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Branching in Relativistic Space-Times

We advertised Branching Space-Times theory as a theory of local indeter-
minism, playing out in our spatio-temporal world, where the space-time is
to be at least rudimentarily relativistic. The theory thus promises to describe
how to combine local indeterminism and relativistic space-times. In this
chapter we will make good on this promise, as we will introduce here
particular BST structures in which histories are similar to the space-times
of relativistic physics. We can approach these tasks differently, with various
degrees of modesty, and our first construction, the so-called Minkowskian
Branching Structures (MBSs), is intended to be a modest one: we focus on
how alternative histories, all happening on Minkowski space-time, can be
seen as developing from some shared past. Of course, a history, realistically
speaking, cannot be a bare Minkowski space-time, as it should involve some
properties that are not spatio-temporal (e.g., matter fields). To have more
full blooded objects, we first make a simplifying assumption regarding how
physical properties are associated to space-time points, and then leave the
matter to physics in order to check whether some of its theories support this
construction. The simplifying assumption is that whatever content a history
has, it comes from the ascription of some quantities (values, or strengths of
a field) to points in the space-time. This is of course pointilisme pure and
simple, and the resulting concept of history is a case of a Humean mosaic.
The next idea is that whilst a physics theory is pointilistic as suggested earlier,
perhaps it acknowledges alternative property ascriptions. How can that be
the case? A natural response is what is known as the ill-posedness of the
initial value problem, which means that the theory’s equations of evolution
allow that for some initial values, there are multiple global solutions to
these equations, with the solutions representing evolutions occurring in
Minkowski space-time. Whether there are such theories of physics, and
whether their solutions satisfy some further constraints necessary for the
construction to go through, we leave it for physics to judge. And if the
judgement is in the negative, that would mean that, as far as physics goes,
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there is no local indeterminism of the sort described by BST, and occurring
in Minkowski space-time. In the second part (Section 9.3) we turn toward
linking BST to general relativity, which is both an ideologically different and
more demanding project.

9.1 Minkowskian Branching Structures

We now turn to constructing a special class of BST structures, called Min-
kowskian Branching Structures (MBSs), in which each history is isomorphic
to Minkowski space-time. Our aim here is to show that our MBSs satisfy
the axioms of BSTNF structures (Def. 3.15). An alternative construction, in
which anMBS comes out as a BST92 structure, was investigated in our earlier
work.1 In this book, we focus on MBSs that are BSTNF structures because we
want the structures to admit locally Euclidean topologies; this provides a
better integration with General Relativity (GR). Section 9.3 investigates the
relations between BST and GR.

9.1.1 Basic notions

Our construction proceeds in terms of the assignments of physical properties
(which we think of as values of physical fields) to space-time points. As we
will see, MBSs seamlessly permit the introduction of space-time locations
in the sense of Def. 2.9. For the construction to succeed, however, some
additional physical conditions must be satisfied. As before, by Minkowski
space-time we will understand the set Rn with the Minkowskian ordering,
<M , defined in the usual way (see Eq. (2.1)) as:2

x <M y iff − (x0 − y0)2 +
n−1

∑
i=1

(xi − yi)2 6 0 and x0 < y0. (9.1)

Usually we assume that n = 4. The ordering< (or6) on the right-hand side
refers to the natural strict (or non-strict) ordering of the reals. As usual, we

1 See the papers by Müller (2002), Wroński and Placek (2009), and Placek and Belnap (2012).
2 For the record, in physics it is common to take Minkowski space-time to be a set of points

together with ametric, which allows one to derive the causal ordering.The structures we are working
with thus contain less information, but are also simpler to handle, than those of the physicists.
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define: x 6M y iff (x <M y or x = y), and furthermore, xSLR M y iff neither
x 6M y nor y 6M x.

Some physical theories ascribe physical properties, typically the strengths
of physical fields, to points of a space-time, or can be viewed as involving
such an ascription. If the underlying space-time is a Minkowski space-time,
the properties are ascribed to points ofMinkowski space-time (i.e., elements
of R4). A necessary condition for a theory to exhibit indeterminism is that
it allows for many “scenarios” ascribing alternative possible properties to
points of Minkowski space-time. In other words, one point of R4 may have
alternative properties assigned, depending on the scenario.

Ultimately, we will define an MBS as a triple M= ⟨Σ,F,P⟩ (see Def. 9.5).
We will begin by partly characterizing Σ, F , and P. To help capture the
informal concept of possible “scenarios” abstractly, we assume a non-empty
set Σ of labels, understood as labels for “scenarios.” We let σ ,η ,γ range over
Σ. We want to think of a scenario as Minkowski space-time filled with some
“content,” where the content of a scenario should be representable by an
attribution of properties to each Minkowski space-time point. That is, the
content of a single scenario, σ , may be represented by a function in the set
R4 → P(P), where P is a nonempty set of properties attributable to points
of R4. Our purposes do not require putting any structure on P. A system of
such contents can then be represented by a global attribution of properties
F : Σ×R4 →P(P). We will call such an F a “property attribution on Σ and
P,” noting that it is in effect a modal notion because it refers to alternative
possible properties for the same space-time point. Writing ⟨σx⟩ for a pair
from Σ×R4, we may read “F(⟨σx⟩)” as “the set of properties instantiated at
space-time point x in scenario σ”. We informally think of the set in question
as only containing compatible properties. The function F evidently dictates
for each space-time point, x, whether two scenarios, σ ,η , are qualitatively
the same there (F(⟨σx⟩) = F(⟨ηx⟩)) or not (F(⟨σx⟩) ̸= F(⟨ηx⟩)).—To
avoid clutter, from now on we simply write “F(σx)”.

Clearly, many property attributions yield a pattern of scenarios without
any similarity to what one might call indeterminism. Indeed, there is a
consensus that indeterminism involves many scenarios that agree over some
region (typically, an initial region) and then disagree over some (typically,
later) region. In what follows, we will single out those special property
attributions that we will call proper property attributions. We will find that
proper property attributions lead to a pattern of indeterminism that is
describable byBranching Space-Times.Thismeans thatwewill derive froma
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tripleM= ⟨Σ,F,P⟩ a BST-like pair ⟨B,<R⟩, and BST-like notions of history
and choice set, and ultimately show that the BSTNF axioms are satisfied in
the defined model.

We turn to the task of defining a proper property attribution, F . A part
of this task is to single out a set of particular points of R4, to be interpreted,
loosely speaking, as locations of chanciness, as where the scenarios diverge.
We will call such points “splitting points”. We first assume that any two
scenarios differ somewhere, i.e.,

∀σ ,η ∈ Σ (σ ̸= η →∃x ∈ R4 F(σx) ̸= F(ηx)), (SDiff)

where F is a property attribution on Σ and P.
Condition (SDiff) assures us that any two scenarios are qualitatively

different. We further require that the pattern of differences for two scenarios
be rather special: We postulate that for every two scenarios there is (at least)
one point s ∈ R4 such that the scenarios disagree at s, but agree everywhere
in the past of s. A point satisfying these two conditions will be defined as a
splitting point for the two scenarios.

Definition 9.1 (Splitting points). GivenM= ⟨Σ,F,P⟩, where F is a property
attribution on Σ and P and σ ,η ∈ Σ and s ∈R4, s is a splitting point between
scenarios σ ,η iff s satisfies the condition

F(σs) ̸= F(ηs)∧∀y ∈ R4 [y <M s → F(σy) = F(ηy)]. (PastsAgree)

Sση ⊆ R4 is defined as the set of all splitting points between scenarios
σ ,η ∈ Σ.

Splitting points for two scenarios allow us to define a region of R4

that we will soon prove to be the region in which the two scenarios are
qualitatively the same (see Fact 9.1(4)). But note that the two scenarios
are qualitatively different somewhere else as well.We allow for split scenarios
to largely reconverge qualitatively. Regions of overlap were first introduced
by Müller (2002).

Definition 9.2 (Region of overlap). Given M = ⟨Σ,F,P⟩, for σ ,η ∈ Σ,
Rση := {x ∈ R4 | ¬∃s (s 6M x∧ s ∈ Sση)}.

Splitting is a qualitative notion that is derived from the differences of
properties in scenarios, in contrast to the cause-like notion of choice sets
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of BSTNF. Note also that no s ∈ Sσγ can belong to Rσγ . For a pattern of
qualitative differences between scenarios to deliver a BSTNF structure, it
must be somewhat restricted. The restrictions are incorporated in what we
call “proper property attribution”. Yet, before we state it we need to define
the auxiliary notion of the set Ση(x) of those labels for a given x ∈ R4 that
specify one and the same event in an MBS.

Definition 9.3. Given M = ⟨Σ,F,P⟩, where F is a property attribution on
Σ and P and η ∈ Σ:

Ση(x) =df {σ ∈ Σ | x ∈ Rση}.

Note that Ση(x) is not empty for any x, since x ∈ Rηη . This notion is needed
in clause (2) of the definition below.

Definition 9.4 (Proper property attribution). Given M = ⟨Σ,F,P⟩, F is a
proper property attribution on a set of scenarios Σ and a set of properties P
iff F : Σ×R4 → P(P), and F satisfies the condition SDiff that every two
scenarios differ, and for all σ ,η ∈ Σ,

1. ∀x ∈ R4 [F(σx) ̸= F(ηx)→∃s ∈ Sση [s 6M x]];
2. for every chain l in ⟨R4,<M⟩, if for each x ∈ l there is a unique

γx ∈ Σ such that for any finite Z ⊆ l we have
∩

x∈Z Σγx(x) ̸= /0, then∩
x∈l Σγx(x) ̸= /0;

3. for every lower bounded chain l in ⟨R4,<M⟩,

(∀x∈ l ∃s ∈ Sση [s 6M x])→ (∃s0 ∈ Sση [s0 6M inf l]).

