(8.12)

u′v = pn
23((X

n
2,23 =+)∧ (Xn

3,23 =+)). (8.13)

Finally, after making the substitutions (8.8)–(8.9) and then processing the
transformations (8.10)–(8.13) in inequality (8.7), we multiply the resulting
formula side-ways by µ ′(⟨e∗,0⟩� Hn), and then sum over n ∈ {1, . . . ,N}.
Since µ ′ is a propensity function, ∑N

n=1 µ ′(⟨e∗,0⟩� Hn) = 1. By the condi-
tion ofAdequate PropensityAssignment (Def. 8.20), we have these identities:

∑
n6N

µ ′(⟨e∗,0⟩� Hn) · pn
i j((X

n
i,i j =+)∧ (Xn

j,i j =+))

= pi j((Xi,i j =+)∧ (X j,i j =+)). (8.14)

Putting these observations together, we arrive at the Bell-CH inequality:

−1 6 p13((X1,13 =+)∧ (X3,13 =+))+ p14((X1,14 =+)∧ (X4,14 =+))+

p24((X2,24 =+)∧ (X4,24 =+))− p23((X2,23 =+)∧ (X3,23 =+))−
p13(X1,13 =+)− p14(X4,14 =+)6 0.

(8.15)

A reader familiar with Bell’s theorems might ask where we used the
assumption that the values of a hidden variable and the measurement
settings are independent (i.e., the so-called No Conspiracy assumption).
This assumption is at work in Eq. (8.14), which says that there is a settings-
independent probability distribution on outcomes of ⟨e∗,0⟩. (Note that
settings-dependence of µ ′ would block the derivation.) No Conspiracy, in
one formulation, says that “[t]he probability distribution µ ′ of [a hidden
variable] should not be allowed to depend on (ai,b j); this is the mathemat-
ical meaning of the assumption . . . that the control parameters ai, b j are
“randomly and freely chosen by the experimenters” ” (Goldstein et al.,
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2011).2⁷ The assumptions of No Conspiracy and Adequate Propensity
Assignment point to problem involving a causal discrepancy in the analysis,
which we are about to uncover. We proceed with the premises of the
derivation, asking the question of what the world must be like in order
to justify the premises and the subsequent steps in the above derivation.

8.4.4.5 Analysis of the derivation

As a way toward a BST92 analysis of the derivation, recall first that, by the
definition of surface probabilistic structures, e∗ is below every ai and b j.
Consider then the causal situation, first in the surface structure WBA, and
focus onCC(e∗� ai,m∪b j,m′). Given the location of e∗, this setmust contain
ai � ai,m and b j � b j,m′ . But does CC(e∗ � ai,m ∪ b j,m′) contain other
transitions as well? Clearly, e∗ is not, and cannot be, above a; otherwise,
since a is a choice point for measurement outcomes, e∗ would prohibit the
occurrence of some outcome of a. For an analogous reason, e∗ cannot be
above b. It follows that e∗ is SLR or below each a and b. Hence a � ai and
b � b j must belong to CC(e∗ � ai,m ∪b j,m′), i.e.,

CC(e∗ � ai,m ∪b j,m′) = {ai � ai,m,b j � b j,m′ ,a � ai,b � b j}. (8.16)

We turn next to the transition ⟨e∗,0⟩ � (ai,m ∪ b j,m′)n in W ′
BA, where

(ai,m∪b j,m′)n is the n-th counterpart inW ′
BA of the event ai,m∪b j,m′ . Its set of

causae causantes almost mirrors the above set of transitions, the difference
being the inclusion of ⟨e∗,0⟩ � Hn, where Hn is the n-th elementary
outcome of ⟨e∗,0⟩. To write down the set:

CC(⟨e∗,0⟩� (ai,m ∪b j,m)
n) =

{⟨e∗,0⟩� Hn, (ai � ai,m)
n, (b j � b j,m′)n, (a � ai)

n, (b � b j)
n}.
(8.17)