Thefirst clause links points of qualitative difference to splitting points: either
a point of qualitative difference is a splitting point, or there is a splitting
point below it. The second clause is to curb the wealth of splittings, and its
significance comes out only later (in Fact 9.4), when we consider the form
of histories in a BSTNF structure that implements an MBS.3 The clause is
automatically satisfied by any finite chain l. The last clause is to guarantee
the satisfaction of the Prior Choice Principle, PCPNF.

We can show that for any σ ,η ∈ Σ, the set Sση of splitting points induced
by a proper property attribution on Σ and P, as well as the corresponding
region of overlap Rση , have the following natural properties:

3 The clause is modeled after the Chain Condition 7 of Wroński and Placek (2009).
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Fact 9.1. Assume that Σ and P are non-empty and that F is a proper property
attribution on Σ and P. Then for any σ ,η ,γ ∈ Σ and for any x ∈ R4:

1. σ = η iff Sση = /0;
2. Sση = Sησ ;
3. ∀s,s′ ∈ Sση (s ̸= s′ → sSLR M s′);
4. x ∈ Rση → F(σx) = F(ηx), and
5. Rση ∩Rηγ ⊆ Rσγ .

Proof. (1) Immediate from Definition 9.4.
(2) Immediate from Definition 9.1.
(3) By (PastsAgree), neither s <M s′ nor s′ <M s. So if s ̸= s′, then

sSLR M s′;

(4) This is essentially the contrapositive of Definition 9.4 clause (1).
(5) For reductio, assume x ∈ Rση ∩Rηγ but x ̸∈ Rσγ .The latter implies that

there is an s ∈ Sσγ such that s 6M x so (†) F(σs) ̸= F(γs). Since regions of
overlap are evidently closed downward, we get s ∈ Rση ∩Rηγ . By item (4) of
this Fact, F(σs) = F(ηs) and F(ηs) = F(γs), and hence F(σs) = F(γs).
Contradiction with (†).

Observe that in the proof above we used clause (1), but neither clause (2) nor
clause (3) of Def. 9.4.

9.1.2 Defining MBSs

After this preliminary work, we turn now toward defining MBSs and show-
ing that they generate structures satisfying the postulates of BSTNF. We thus
first officially define Minkowskian Branching Structures, then prove desired
facts about the form of B-histories, and finally show that the postulates of
BSTNF are satisfied.

Definition 9.5 (MBS). A triple M = ⟨Σ,F,P⟩ is a Minkowskian Branching
Structure (anMBS) iff Σ is a non-empty set of scenarios, P is a nonempty set
of properties, and F is a proper property attribution on Σ and P.

In order to link MBSs to BST, our first task is to find a correlate for the
BST notion of Our World (i.e., a base set), and for the BST ordering. Given
M= ⟨Σ,F,P⟩, we take the elements of the base set to be equivalence classes
of a certain relation ≡R on Σ×R4, where the “R” in the subscript indicates
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that the relation crucially depends on an assumed region of overlap R—the
idea is to “identify” points in regions of overlap. The relation ≡R is defined
as below.

Definition 9.6 (MBS equivalence relation). Given an MBS M = ⟨Σ,F,P⟩,
the relation ≡R on Σ×R4 is defined as:

⟨σ ,x⟩ ≡R ⟨η ,y⟩ iff x = y and x ∈ Rση . (9.2)

It is easy to check that≡R is an equivalence relation on Σ×R4: Fact 9.1(1)
implies Rσσ = R4 from which reflexivity follows, symmetry follows by
Fact 9.1(2), and transitivity follows by Fact 9.1(5).With this relation to hand,
we introduce our candidate for a BSTNF structure via the equivalence classes
under ≡R:

Definition 9.7 (MBS base set and MBS ordering). Let M = ⟨Σ,F,P⟩ be an
MBS. We define the MBS base set forM, B, to be

B=df {[σx] |σ ∈Σ,x∈R4}, where [σx] =df {⟨η ,x⟩ | ⟨σ ,x⟩≡R ⟨η ,x⟩}.

The MBS ordering <R on B is defined by

[σx]<R [ηy] ⇔df x <M y∧⟨σ ,x⟩ ≡R ⟨η ,x⟩.

The pair ⟨B,<R⟩ will be called the structure generated by the MBS M. As
usual, we will write 6R for the weak counterpart of <R.

It is again easy to check that<R is a strict partial ordering on B. It is antire-
flexive because <M is antireflexive. Transitivity follows from Fact 9.1(5);
see Exercise 9.1. Similarly, it is straightforward to prove density of <R

(see Exercise 9.2). Note that if x is not in the region Rση of overlap of σ
and η , then [σx] ̸<R [ηy] (for all y), but if x is in Rση , for [σx] <R [ηy] we
only need to check the Minkowski ordering, x <M y.

Given M = ⟨Σ,F,P⟩, a natural definition for the course of events cor-
responding to scenario σ is the set {[σx] | x ∈ R4} of equivalence classes.
Knowing the set, that is, knowing each equivalence class from it, gives us
all there is to be known about this course of events, that is, a property
assignment for σ and every x ∈ R4. This motivates defining {[σx] | x ∈ R4}
as a “B-history.”
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Definition 9.8 (B-histories). GivenM= ⟨Σ,F,P⟩, the B-history correspond-
ing to σ ∈ Σ is defined to be hσ =df {[σx] | x ∈ R4}. B-Hist is the set of all
B-histories.

Given M= ⟨Σ,F,P⟩, our plan is to show that the pair ⟨B,<R⟩ is a BSTNF
structure. The next three facts about MBSs concern the form of histories:

Fact 9.2. Suppose that ⟨B,<R⟩ is a structure determined by MBS M =

⟨Σ,F,P⟩. Then every B-history is a maximal directed subset of B.

Proof. Consider a B-history hσ . Since for any x1,x2 ∈ R4 there is x3 ∈ R4

such that x1 6M x3 and x2 6M x3, hσ is directed. To argue that it is maximal
directed, suppose for reductio that there is a directed set g⊆B such that hσ (
g.There is thus some [ηx]∈ g\hσ . Hence (†) [ηx] ̸= [σx]. Since [σx]∈ hσ (
g and g is directed, there is [αy]∈ g such that [σx]6R [αy] and [ηx]6R [αy].
It follows that [σx] = [αx] = [ηx], which contradicts (†).

Fact 9.3. Let ⟨B,<R⟩ be the structure determined by the MBSM= ⟨Σ,F,P⟩.
Then

(1) if [σ1x1], [σ2x2] ∈ B and [σ1x1]6R [σ2x2], then Σσ2(x2)⊆ Σσ1(x1);
(2) for every directed set h ⊆ B and every finite subset X ⊆ h,

∩
x{Σγ(x) |

[γx] ∈ X} ̸= /0.

Proof. (1) Let [σ1x1] 6R [σ2x2], and η ∈ Σσ2(x2), so [σ2x2] = [ηx2]. Then
[σ1x1] = [ηx1]. Hence η ∈ Σσ1(x1). Thus, Σσ2(x2)⊆ Σσ1(x1).

(2) By directedness of h and finiteness of X , there is an upper bound of
X in h, say [σy]. Thus, every element [ηx] ∈ X can be written as [σx], so
σ ∈ Ση(x) for every [ηx] ∈ X .

Fact 9.4. Suppose thatM= ⟨Σ,F,P⟩ is an MBS.

1. Every maximal directed subset of B is a B-history;
2. To every B-history there corresponds a unique σ ∈ Σ, i.e., for every pair

hσ ,hη of B-histories, hσ =hη iff σ = η ;

Proof. (1) Let h be a maximal directed subset of B. We first show that
h = {[σx] | x ∈Y}, for some σ ∈ Σ and Y ⊆R4. For reductio, let us suppose
that this is not true, i.e., for any σ ∈ Σ there is some [ηx] ∈ h such that
[ηx] ̸= [σx]. We will construct a chain in ⟨R4,<M⟩ that contradicts clause 2
of Def. 9.4.
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We pick some [ηy]∈ h, well-order Ση(y) in someway, and define function
Θ : Ση(y) 7→ P(R4) such that Θ(σ) = {x ∈ R4 | [σx] ̸∈ h]}. Θ(σ) thus
comprises all “bad for σ” points from R4; that is, those points that, taken
with σ , produce no elements of h. By the reductio assumption, the value of Θ
is never the empty set. To pick a representative from Θ(σ), we use a selection
function T : P(R4) 7→ R4 such that T (Θ(σ)) ∈ Θ(σ) for any σ ∈ Ση(y).
We label the values of the composition T ◦Θ so that we have T ◦Θ(σl) = xl

(note that l is a label, resulting from Ση(y) being well-ordered). Accordingly,
the ordering of Ση(y) is carried over to the image X =df (T ◦ Θ)[Ση(y)].
For each xl , we pick σxl ∈ Σy(η) such that [σxl xl ] ∈ h. Observe that by this
construction, (†) for any σl ∈ Ση(y): σl ̸∈ Σσxl

(xl).Thus,
∩

xl∈X Σσxl
(xl) = /0.

We now use the set X ⊆ R4 to produce a chain in ⟨R4,<M⟩ above y.
For simplicity’s sake, in this construction we work directly in terms of
coordinates of events like y ∈ R4. This amounts to choosing an arbitrary
reference frame. The elements of this chain have different values of the first
coordinate, whereas the remaining three coordinates are fixed. To construct
the chain, we use a function up : R4 ×R4 7→ R4 that for any pair of points
z1,z2 in R4 yields the minimal element of the set of their upper bounds that
lie on a vertical line passing through z1. Our chain is defined by z0 = y, z1 =

up(z0,x1), . . ., zn+1 = up(zn,xn+1). (For the details of the chain construction,
in particular, for a limit step, see Exercise 9.3.) The result is a time-like chain
E ⊆ R4 starting with y. Its cardinality is determined by the cardinality of
Ση(y) and the location of points of X .

In the next step, we observe that each y,x1,x2, . . . , if associated with a
proper label, is an element of h. Since h is directed, each z0,z1,z2, . . . , if
associated with a proper label, is an element of h. For each zl , we thus pick
a label σzl such that [σzl zl ] ∈ h. Since h is directed, by Fact 9.3(2), for any
finite subset Z ⊆ E , we have

∩
zl∈Z Σσzl

(zl) ̸= /0. Accordingly, the premise of
clause (2) of Def. 9.4 is satisfied, so by this clause

∩
zl∈E Σσzl

(zl) ̸= /0. Since
[σxl xl ]6R [σxl zl ], for every xl ∈ X , zl ∈ E , by Fact 9.3(1) Σσzl

(zl)⊆ Σσxl
(xl),

and hence
∩

xl∈X Σσxl
(xl) ̸= /0. We thus have arrived at a contradiction

with (†).
We thus showed that h = {[σx] | x ∈ Y} for some σ ∈ Σ and Y ⊆ R4. By

Fact 9.2, if Y ( R4, then h is not maximal directed. Hence Y = R4.

(2) Clearly, if σ = η , then {[σx] | x ∈R4}= {[ηx] | x ∈R4}, so hσ = hη . In
the other direction, if σ ̸= η , then by Fact 9.1(1) Sση ̸= /0, so there are x ∈R4

and s ∈ Sση such that s <M x. Hence [σx] ̸= [ηx]. Hence hσ ̸= hη .
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There is thus a perfectmatch between scenarios σ ∈ Σ, B-histories hσ , and
maximal directed subsets of B. Aswe now knowwhat the histories in ⟨B,<R⟩
look like, we next address the form of choice sets. Recall that a choice set is a
particular subset of the base set B, whereas a splitting point s ∈ Sση for two
scenarios σ and η is just a point s ∈ R4. We will prove that the two notions
correspond nicely. But since we need history-relative suprema in this proof,
we first prove a fact concerning suprema and infima of bounded chains in
⟨B,<R⟩, showing that the structure satisfies the two respective postulates of
BSTNF.

Fact 9.5. Let ⟨B,<R⟩ be a structure determined by the MBS ⟨Σ,F,P⟩. Then
(1) ⟨B,<R⟩ contains infima for all lower bounded chains,
(2) ⟨B,<R⟩ contains history-relative suprema for all upper bounded chains.

Proof. Since every chain extends to a history, by the form of histories, every
chain l in ⟨B,<R⟩ can be written as l = {[σx] | x ∈ lx} for some σ ∈ Σ and
chain lx in ⟨R4,<M⟩. Observe that if a chain l ⊆ B is lower (upper) bounded,
then the corresponding chain lx is lower (upper) bounded. By the properties
of <M , lx has then an infimum ix (supremum sx). Thus, for any history hγ
such that l ⊆ hγ , [γix] is a history-relative (with respect to hγ ) infimum of l,
and [γsx] is a history-relative (with respect to hγ ) supremum of l. The second
conjunct already proves part (2) of the fact. As for part (1), since histories
are downward closed and [σ ix] 6R l, [σ ix] belongs to every B-history that
contains l. Accordingly, [σ ix] is an infimum, andnotmerely a history-relative
infimum, of l.

Having introduced history-relative suprema to MBSs, we are ready to
return to the formof choice sets; wewill prove the following correspondence:

Fact 9.6. Let σ ,η ∈ Σ and hσ ,hη be B-histories in structure ⟨B,<R⟩ that is
determined by MBS ⟨Σ,F,P⟩. Then
s ∈ Sση iff [σs], [ηs] belong to a choice set ¨[σs] at which hσ and hη branch.

Proof. ⇒ByDefs. 9.1 and 9.6, [σs] ̸= [ηs]. As there are nominimal elements
in R4, [σs] and [ηs] are not minimal elements in B-histories, so the top
clause of Def. 3.11 does not apply—we need to only check the bottom
clause. Consider thus an arbitrary chain l ∈ C[σs]. It means that l ⊆ hσ ,
suphσ l = [σs], and [σs] ̸∈ l. It follows that lx = {x ∈ R4 | [σx] ∈ l} has
a supremum s in ⟨R4,<M⟩. Further, since every element of lx is below s
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(with respect to <M), it cannot be above some s′ ∈ Sση , since then s′ <M s,
which contradicts Fact 9.1 (3). Accordingly, lx ⊆ Rση , so l ⊆ hη . Thus,
l has a supremum in hη , suphη l = [ηs]. Since l is arbitrary, [σs], [ηs] ∈∩

l∈C[σs]
S (l), and hence ¨[σs] is a choice set, with [σs], [ηs] ∈ ¨[σs]. Further,

by Def. 9.8 of B-histories, hσ ∩ ¨[σs] = {[σs]} and hη ∩ ¨[σs] = {[ηs]}, and
[σs] ̸= [ηs]. It thus follows by Def. 3.13 that hσ and hη branch at ¨[σs].
⇐ Let [σs], [ηs], ¨[σs], hσ , and hη be as the RHS of the Fact says. ByDef. 3.13,
[σs] ̸= [ηs], so there is s′ ∈ Sση such that s′ 6M s. Let us next suppose that
s′ <M s. Clearly, [σs′] ̸= [ηs′], and for any x ∈ R4, if [σs′] 6R [σx], then
[σx] ̸∈ hη . Pick then any chain l ∈ C[σs] that contains [σs′]. Since [σs′] <R

[σs], by density there is non-empty upper segment l′ of l such that l′∩hη =

/0. Thus, [ηs] is not a hη -relative supremum of l, which entails [ηs] ̸∈ ¨[σs],
contradicting the Fact’s premise. Thus, s = s′, with s′ ∈ Sση .

We next turn our attention to two more interesting postulates of BSTNF:
PCPNF and Weiner’s postulate. We show that each is satisfied in structure
⟨B,<R⟩ determined by an MBS.

Fact 9.7. The structure ⟨B,<R⟩ determined by an MBS satisfies PCPNF, as
defined by Def. 3.14.

Proof. Let hσ ,hη be B-histories in ⟨B,<R⟩, and let l = {[σx] | x ∈ lx} ⊆ hσ
be a lower bounded chain (so lx is a lower bounded chain in ⟨R4,<M⟩) such
that l∩hη = /0. Thus, for every z ∈ lx: [σz] ̸= [ηz], and hence for every z ∈ lx
there is s ∈ Sση such that s 6M z. By the infima postulate, l has an infimum
[σ ix], and hence lx has an infimum ix. Accordingly, lx satisfies the premise
of clause (3) of Def. 9.4, so by this very clause there is s0 ∈ Sση such that
s0 6M in f (lx). It follows that [σs0] 6R l and by Fact 9.6, [σs0] gives rise to
choice set ¨[σs0], at which hσ and hη branch, i.e., hσ ⊥ ¨[σs0]

hη .

Fact 9.8. The structure ⟨B,<R⟩ determined by an MBS satisfies Weiner’s
postulate 2.6.

Proof. To check Weiner’s postulate, let l1, l2 ⊆ hσ ∩ hη be upper bounded
chains in B-histories hσ and hη . Let s1,s2 be relative to hσ suprema of l1
and l2, respectively. If s1 = s2, then s1 = s2 = [σx] for some x ∈ R4, and
hence there are c1 = c2 = [ηx] ∈ hη that are hη–relative suprema of l1 and
l2, respectively. Analogously, if s1 <R s2, then, as s1 = [σx] and s2 = [σy] for
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some x,y ∈ R4, it follows that x <M y. Clearly, c1 = [ηx] and c2 = [ηy] are
hη–relative suprema of l1, l2, and c1 <R c2.

The last few facts testify that ⟨B <R⟩ determined by an MBS satisfies the
postulates of BSTNF. We are thus ready to state our main theorem about
MBSs:

Theorem9.1. The structure ⟨B,<R⟩ generated by anMBS (see Definition 9.7)
is a BSTNF structure.

Proof. Weneed to check if ⟨B,<R⟩ satisfies all the BSTNF postulates, as stated
in Def. 3.15. Given the definition of MBS, Σ is not empty, so B is not empty,
either. As we noted (Def 9.7), <R is a dense strict partial order. Fact 9.5
states that the infima postulate and the suprema postulate are satisfied.
Weiner’s postulate is satisfied by Fact 9.8. PCPNF holds by Fact 9.7 and it
implies Historical Connection; see Exercise 3.5. Thus, all the postulates of
BSTNF are satisfied by ⟨B,<R⟩.

Apart from being a BSTNF structure, an MBS has some additional wel-
come features. The fact below focuses on order-related similarities; that is,
the existence of relevant order-isomorphisms.

Fact 9.9. Let ⟨B,<R⟩ be a structure determined by MBS ⟨Σ,F,P⟩. Then:

1. EveryB-history in ⟨B,<R⟩ is order-isomorphic toMinkowski space-time;
2. ⟨B,<R⟩ permits the introduction of common space-time locations

⟨S,<S⟩ in the sense of Def. 2.9;
3. ⟨S,<S⟩ is order-isomorphic to Minkowski space-time.

Proof. (1) A required isomorphism is φ j : R4 7→ hσ such that φ(x) = [σx].
It is clear to see that for x,y ∈ R4, x 6M y iff [σx]6R [σy].

(2) By Def. 2.9, the set S of space-time locations should be a specific
partition of B. For our ⟨B,<R⟩ determined by MBS ⟨Σ,F,P⟩ we define: S =

{{[σx] | σ ∈ Σ} | x ∈R4}.The ordering<S on S is given by: for s,s′ ∈ S such
that s = {[σx] | σ ∈ Σ} and s′ = {[σy] | σ ∈ Σ}, s <S s′ iff x <M y. Its weak
companion6S is defined via s6S s′ iff x6M y. Clearly, the intersection of any
element s = {[σx] | σ ∈ Σ} ∈ S with any B-history hη contains exactly one
element, [ηx]. And6S respects the ordering6R, i.e., for s,s′ ∈ S and hσ ,hη ,
if s∩hσ = s′∩hσ , then s∩hη = s′∩hη , and analogously for<S and<R.(3)
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The required isomorphism is φ : S 7→ R4 with φ({[σx] | σ ∈ Σ}) =df x; by
definition of <S, φ is an order-isomorphism indeed.