Clearly, this is different from the set

CC∗ = {⟨e∗,0⟩� Hn, (ai � ai,m)
n, (b j � b j,m′)n}. (8.18)

2⁷ We adapted the symbolism in this quote to match the present text.
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The difference lies precisely in the C-based (agent-induced) transitions
(a � ai)

n and (b � b j)
n, which are members of the first set but not of the

second one.
Now, returning to the condition that the N-multiplied structure must

reflect the propensities of the surface structure, the underlying idea is
that a (non-disjunctive) event Ô in the surface structure is “replaced” by
a disjunctive event Ŏ = {Ôn | n 6 N} in the N-multiplied structure; the
propensity of µ(e∗ � Ô) (in the surface structure) is identified with the
propensity µ ′(⟨e∗,0⟩� Ŏ) (in the N-multiplied structure), the latter being
equal to ∑n6N µ ′(⟨e∗,0⟩� Ôn), by the properties of propensity functions.
In accordancewith the central tenet of our theory of propensities, these latter
propensities should fully supervene on the propensities of appropriate sets of
causae causantes. So, we should have: (∗) µ(e∗ � Ô) = ∑n µ ′(CC(⟨e∗,0⟩�
Ô)n).

In the context of the Bell-Aspect experiment, the formula (∗) above
requires one to calculate µ ′(⟨e∗,0⟩ � (ai,m ∪ b j,m)

n) by using the larger
set given by Eq. (8.17), whereas in our derivation of the Bell-CH inequality
we used the smaller set specified by Eq. (8.18). That is, in the structure
with a probabilistic hidden variable for the PFB in Bell-Aspect set-up, the
contribution of the agent-based transitions, a � ai and b � bn

j , is ignored.
The discrepancy between the two sets of causae causantes shows a gap in
our derivation: the condition of Adequate Propensity Assignment does not
apply correctly in the context of the Bell-Aspect set-up, as it distorts the
causal situation in question. Can one salvage the derivation despite this
discrepancy? Although we only reluctantly assign propensities to agent-
based transitions, we have to assign propensity to the large set of Eq. (8.17),
which includes agent-based transitions, in order to understand what this
discrepancy involves.

Let us thus assign a propensity µ ′ to the mentioned set. By Postulate 7.2,
µ ′ is then defined for all sets obtained by varying i, j,m,m′, and n in the
mentioned formula. Let us focus on the last step of our derivation, “multiply
by µ ′ and sum”, and on Eq. (8.14). To justify this step , µ ′ needs to factor in
a three-fold way:

pn
i j((X

n
i,i j = m)∧ (Xn

j,i j = m′)) =

µ ′(⟨e∗,0⟩� Hn, (ai � ai,m)
n, (b j � b j,m′)n, (a � ai)

n, (b � b j)
n) =

µ ′(⟨e∗,0⟩� Hn) ·µ ′((ai � ai,m)
n, (b j � b j,m′)n) ·µ ′((a � ai)

n, (b � b j)
n),

(8.19)
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and the following propensities should be constant:

µ ′((a � ai)
n, (b � b j)

n) = µ ′((a � ai′)
n, (b � b j′)

n) =

= K(n), with ∑
n6N

K(n) = 1. (8.20)

Significantly, note that the choice points inW ′
BA are divided intoC and E in

such a way that the counterparts of each a and b belong inC, whereas ⟨e∗,0⟩
and counterparts of each ai and of each b j are in E . The former serve as
initials of agents-based transitions, whereas the latter are initials of Nature-
given transitions. Given this division, C/E independence (see Def. 8.23)
implies the following factorization, for every allowable i, j,m,m′ and n:

µ ′(⟨e∗,0⟩� Hn, (ai � ai,m)
n, (b j � b j,m′)n, (a � ai)

n, (b � b j)
n) =

µ ′((a � ai)
n, (b � b j)

n) ·µ ′(⟨e∗,0⟩� Hn, (ai � ai,m)
n, (b j � b j,m′)n).

(8.21)

We next note that our finitistic version of the Markov Principle permits a
further factorization: The premises of the Markov Principle are satisfied as
e∗ is below each ai and each b j in WBA, these ordering relations carry over
to W ′

BA, and the relevant finitistic assumptions hold as well.

µ ′(⟨e∗,0⟩� Hn, (ai � ai,m)
n, (b j � b j,m′)n) =

µ ′(⟨e∗,0⟩� Hn) ·µ ′((ai � ai,m)
n, (b j � b j,m′)n).

(8.22)

Putting the two factorizations together, we see that C/E independence
together with the Markov Principle justifies the three-fold factorization of
Eq. (8.19), which in turn, taken together with the assumption stated in
Eq. (8.20), justifies the last step of the derivation of the Bell-CH inequality
(i.e., to multiply by µ ′ and to sum over). It is important to stress that we
needed C/E independence to derive this inequality. Finally, now observe
that the constancy of Eq. (8.20) implies Parameter Independence.2⁸

2⁸ Given the causal discrepancy described above, the “big space” approach looks more attractive,
since it assigns µ-propensity to sets like in Eq. (8.16), and consequently the condition of Adequate
Propensity Assignment has a proper causal underpinning. Nevertheless, the problemwith obtaining
the three-fold factorization (Eq. 8.19) needed for the derivation of the Bell-CH inequality persists.
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8.4.4.6 Consequences from our analysis

Let us reflect on the meaning of the above findings. The main message
concerns the causal situation of the Bell-Aspect set-up. The set-up includes
agent-based transitions, and this has consequences both for the sets of causae
causantes and for the propensities. Given these agent-based transitions, there
is a mismatch between propensities used in the analysis and the sets of
causae causantes operating in the set-up. The mismatch can nevertheless be
bridged by accepting some intuitive-looking postulates. In this context, the
idea of C/E independence comes to the fore, which, given that propensities
are assigned to agent-based transitions, receives the precise formulation of
Def. 8.23. Given the Markov Principle (in our innocuous finitistic formula-
tion), C/E independence justifies the use of settings-independent propen-
sities µ ′(⟨e∗,0⟩ � Hn) in the derivation of the Bell-CH inequality. This
settings-independent measure captures the condition of No Conspiracy.
There were two more assumptions, Outcome Independence assumed in the
notion of a structure with a hidden variable for PFB, and the constancy of
propensities of Eq. (8.20), which is tantamount to Parameter Independence.
Our postulates, which govern propensities and often have a causal moti-
vation, thus entail the standard premises of Bell’s theorem (i.e., Outcome
Independence, Parameter Independence, andNoConspiracy). To have a full
list of our postulates, we usedOutcome Independence, Eq. (8.20) (Parameter
Independence), C/E propensity independence, and the Markov Principle.
This set arguably gives us a better insight intowhat is implicated by the failure
of the Bell-CH inequality than the standard set of premises, as there are some
differences in status between our postulates. On the one hand, we have the
high-level claims ofC/E independence and the (finitistic)Markov Principle.
They have a high-level status as no experiment-based argument for them
looks feasible; on the other hand, it is hard, if not impossible, to conceive of
a world without them. The high-level status of these two postulates suggests
that they should be retained. In contrast, Eq. (8.20) looksmore like a testable
statement, as it concerns agents’ propensities to choose alternative settings
in the experiment. Agents can be trained to make unbiased choices, which
arguably informs about propensities of the relevant agent-based transitions:
they could be made numerically the same. We concede, however, that this
observation is not very persuasive, as words like ‘testing’ and ‘training’
have limited sense in the deep realm of hidden variables.2⁹ In any case,