The similarity between a B-history and Minkowski space-time is even
more intimate than an order-isomorphism. After all, as far as the structure
goes, a B-history can be viewed as simply Minkowski space-time with the
label σ ∈ Σ. The label σ is important, however, as it determines the physical
content of the history, by the proper property attribution F and the set P of
properties.

MBSs have interesting topological properties as well, to which we turn
in Section 9.2.2, after introducing the required notions from the theory of
differential manifolds. For the completeness of exposition, here we put down
a few informal observations, while postponing rigorous arguments to the
mentioned section. The natural topology on R4 is given by the base of open
balls inR4. Since every B-history hσ is, structurally speaking, justR4×{σ},
it admits a topology given by slightly fancier open balls, viz., standard balls
with σ attached, which we call b-balls. We can show that, whenever o is an
open ball onRn, oσ =df {[σx] | x ∈ o} is indeed an open b-ball in the natural
topology on hσ . This means that the intersection of any two b-balls is the
union of (possibly infinitely many) b-balls. Open b-balls generate a topology
on hσ . The open-ball topology on R4 and the open-b-ball topology on a B-
history are thus topologically the same; they are homeomorphic. Further, the
open ball topology onRn and the open b-ball topology on hσ share the same
separation properties, including the Hausdorff property (see Def. 4.15).That
is, if [σx] and [σy] are distinct elements of hσ , they can be made centers of
sufficiently small non-overlapping open b-balls in hσ . One consequence of
this is that the open b-ball topology on a B-history is both locally Euclidean
(see Def. 4.16) and Hausdorff, so that a B-history is a topological manifold
(see Def. 9.9 and footnote 7).

The first part of this observation carries over, perhaps somewhat surpris-
ingly, to the base set B of a BSTNF structure ⟨B,<R⟩ derived from an MBS
⟨Σ,F,P⟩, even if the structure comprises multiple B-histories. This topology
is indeed Euclidean. For this construction to work, it is essential to have
PCPNF rather than PCP92, as the former guarantees that the intersection of
any two b-balls is open. This construction would not work if ⟨B,<R⟩ were a
BST92 structure with multiple histories—see Exercise 9.4.

The second part of the observation, the one concerning Hausdorffness,
does not carry over from a B-history to ⟨B,<R⟩ if the structure comprises
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multiple histories. In this case, B contains at least one choice set with distinct
elements, say, [σx] and [ηx]. By Lemma 3.1, these two elements have exactly
the same proper past. Accordingly, no matter how small the b-balls centered
at these elements are that one chooses, they will overlap.Thus, the Hausdorff
property fails in the b-ball topology on B.

To put these observations together, the b-ball topology on a B-history
is both locally Euclidean and Hausdorff. In the terminology introduced in
Chapter 9.2, a B-history is a topological manifold. In contrast, the b-ball
topology on the base set B of a BSTNF structure derived from an MBS is
locally Euclidean but typically non-Hausdorff. Such an object is called a
generalized topological manifold. Onemay then ask if it is possible to extend
a B-history by adding some elements from B, while preserving the local
Euclidicity and Hausdorffness of the b-ball topology on the extended set.
The answer turns out to be no (provided one assumes a further intuitive
condition, connectedness). B-histories are the largest subsets of B on which
b-balls deliver a locally Euclidean, Hausdorff, and connected topology. In
short, B-histories are maximal connected topological sub-manifolds of the
generalized topological manifold B.

Having seen these topological developments in Minkowskian Branching
Structures andwitnessing the debate in General Relativity about the status of
the Hausdorff property in this theory’s concept of space-time, it is tempting
to try to provide topological foundations for BST (i.e., to define histories
by a topological condition rather than by our order-theoretical one). More
specifically, one might require that the base set W of Our WorldW admit
a generalized (i.e., possibly non-Hausdorff) topological manifold structure,
and then define a history in W to be a maximal subset of W that admits
a connected Hausdorff topological manifold structure. In a strengthened
version, onemight further require that each history inW admit a differential
manifold structure. We discuss this topic in Chapters 9.2 and 9.3, by first
introducing the required topological notions, and then relating Branching
Space-Times to General Relativity.

Before we turn to these tasks, let us take stock of MBSs.

9.1.3 Taking stock

Starting with three modest building blocks for Minkowskian Branching
Structures, a set of labels for scenarios, a set of properties, and a function
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attributing properties to point-scenario pairs (where points are points of
R4), we arrived at a BSTNF structure. The construction relied heavily on the
constraints imposed on property attribution.⁴

An important result of this construction is that histories generated by
an MBS are isomorphic to Minkowski space-time. Such histories are (and
must be) different by having different physical contents (furnished by a
property attribution), but they all share the same spatio-temporal structure.
We do not claim that our construction is fully “physics-friendly”. Even if the
spatio-temporal structure of our universe were adequately represented by
Minkowski space-time (which it is not), a few conditions must be satisfied
on the part of physics for our construction of MBSs to be admitted. First,
the physical description must come in the form of a property attribution
to spatio-temporal points. Second, the property attribution must be quite
specific: inDef. 9.4we required it to be “proper”.These notions are verymuch
needed to guarantee that histories have the desired form, and that the prior
choice principle, PCPNF, is satisfied.⁵

Finally, each history in a BSTNF structure derived from an MBS can be
viewed as a topological manifold (i.e., locally Euclidean and Hausdorff),
whereas the structure itself can be seen as a generalized topological manifold
(i.e., locally Euclidean but not necessarily Hausdorff). This establishes a

⁴ Some remarks on the history of MBSs are in order. The notion of a Minkowskian Branching
Structure was first introduced informally in Belnap (1992), denoting a BST structure in which every
history is a Minkowski space-time. Placek (2000) first attempted to produce a BST model out of
(copies of) Minkowski space-time, but failed. The first correct construction of MBSs (but with
finitistic assumptions) is in Müller (2002). The construction presented here is a BSTNF version of the
construction given by Placek and Belnap (2012), which in turn diverged from earlier constructions
of Müller (2002) and Wroński and Placek (2009), as it aimed to be more physics-oriented. The latter
authors begin their work with specifying a set Σ of labels for scenarios and a collection {Sση}σ ,η∈Σ
of sets of splitting points, where each Sση possesses properties listed in Fact 9.1(i)-(iv). Given the
two primitive notions, that is, labels for scenarios and sets of splitting points, they define MBSs and
show, on the assumption of certain additional conditions, that MBSs satisfy BST92 postulates. The
authors diverge over these additional conditions: Müller assumes finitistic requirements whereas
Wroński and Placek accepts a “topological” postulate that is equivalent to the chain condition. This
difference notwithstanding, an MBS model is, in their sense, a pair ⟨Σ,{Sσ ,η}σ ,η∈Σ⟩. In contrast,
our point of departure is a property attribution to points in scenarios. Accordingly, an MBS model
is, in our sense, a triple ⟨Σ,F,P⟩—cf. Def. 9.5. Splitting points are then a derived notion—see Def. 9.1
and, as Fact 9.1(i)-(iv) shows, they satisfy the conditions assumed byMüller andWroński andPlacek.
Accordingly, given thatM= ⟨Σ,F,P⟩ is anMBS in the sense of Definition 9.5, ⟨Σ,{Sσ ,η}σ ,η∈Σ⟩with
{Sσ ,η}σ ,η∈Σ defined by Def. 9.1 is an MBS in the sense of Wroński and Placek (2009). If finitistic
constraints concerning sets Sση are assumed, ⟨Σ,{Sσ ,η}σ ,η∈Σ⟩ is an MBS in the sense of Müller
(2002). Adiscussion of the topological properties of the differentways of pasting togetherMinkowski
space-times is given in Müller (2013).

⁵ This is not to say that some other condition on property attributions and a matching definition
of splitting points would not do the job. The point is that this notion must be quite regimented to be
of use in producing BST models.
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link between BST and General Relativity, and suggests adding topological
notions to the foundations of BST theory. These are two topics to which we
turn in the next two sections.

9.2 Differential manifolds and BSTNF

In this section we first present some basic notions from the theory of
differential manifolds. We will then use these notions to prove some facts
about MBSs that we have already alluded to. We will also investigate BSTNF
structures generally, asking if they admit differential manifold structure. We
will need these notions later on, when we turn our attention to the space-
times of General Relativity.

9.2.1 Differential manifolds

We introduce the already mentioned notions of topological manifold and
generalized topological manifold. In General Relativity we need more com-
plex structures, differential manifolds, which admit differential structure.
We begin with the latter, defining the former as a special case.

Definition 9.9 (Chart, atlas, manifold: generalized, Hausdorff, non-Haus-
dorff). Let M be a non-empty set and Γ an index set. A collection of pairs
{⟨uγ ,φγ⟩ | γ ∈ Γ}, where each uγ ⊆ M, is a Cr n-atlas on M iff

∪
γ∈Γ uγ = M,

each φγ is a bijection between uγ and an open subset of Rn, and for any two
⟨uγ ,φγ⟩ and ⟨uτ ,φτ⟩, if uγ ∩uτ ̸= /0, then φγ [uγ ∩uτ ] and φτ [uγ ∩uτ ] are open
subsets of Rn and the composite functions φγ ◦φ−1

τ and φτ ◦φ−1
γ are Cr on

their domains. Each ⟨uγ ,φγ⟩ is called a chart of the atlas.
A pair ⟨M,A⟩, where M is a non-empty set and A is a maximal Cr n-atlas on
M, is a Cr n-dimensional generalized differential manifold.
If a Cr n-dimensional generalized differential manifold ⟨M,A⟩ satisfies the
condition that for any distinct p,q ∈ M there are ⟨uγ ,φγ⟩,⟨uτ ,φτ⟩ ∈ A such
that p ∈ uγ , q ∈ uτ and uγ ∩ uτ = /0, then it is called a Cr n-dimensional
Hausdorff differential manifold.⁶
If a Cr n-dimensional generalized differential manifold does not satisfy the

⁶ An equivalent way of defining Hausdorff differential manifolds is to say that the induced
topology is Hausdorff.
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above condition, it is called a Cr n-dimensional non-Hausdorff differential
manifold.
Next, in the degenerate case r = 0, we speak of a C0 n-dimensional general-
ized (Hausdorff / non-Hausdorff) topological manifold.⁷
Finally, given a Cr n-dimensional generalized differential manifold ⟨M,A⟩,
we say that the atlas A induces a topology T on the set M, which is given by
the condition: O ∈ T iff for all x ∈ O there is ⟨uγ ,φγ⟩ ∈ A such that x ∈ uγ .

In what follows, if confusion is unlikely, we omit the qualifications “Cr, n-
dimensional, differential”, and just write “generalized” (or Hausdorff or non-
Hausdorff) d-manifold, with “d” for “differential”. By the above definitions,
a generalized (or Hausdorff or non-Hausdorff) d-manifold counts as a
generalized (or Hausdorff or non-Hausdorff) topological manifold as well.

9.2.2 Differential manifolds and MBSs

We are now going to make good on our informal observations about the
topological features of MBSs, by proving some more general facts. The
first fact says that any B-history admits a Hausdorff differential manifold
structure, and hence, a Hausdorff topological manifold structure as well.

Fact 9.10. Let hσ be a B-history in the BSTNF structure⟨B,<R⟩ determined by
anMBS.Then hσ admits aC∞ 4-dimensional Hausdorff d-manifold structure.

Proof. Define b-balls as oσ =df {[σx] | x ∈ o}, where o is an open ball in
R4. For a b-ball oσ , define φσ : hσ 7→ R4 such that φσ ([σx]) =df x. Note
next that the composition φσ ◦φ−1

σ is the identity function on R4, which
is differentiable to an arbitrarily large degree. Thus, it follows immediately
that A =df {⟨oσ ,φσ ⟩ | o an open ball in R4} is a C∞ 4-dimensional atlas on
hσ . Thus, ⟨hσ ,A⟩ is a C∞ 4-dimensional d-manifold, which is moreover
Hausdorff: For distinct [σx], [σy] ∈ hσ there obviously are non-overlapping
open balls ox,oy ⊆ R4 centered at x and y, respectively. These open balls
determine non-overlapping b-balls centered at [σx] and [σy], ox

σ and oy
σ ,

respectively.

⁷ This is equivalent to the more typical definition of a topological manifold (Hausdorff or
non-Hausdorff) as a locally Euclidean topological space (satisfying or not satisfying the Hausdorff
condition).
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Our next Fact concerns the base set of a BSTNF structure derived from an
MBS. It says that the base set admits a 4-dimensional generalized differential
manifold structure. Further, the manifold has to be non-Hausdorff if the
structure comprises more than one B-history.

Fact 9.11. Let ⟨B,<R⟩ be the BSTNF structure determined by an MBS
⟨Σ,F,P⟩. Then B admits a C∞ 4-dimensional generalized (possibly non-
Hausdorff) d-manifold structure.

Proof. Define a b-ball as before: oσ = {[σx] | x ∈ o}, where o is an open ball
inR4 and σ ∈Σ. For each open ball o and each σ ∈Σ define the function φσ :
oσ 7→ R4 such that φσ ([σx]) = x. Next, consider intersections of the form
oσ ∩o′α , which are equal to {[σx] | x ∈ o∩o′∧¬∃s ∈ Sσα s 6M x}. Since the
defining condition of this set picks an open subset ofR4, clearly φσ (oσ ∩o′α)
and φα(oσ ∩o′α) are open (this holds even if the intersection is empty). Note,
as above, that the composition of φσ and φα is the identity function on an
appropriate domain inR4 (which may be empty), so it is differentiable to an
arbitrarily large degree. Thus, the set {⟨oσ ,φσ ⟩ | σ ∈ Σ,o ∈ B4}, with B4

the set of open balls in R4, induces a maximal C∞ 4-dim atlas A on B. Thus,
⟨B,A⟩ is a C∞ 4-dim generalized d-manifold.

If B comprises two B-histories, say hσ and hα (σ ,α ∈ Σ), then ⟨B,A⟩ is not
Hausdorff, however. There is then a splitting point s ∈ Sσα , so that [σs] ̸=
[αs]. Then any b-ball centered at [σs] and any b-ball centered at [αs] overlap
non-emptily, because [σs] and [αs] share the same proper past.

We next show, for ⟨B,<R⟩ derived from an MBS, that each B-history in
this structure is a maximal subset of B that admits a connected Hausdorff
d-submanifold structure; this manifold is a sub-manifold of the generalized
d-manifold admitted by B.

Fact 9.12. Let ⟨B,<R⟩ be the BSTNF structure determined by an MBS
⟨Σ,F,P⟩. Then for every B-history hσ in B, ⟨hσ ,Aσ ⟩ is a maximal connected
Hausdorff d-submanifold of the generalized d-manifold ⟨B,A⟩, where B4 is
the set of open balls in R4, the maximal atlas A is induced by {⟨oγ ,φγ⟩ | γ ∈
Σ,o ∈ B4}, and the maximal atlas Aσ is induced by {⟨oσ ,φσ ⟩ | o ∈ B4}.

Proof. Observe first that Aσ ⊆ A, and that the inclusion is strict if Σ has
more than one element; otherwise the two d-manifolds are identical. It
is also immediate to see that hσ is open and connected in the manifold
topology induced on B by A (see Exercise 9.5). Suppose thus that Aσ ( A,
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and assume for reductio that ⟨hσ ,Aσ ⟩ is not maximal; that is, there is an set
g ⊆ B endowed with topology induced by atlas A, so that g is an embedded
sub-manifold in the manifold on A. Assume further that the topology on
g is Hausdorff and connected, and that hσ ( g. By definition (Lee, 2012,
p. 99) g has no boundary in the sub-manifold topology. One immediately
notes that in that topology hσ is open. Thus, since the topology on g is
connected, the boundary of d =df g \ hσ , ∂d, is non-empty. Consider now
some e ∈ ∂d. Then for any b-ball oβ ⊆ g, if e ∈ oβ , then oβ ∩hσ ̸= /0. Since
e ̸∈ hσ , it must be that e = [αx] for some α ∈ Σ, α ̸= σ . Hence there must
be some s ∈ Sσα such that s 6 x. Moreover, it is impossible that s < x,
because then the distance between s and x would be non-zero, so there
would be a b-ball oα such that [αx] ∈ oα and oα ∩ hσ = /0. Thus, x = s.
Observe next that [σs], [αs] ∈ g. We then argue, like at the end of the proof
of Fact 9.11, that [σs] and [αs] witness a failure of the Hausdorff property
in the topology on g that is induced by atlas A on B. Thus, g is not a con-
nected and Hausdorff submanifold of ⟨B,A⟩, which contradicts our reductio
hypothesis. Combined with Fact 9.10, this implies that any B-history is
a maximal subset of the base set B, the topology on which is connected
and Hausdorff; the history with the endowed differential structure is thus
a maximal Hausdorff sub-manifold embedded in a generalized d-manifold
on set B.

Our next Fact concerns a relation between the diamond topology (see
Def. 4.14) and the topology induced by a differential manifold. In Sec-
tion 4.4.1 we advertised the diamond topology as a natural topology for
BST, and wrote that one argument for naturalness is that this topology, if
appropriately restricted, coincides with the standard open-ball topology
on Rn. The fact below says that this is indeed so: the manifold topology
T A induced by atlas A on history hσ and the diamond topology Thσ on
hσ are identical. It follows that the diamond topology on a B-history is
homeomorphic to the open ball topology on R4.

Fact 9.13. Let hσ be a B-history in ⟨B,<R⟩ that is the BSTNF structure
determined by anMBS ⟨Σ,F,P⟩ and ⟨hσ ,A⟩ be aHausdorff d-manifold on hσ .
Then the manifold topology T A induced by atlas A on hσ and the diamond
topology Thσ on hσ are identical.

Proof. Clearly, the two topologies T A and Thσ have the same base set, hσ .
We need to see whether Z ∈ T A iff Z ∈ Thσ . To argue in the left to right
direction, let [σx] ∈ Z ∈ T A, so for some b-ball uo: [σx] ∈ uo ⊆ Z, where
o is an open ball in R4. Consider then the set MC⟨R4,<M⟩(x) of maximal
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chains in ⟨R4,<M⟩ that contain x. By properties of real numbers, for every
t ∈ MC⟨R4,<M⟩(x) there are x1,x2 ∈ t ∩ o such that x1 < x < x2, so the dia-
mond D̃x1,x2 ⊆ o. As every diamond D̃x1,x2 in ⟨R4,<M⟩ determines a unique
diamond D[σx1],[σx2] in ⟨hσ ,<R⟩, we get that for every t ∈ MC⟨hσ ,<R⟩([σx])
there are [σx1], [σx2] ∈ t such that [σx1] < [σx] < [σx2] and the diamond
D[σx1],[σx2] ⊆ uo ⊆ Z, which proves Z ∈ Thσ . In the opposite direction, Z ∈
Thσ means that for every t ∈ MC⟨hσ ,<R⟩([σx]) there are [σx1], [σx2]∈ t such
that [σx1] < [σx] < [σx2] and the diamond D[σx1],[σx] ⊆ Z. This implies in
particular that for the time-like chain t∗ ∈MC⟨hσ ,<R⟩ there are [σx∗1], [σx∗2]∈
t∗ such that [σx∗1]< [σx]< [σx∗2] and the diamond D[σx∗1],[σx∗] ⊆ Z. Diamond
D[σx∗1],[σx∗2]

determines diamond D̃x∗1,x
∗
2
in ⟨R4,<M⟩; thanks to time-likeness

of t∗, there is an open ball o ⊆ D̃x∗1,x
∗
2
, with x ∈ o. Accordingly there is an

associated b-ball uo such that uo ⊆ D[σx∗1],[σx∗2]
⊆ Z, with [σx] ∈ uo. This

proves Z ∈ T A.