2⁹ A popular argument for accepting Parameter Independence (see Jarrett, 1984; Shimony, 1984),
which relates to superluminal communication, can also be rehearsed in the BST framework. Its gist
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given the empirical overtones of Eq. (8.20), and assuming that our everyday
observations about agents carry over to their working in the realm of hidden
variables, our recommendation is to accept it aswell.Theoption that remains
is to reject Outcome Independence, which prima facie agrees with the
majority view. The novelty that BST brings is that a failure of Outcome
Independence now concerns propensities. In non-technical language, that
failure means that on a deep level, the Nature-given propensities fail to
factor. That is, the degree of possibility of a complex happening does not
supervene on the degrees of possibility of its components. In contrast, there
is independence of agent-based transitions and Nature-given transitions, as
expressed via C/E independence. This is the lesson about modalities that
Bell’s theorem brings, if it is analyzed from a BST perspective. We hope that
with this lesson we are somewhat closer to achieving the great task that J. S.
Bell (1997, p. 93) once posed.

I think you must find a picture in which perfect correlations are natural,
without implying determinism, because that leads you back to nonlocality.
And also . . . as far as our individual experiences goes, our independence
of the rest of the world is also natural. So the connections have to be very
subtle . . .

8.5 Exercises to Chapter 8

Exercise 8.1. Prove Fact 8.4 (i.e., show that the generic-extended structure
of a given BST92 surface structure is a non-empty, dense, strict partial).

Hint: Use Fact 8.3 and the definition of the ordering.

Exercise 8.2. ProveTheorem 8.1 (i.e., show that the generic-extended struc-
ture of a given BST92 surface structure is a BST92 structure).

Hint: Use Lemma 8.1 and the definition of the ordering.

Exercise 8.3. Prove Fact 8.11.

Hint: See Appendix B.8 for a proof based on the finiteness of S.

is that, if an observer knows how Eq. (8.20) fails, and knows “in which” hidden variable she is, she
can learn in a faster than light way what settings her partner was choosing.
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Exercise 8.4. Construct a BST92 surface structure ⟨W,<,e∗,E,C⟩, a non-
contextual instruction setλ ∈In, and a directed setA⊆W with the following
property: For every a ∈ A, there is ha ∈ Ha ⊆ Hist(W ) such that ha matches
λ , but there is no h∗ ∈ Hist(W ) such that A ⊆ h and h∗ matches λ .

Hint: Assume that A contains an infinite chain {ai}in∈N of binary choice
points such that the chain occurs provided each ai has outcome +. Let E =

{e}, with e a binary choice point that is SLR to the chain, and T = e � +.
The CFB results from the assumption that any initial finite segment of pluses
on the chain is consistent with T , but all the pluses on the chain are not
consistent with T . There might be more choice points needed to secure that
the construction is a BST structure.

Exercise 8.5. Show that the non-contextual instruction set λ of Eq. (8.2) on
p. 259 is in fact maximal.

Exercise 8.6. Prove Theorem 8.5 (i.e., prove that the N-multiplied structure
corresponding to a probabilistic BST92 surface structure W with a desig-
nated event e∗, as defined by Def. 8.18, is a BST92 structure as well).

Hint: Use Def. 8.18 of the ordering <′ and the form of histories in W ′

established via Lemma 8.4.

Exercise 8.7. Prove Lemma 8.5 (i.e., prove that a BST92 structure corre-
sponding to a probabilistic BST92 surface structure is a probabilistic BST92
structure in the sense of Def. 7.3).

Hint: Note that any set Y ⊆ TR(W ′) on which µ ′ is defined either corre-
sponds to a subset of TR(W ) or has the form {⟨e∗,0⟩�Hm}∪T n, where T n

corresponds to some T ⊆ TR(W ). Assume that µ satisfies Postulates 7.1, 7.2,
7.3, and 7.4. Then use the conditions of an adequate propensity assignment
ofDef. 8.20 togetherwithDef. 8.18 of the ordering<′ to show that µ ′ satisfies
these Postulates as well.
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