The very welcomemessage of this section is that the base set of a structure
derived from an MBS admits a generalized (typically non-Hausdorff)
d-manifold structure, whereas each B-history in this structure comes out
as an embedded sub-manifold of the above manifold that is maximal with
respect to having a connected and Hausdorff topology. This result ties in
neatly with the situation in General Relativity, in which space-times are
standardly identified with Hausdorff d-manifolds, but larger (generalized)
d-manifolds are constructible as well. Before we explore this affinity, we need
to take a look at BSTNF structures generally: Do they admit a d-manifold
structure?

9.2.3 Differential manifolds and BSTNF, generally

Do the above results concerning MBSs carry over to BSTNF structures
generally? Given the frugality of the BSTNF postulates, one should not
expect this to be the case. Indeed, it is already problematic whether the
base set of a BSTNF structure admits a d-manifold structure. One might try
to find constraints on BSTNF structures that would ensure the admittance
of a d-manifold structure on their base sets. The general case is, however,
again unwieldy. A more promising line of enquiry is to see whether “nice”
topological properties of histories in a BSTNF structure carry over to the
structure itself. To some extent this is satisfied, asTheorem4.1 testifies. It says
that, for any BSTNF structureW = ⟨W,<⟩, if there is an n∈N such that every
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history h ∈ Hist(W ) admits a generalized topological manifold structure
⟨h,Ah⟩with dimension n, thenW admits a generalized topological manifold
structure ⟨W,AW ⟩with dimension n aswell. In short, we have “local Euclidic-
ity in, local Euclidicity out” for the topological manifold structure admitted
by BSTNF histories. But General Relativity needs differential manifolds to
model space-times, rather than more frugal topological manifolds, which
do not come with a differential structure. So a natural question is whether
there is a generalization of Theorem 4.1 to Cr generalized d-manifolds
with r > 0. Unfortunately, by simply putting together d-manifold structures
admitted by individual BSTNF histories, we will not produce a (generalized)
d-manifold that has as its base set the resulting BSTNF structure. This is a
consequence of the fact that charts from atlases belonging to different d-
manifolds need not properly combine in the way required by Def. 9.9. To
see this, consider the BSTNF structure outlined at the bottom of Figure 3.1,
with two histories hi = {[⟨x, i⟩] | x ∈ R}, where i = 1,2, with topologies
given by the open intervals ux1,x2 = {[⟨x,1⟩] | x1 < x < x2} and vx1,x2 =

{[⟨x,2⟩] | x1 < x < x2} (x1,x2 ∈ R, x1 < x2). Let the atlas of the manifold
based on h1 be induced by {⟨ux1,x2 ,φx1,x2⟩ | x1,x2 ∈ R,x1 < x2}, where
φx1,x2 : ux1,x2 7→ R such that φ([⟨x,1⟩]) = x. Similarly, let the atlas of the
manifold based on h2 be induced by {⟨vx1,x2 ,ψx1,x2⟩ | x1,x2 ∈ R,x1 < x2},
where ψx1,x2 : vx1,x2 7→ R such that φ([⟨x,2⟩]) = x1/3. Now, the charts from
the atlas of the topology on h1 properly combine, as do the charts from
the atlas of the topology on h1. In each case, the composite functions,
φy1,y2 ◦ φ−1

x1,x2
and ψy1,y2 ◦ψ−1

x1,x2
(if defined), are the identity functions on

their domains, which are differentiable to an arbitrary high order.Thus, each
d-manifold, on h1 and on h2, isC∞. However, two charts, each from the atlas
of a different topology, might fail to properly combine. Pick any two charts
ux1,x2 and vx1,x2 such that x1 < 0 < x2. Then ψx1,x2 ◦ φ−1

x1,x2
: (x1,x2) 7→ R

is given by (ψx1,x2 ◦ φ−1
x1,x2

)(x) = x1/3, which is C0 but no C1 on (x1,x2).
And such charts cannot be removed from the atlases, as they are needed
for the distinct elements, [⟨0,1⟩] and [⟨0,2⟩], which form a choice set in
the structure considered. Thus, although histories admitC∞ d-manifold, the
atlases of these manifolds do not produce a Cr atlas on the base set of the
whole structure for any r > 0.

This illustration suggests a different approach, however, as one might
choose “nicer” functions on the domains of charts in the topology on
h2. Generally, one might try to take advantage of Theorem 4.1. The idea
is to begin with a collection of BSTNF histories, each of which admits a
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Cr d-manifold of the same dimension. Since a Cr d-manifold counts as a
topological manifold as well, by the theorem the base set of the whole BSTNF
structure admits a topological manifold. To recall, the charts in the atlas of a
topological manifold are only required to beC0. One might thus hope that it
is possible to smoothen these charts somewhat such as to make themCr, for
r > 0.⁸ The question is thus whether a differential structure can be assigned
to any topological manifold. The answer is that this is doable for many
topological manifolds, but not for all. There are topological manifolds that
do not admit aCr atlas for any r > 0, as was proved by Kervaire (1960).Thus,
to sum up, we do not know any (and there might be no) general method of
obtaining a d-manifold admissible by a BSTNF structure from d-manifolds
admissible by histories of that structure, but the smoothing approach can
work in many cases.

The fact that the elegant results concerning MBSs and d-manifolds do
not carry over to all BSTNF structures should not be seen as disconcerting,
however. This is to be expected given the frugality of the BSTNF postu-
lates. The important question is whether those d-manifolds and generalized
(non-Hausdorff) manifolds that occur in the GR literature could be read
as d-manifolds and generalized d-manifolds admissible by BSTNF histo-
ries and BSTNF structures, respectively. The results concerning MBSs and
d-manifolds suggest a picture in which each space-time is a maximal con-
nected Hausdorff d-submanifold within a generalized d-manifold, repre-
senting all space-times, such that any twoof them share some initial segment.

Interestingly, this picture is similar to some situations in GR in which
there is a failure of the initial value problem, to be discussed at length in
Section 9.3.1. In these cases one has maximal Hausdorff manifolds, as well
as larger non-Hausdorff manifolds. In the physics literature, the former are
standardly interpreted as GR space-times, but the latter are problematic;
i.e., their physical interpretation is unclear. Our suggestion is to read these
non-Hausdorff d-manifolds very much like non-Hausdorff d-manifolds in
MBS contexts, that is, as the representations of multiple alternative spatio-
temporal histories, with each such history given by a maximal Hausdorff
d-submanifold. Before we turn to this topic, however, we need to recall some
notions of General Relativity.

⁸ More precisely, it is the compositions of functions from different charts, like ψ ◦φ−1, that are
required to beCr , if their domains are non-empty. Note also that the crucial step is from topological
manifolds to C1 d-manifolds, as a C1 manifold can always be transformed into a Cr manifold, for
any r > 1; see Hirsch (1976, Theorem 2.9).
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9.2.4 Differential manifolds in GR

Wenow review some concepts and terminology needed for GR .⁹ Standardly,
an n-dimensional GR space-time is identified with a pair ⟨M,gab⟩, where M
is a connected n-dimensionalC∞ Hausdorff d-manifold (without boundary)
and g is a smooth, non-degenerate, pseudo-Riemannian metric of Lorentz
signature (−,+, . . . ,+) defined on M (aka a Lorentzian metric). To be
explicit about the atlas, AW , we sometimes write a GR space-time as
⟨W,AW ,g⟩, where M = ⟨W,AW ⟩ is a connected n-dimensionalC∞ Hausdorff
d-manifold (without boundary). Two space-times ⟨M,g⟩ and ⟨M′,g′⟩ are
defined to be isometric if there is a diffeomorphism (smooth bijection)
φ : M →M′ such that the induced pull-back function φ∗ satisfies φ∗(g′) = g.
A space-time ⟨M′,g′⟩ is an extension of the space-time ⟨M,g⟩ if there exists
an embedding Λ : M 7→ M′ (i.e., Λ is a diffeomorphism onto its image) and
Λ ∗(g′ |Λ(M)) = g and Λ(M) ̸= M′. A space-time is maximal iff it has no
extension.

With each point p∈M there is associated a vector space, called the tangent
space, Mp, on which g induces a cone structure, so that each vector ξ a ∈
Mp is either timelike, or null, or spacelike, depending on whether ξ aξ bgab

is positive, zero, or negative, respectively. Here the superscripts a and b
are abstract indexes, indicating that the object is a covariant vector. Time-
orientable space-times permit a distinction between future and past lobes
of light-cones; technically, a time-orientable space-time has a continuous
timelike vector field on “its” manifold.

A continuous curve γ : I → M (where I is an interval of R) is timelike
(resp., spacelike, or null) iff its tangent vector ξ a at each point in γ[I] is
timelike (resp., spacelike, or null). A curve is causal iff its tangent vector
at each point is either null or timelike. A curve is inextendible iff it has
no endpoints. A geodesic in a space-time ⟨M,gab⟩ is a curve γ : I → M
that satisfies, for every vector ξ a ∈ Mp (p ∈ γ[I]) tangent to the curve,
the geodesics equation: ξ a∇aξ b = 0, where ∇a is the (unique) derivative
operator compatible with gab. For any set S ⊆ M, the domain of dependence
of S, written D(S), is the set of points p ∈ M such that every inextendible
causal curve through p intersects S. S is an achronal subset of M iff no two
points in S can be joined by a timelike curve. A Cauchy surface in ⟨M,gab⟩
is a smooth and achronal spacelike hypersurface such that D(S) = M.

⁹ Explanations of the mathematics of GR can be found in mathematically oriented books on GR,
such as Malament (2012, Chs. 1–2).
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9.3 GR space-times

General Relativity is currently the best theory of space-time and matter.
There are a variety of GR models, aka GR space-times, making the BST
analysis of GR space-times rather complex. Yet, a fairly large class of GR-
space-times, viz., time-orientable space-times that do not end abruptly and
that do not contain closed causal curves, is easily amenable to a BST analysis
(although, to be fair, some metric information provided by a GR space-time
is not present in a bare BST structure). We put down this observation as a
fact:

Fact 9.14. Let ⟨M,g⟩ be a GR space-time that is (1) time-orientable, (2)
without closed causal curves, and (3) subject to the condition that for any x,y∈
M there is z ∈ M that is reachable from x and from y by future-directed causal
curves.Then ⟨M,g⟩ induces a one-history BSTNF structureW = ⟨M,<⟩, where
for e1,e2 ∈ M, e1 ̸= e2, we set e1 < e2 iff there is a continuous future-directed
causal curve from e1 to e2. Being a one-history structure, that structure is also
a BST92 structure.

Proof. (Sketch) Asymmetry of < comes from time-orientability (1) and
the absence of closed causal curves (2). Transitivity of ≺ results from the
composition of causal curves (a method of getting a continuous causal curve
frompiece-meal continuous causal curve is needed (see, e.g., Chruściel 2011,
sec. 2). M is directed by (3), so it is a single BST history. The postulate of
history-relative suprema thus simplifies to the condition of suprema sim-
pliciter for upper bounded chains in ⟨M,<⟩. Both the infima postulate and
the suprema postulate follow from the definition of causal curves. PCP92,
PCPNF, andWeiner’s postulate are vacuously satisfied since the structure has
only one history.

This result, of course, only constitutes a first step, as it does not touch upon
the interesting question ofwhether BST can be used tomodel indeterminism
occurring in a general relativistic world. Some GR models have indetermin-
istic features. One indication of indeterminism, which is interesting from
a BST perspective, arises in the context of the initial value problem (IVP).
A failure of the IVP means, generally, that a theory’s evolution equations
allow for multiple global solutions that coincide over some region. If the
region of coincidence is “nice”, one may read a failure of IVP as the existence
of multiple evolutions of a given system that develop from that common
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region. The picture of branching histories then naturally springs to mind.
Accordingly, in our attempt to relate BST to GR, we begin with an overview
of the initial value problem in GR: if there is a motivation for a non-trivial
BST structure consisting of GR space-times, this motivation should come
from a failure of the IVP in General Relativity.

In the next stage we will be concerned with two interconnected problems
in our attempts to analyze GR space-times from a BST perspective. The first
is that of GR space-times with closed causal curves. Given BST’s reliance
on an asymmetric ordering, such GR space-times cannot be modeled as
BST structures, as long as the BST ordering is defined via causal curves.
We will indicate how to resolve this problem, arguing that a BST-style
theory with a locally asymmetric ordering (but not necessarily a globally
asymmetric ordering on the whole base set) is available and is in line with
the topological features of GR space-times—see Section 9.3.6. Conceptu-
ally more demanding is the second problem, which concerns the kind of
indeterminism that might arise from failures of the IVP in GR. Recall that
BST captures local indeterminism, the key idea being that a local entity,
like a point-like event, has alternative possible futures. It might happen
(the issue is not fully clear) that a failure of the IVP does not deliver local
indeterminism: it could produce alternative developments of a region of GR
space-time without there being an indeterministic trajectory of any entity
(i.e., a trajectory that splits), with each continuation leading into a different
possible development. In other words, it might be that each failure of the
IVP produces a case of global indeterminism without there being local
indeterminism.The big question is, of course, whether that odd combination
reflects some incompleteness on the part GR, like its failure to accommodate
quantum phenomena, or, alternatively, if it discloses a feature of our physical
world.

The two problems, the existence of closed causal curves and the odd kind
of indeterminism coming from the violation of the IVP, are related: the
known cases of GR space-times that harbor indeterminism contain such
curves or other causal anomalies. Furthermore, Theorem 2 of Clarke (1976)
implies that a non-Hausdorff manifold with a Lorentzian metric has bifur-
cating curves (of the second kind – see below) or violates strong causality.1⁰
We would welcome bifurcating causal curves as they are very much needed

1⁰ The violation of strong causality means that, although a causal curve does not intersect itself, it
comes arbitrarily close to intersecting itself.
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in order to read a non-Hausdorff manifold as a BST structure with multiple
histories (see Section 9.3.4). However, the data that we review below suggests
that theremight be no bifurcating causal curves in non-Hausdorffmanifolds
which are naturally constructible in GR (see Section 9.3.2). By Clarke’s
theorem then, such manifolds harbor violations of strong causality. Thus, in
the context of the violation of IVP, causal anomaliesmight be inevitable. Our
approach gives reasons for being optimistic with respect to accommodating
closed causal curves in BST, and a violation of strong causality without
closed causal curves is not problematic from a BST perspective. Therefore,
in what follows we focus on what we believe to be more problematic for
BST: the global variety of indeterminism in GR coming from a failure of the
IVP. Accordingly, we now provide a short overview of the IVP in General
Relativity.

9.3.1 The initial value problem in GR

The question of determinism presupposes the notion of a system evolving in
time. This latter notion is not always well-defined in general relativity, as a
GR space-time need not come with a distinguished time coordinate. Yet, a
somewhat similar issue can be considered in GR: suppose we are given a
3-dimensional space Σ with possibly some data on it. (Technically, this
should be a manifold with a metric “appropriate for space”; that is, i.e., a Rie-
mannian metric.) The question now is: Can this space be uniquely extended
to a 4-dimensional space-time–that is, to a manifold with a Lorentzian
metric that satisfies the properties required from a manifold representing
a GR space-time (listed in Chapter 9.2.4)–and in which the Einstein field
equations (EFE) hold? The answer depends crucially on the kind of data
assumed on the space and on the properties the sought-for space-time is
supposed to have. As for the latter, one relevant factor is the existence of a
matter field, and (if it is assumed to exist) the kind of model for the matter
field; another issue is the value of the cosmological constant in the EFE.
However, given the extension problem we will consider, a simple case is
enough for our purposes. We focus on space-times with a vanishing Ricci
tensor, the so-called vacuum space-times, and we consider the EFE without
the cosmological constant. A satisfactory data set for this case consists of a
Riemannian metric g̃ and a symmetric covariant 2-tensor k̃ that represents
incremental changes of the metric in the direction normal to Σ. In this case
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the initial value problem amounts to constructing a 4-dimensional manifold
M with a Lorentzianmetric g and an embedding i : Σ→M such that if k is the
second fundamental form on i(Σ)⊆ M, then i∗(g) = g̃ and i∗(k) = k̃, where
i∗ is the pull-back function induced by the embedding i. Further, there is a
set of equations relating g̃ and k̃, known as (vacuum) constraint equations,
which guarantee the satisfaction of the EFE in the sought-for space-time.
A space Σ with tensors g̃ and k̃ that satisfy the (vacuum) constraint equations
is said to form a (vacuum) initial data set ⟨Σ, g̃, k̃⟩.

A result that is highly relevant to the initial value problem in the vacuum
case was obtained by Choquet-Bruhat and Geroch (1969) in the context
of globally hyperbolic space-times. Such space-times have particularly nice
causal properties. To recall the definition, ⟨M,gab⟩ is said to be globally
hyperbolic iff there is an achronal subset S⊆M whose domain of dependence
is the whole space-time (see Wald, 1984, Ch. 8). One consequence of this
definition is that a globally hyperbolic space-time can be foliated by Cauchy
surfaces (although the foliation is non-unique). Choquet-Bruhat andGeroch
restrict their attention to globally hyperbolic space-times ⟨M,g⟩ that (1) are
vacuum solutions to the EFE and which can be developed from a given vac-
uum initial data set such that (2) the image of the space Σ from that data set
under the development embedding is a Cauchy surface in ⟨M,g⟩. A space-
time satisfying these conditions is called a “vacuum Cauchy development”
(VCD) of the initial data set. Note that condition (2) implies that a VCD is
a globally hyperbolic space-time. The theorem proved by Choquet-Bruhat
and Geroch says:

Theorem 9.2. Let ⟨Σ, g̃, k̃⟩ be an initial vacuum data set. Then there is a
unique, up to isometry, maximal VCD ⟨M,g⟩ of ⟨Σ, g̃, k̃⟩.

The phrase “unique, up to isometry, maximal VCD” means that if there
is another maximal VCD ⟨M′,g′⟩ of the same initial data set, then there is a
time-orientation preserving isometry φ : M → M′. Thus, taking isometry
to amount to the physical identity of vacuum space-times of GR (which
is a typical move), the result ensures the uniqueness of maximal globally
hyperbolic space-times compatible with vacuum initial data sets.

It is important to note that the theorem concerns globally hyperbolic
developments only: it puts no restrictions on other developments of an initial
vacuum data set. This raises the question of whether a maximal globally
hyperbolic development of an initial data set can be further extended (where,
of course, the resulting extension cannot be globally hyperbolic). Here, con-
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troversial questions of the physicality of such extensions become important.
Some parties to the debate exclude non-globally hyperbolic space-times, on
the basis that they involve causal anomalies, like closed causal curves, and
these might be unphysical.11 In recent research on the initial value problem
in GR, some authors hold that non-globally hyperbolic developments of
initial data sets are rare, in some measure-theoretical sense, with respect
to a measure defined on the space of relevant solutions to the EFE. A
view that is gaining ground is that “for generic initial data to Einstein’s
equations, the maximal globally hyperbolic development has no extension”
(Ringström, 2009, p. 188). Without entering into the voluminous debate
here, we nevertheless investigate here non-globally hyperbolic solutions,
even if they are non-generic or rare.

To sumup, theChoquet-Bruhat andGeroch theoremhas the consequence
that evidence for the indeterminism of GR (if there is such evidence) in the
vacuum casemust consist of multiple non-isometric extensions of amaximal
globally hyperbolic vacuum space-time. The question is, therefore, whether
some maximal globally hyperbolic space-times (satisfying the EFE) have
multiple non-isometric extensions (satisfying the EFE). The next section
provides a positive answer to this question.

9.3.2 An example of the failure of the IVP: Non-isometric
extensions of Taub space-time

We will describe below the construction of multiple non-isometric exten-
sions of Taub space-time. Our discussion is based on a paper by Chruściel
and Isenberg (1993), which also investigates a more realistic class of space-
times, polarized Gowdy space-times, that also have multiple non-isometric
extensions. But since these aremathematicallymore demanding, we describe
here the simpler case of extensions of Taub space-time.

Taub space-time is a vacuum solution to the EFE. The manifold is
M=(t−, t+)×S3, and the metric g is given by

ds2 =−U−1dt2 +(2l)2U(dψ + cosΘdφ)2 +(t2 + l2)(dΘ2 + sin2 Θdφ2),

11 The considerable controversy over how to interpretTheorem 9.2 is related to the idea of cosmic
censorship due to Penrose (1969), and especially to its later formulation in terms of the so-called
Strong Cosmic Censorship Conjecture. That conjecture says (very roughly) that space-times that
are not globally hyperbolic are unphysical.
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where m and l are real positive constants, Θ, φ and ψ are Euler coordinates
on the 3-sphere S3, and

U(t) =
(t−− t)(t − t+)

l2 + t2 , where t± = m± (m2 + l2)1/2.

Note that U(t±) = 0, and hence the metric is not defined at t±. Taub space-
time is globally hyperbolic, and maximally so, the Cauchy surfaces being
identified by the condition t = const for t ∈ (t−, t+). AsNewman, Tamburino
and Unti (1963) showed, by using appropriate coordinate transformations
⟨M,g⟩ can be extended above t+, the result being two non-hyperbolic space-
times ⟨M↑+,g↑+⟩ and ⟨M↑−,g↑−⟩, known as Taub-NUT space-times. In
a similar vein, Taub space-time can be extended below t− into two non-
hyperbolic space-times ⟨M↓+,g↓+⟩ and ⟨M↓−,g↓−⟩. Each of ⟨M↑+,g↑+⟩,
⟨M↑−,g↑−⟩, ⟨M↓+,g↓+⟩, and ⟨M↓−,g↓−⟩ satisfies the EFE and contains
closed causal curves in the region new with respect to M.12 As shown by
Chruściel and Isenberg (1993), the pairM↑+,M↑− and the pairM↓+,M↓− are
isometric.

To produce non-isometric extensions of Taub space-time, we need to
glue together an upward extension together with a downward extension
of Taub space-time. “Gluing” means, in mathematical parlance, finding an
equivalence relation ≡ on the union of two manifolds, say M↓+∪M↑−, and
then taking the set of equivalence classes with respect to this equivalence
relation. The result is the quotient structure (M↓+∪M↑−)/≡.

Consider now four results of the gluing (for the equivalence relation used,
consult Chruściel and Isenberg, 1993, p. 1619):

Mxy = (M↓x ∪M↑y)/≡, where x,y ∈ {−,+},

each result being associated to themetric gxy, defined in terms of g↑x and g↓y.
Each ⟨Mxy,gxy⟩ is a non-hyperbolic extension of Taub space-time ⟨M,g⟩ and
satisfies the EFE. As for isometries, there are the following results (Chruściel
and Isenberg, 1993, Theorem 3.1):

1. ⟨M+−,g+−⟩ is isometric to ⟨M−+,g−+⟩.
2. ⟨M++,g++⟩ is isometric to ⟨M−−,g−−⟩;

12 See Misner and Taub (1969). The existence of closed causal curves raises the worry of the
applicability of BST to such space-times; we address this concern in Section 9.3.6.
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3. yet, ⟨M−−,g−−⟩ is not isometric to ⟨M−+,g−+⟩, and
4. ⟨M++,g++⟩ is not isometric to ⟨M+−,g+−⟩.

Each pair of the non-isometric extensions of Taub space-time above
provide evidence for indeterminism in the sense of Butterfield’s (1989)
definition of determinism, which is tailored to applications to GR. It says:

Definition 9.10 (Butterfield’s definition of determinism). A theory with
models ⟨M,Oi⟩ is S-deterministic, where S is a kind of region that occurs
in manifolds of the kind occurring in the models, iff:
given any two models ⟨M,Oi⟩ and ⟨M′,O′

i⟩ containing regions S,S′ of kind
S respectively, and any diffeomorphism α from S onto S′:
if α∗(Oi) = O′

i on α(S) = S′, then there is an isomorphism β from M onto
M′ that sends S to S′, i.e., β ∗(Oi) = O′

i throughout M′ and β (S) = S′.

Here the Oi stand for geometric object fields that are either definable in
terms of a space-time’s metric, or which characterize the matter field of the
space-time. In our (vacuum) case the definition simplifies considerably, since
in the absence of objects not definable in terms of the metric, the notion of
isomorphy coincideswith that of isometry, thus β can be an isometry and the
condition on α∗ above concerns only objects defined in terms of the metric.

To check that the definition yields the verdict of the indeterminism of GR,
note that the space-time ⟨M++,g++⟩ contains the region S++ = Λ++[M],
and the space-time ⟨M+−,g+−⟩ contains the region S+− = Λ+−[M], where
Λxy : M → Mxy is an embedding, which ensures that ⟨Mxy,gxy⟩ is an exten-
sion of ⟨M,g⟩. For the diffeomorphism α we take α = Λ+− ◦ (Λ++)−1 :
S++ → S+−.Then the push-forward α∗ induced by α satisfies α∗

|S++(g++)=

g+− (by the condition on embedding), and hence α∗(Oi) = O′
i for any

object field defined in terms of the metric. On the other hand, however,
⟨M++,g++⟩ and ⟨M+−,g+−⟩ are not isometric, according to Chruściel and
Isenberg’s result quoted earlier. It follows that GR is indeterministic in the
sense of Def. 9.10.

Physicists and philosophers alike have argued that non-isometric exten-
sions of a globally hyperbolic space-time provide evidence for the inde-
terminism of GR.13 Both from the perspective of Butterfield’s definition

13 To quote a philosopher’s diagnosis, Belot (2011, p. 2876) says: “Instances in which globally
hyperbolic solutions admit non-isometric extensions are instances of genuine indeterminism […]”.
For a similar assessment by a physicist, see Ringström (2009) or Costa et al. (2015).
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of determinism and from the perspective of identifying determinism with
unique solutions to a theory’s evolution equations (EFE in GR), such cases
are indeterministic. The crucial question for us is whether this kind of
indeterminism can be captured by BST. Before we tackle this question
head on, in the next section we discuss a “topological” characterization
of indeterminism in GR. The gist of this characterization is to interpret a
non-Hausdorff generalized d-manifold as a representation of a family of
alternative space-times that extend a given spatio-temporal region.

9.3.3 Can non-Hausdorff manifolds in GR be
interpreted modally?

Non-isometric extensions of a maximal globally hyperbolic space-time, like
the extensions of Taub space-time just reviewed, are constructed to be
Hausdorff d-manifolds, as they have to satisfy the conditions for a GR space-
time. Can non-Hausdorff d-manifolds arise in the context of a failure of the
IVP in General Relativity? The answer is yes.

Hawking and Ellis (1973, p. 173) exhibit extensions of so-called Misner
space-time, which are Hausdorff d-manifolds that can be further extended
to a d-manifold that is not Hausdorff. More precisely, there is a gener-
alized (non-Hausdorff) d-manifold such that its maximal Hausdorff sub-
manifolds are the mentioned extensions of Misner space-time. The same
authors (p. 177) also discuss the above described non-isometric extensions
of Taub space-time and show that they can be viewed as maximal Hausdorff
d-submanifolds of some generalized (non-Hausdorff) d-manifold. More
generally, Luc and Placek (2020) develop a pasting technique by means of
which they prove some results concerning the relations between Hausdorff
and non-Hausdorff d-manifolds (equipped with Lorentzian metrics). First,
they show that non-isometric space-times (Hausdorffd-manifolds) that have
some isometric regions can almost always be used to produce a generalized
(non-Hausdorff) d-manifold with a Lorentzian metric. More precisely, in
the collection of Hausdorff manifolds that is to be pasted any pair has to
have isometric regions; and the “almost always” qualification comes from
the fact that the technique yields topological non-Hausdorff manifolds
rather than Cr non-Hausdorff manifolds. Thus, the final step in obtaining
the sought-after d-manifold depends on whether the resulting topological
manifolds admit a differentiable structure. As we already mentioned in
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Chapter 9.2.3, there are (relatively rare) so-called Kervaire cases that do not
admit such a structure. Second, Luc and Placek (2020) describe in detail the
gluing together of non-isometric extensions of Taub space-time to form a
generalized non-Hausdorff d-manifold. Finally, a result slightly generalizing
Hájíček’s (1971b) construction says that any non-Hausdorff d-manifold with
a metric can be constructed by the gluing technique from a collection of
Hausdorff d-manifolds with metrics (GR space-times). Thus, Kervaire cases
aside, there is a general technique that permits one to take the non-isometric
(Hausdorff) extensions of some globally hyperbolic space-time and paste
them together into a generalized (non-Hausdorff) manifold with a metric.
Maximal Hausdorff sub-manifolds of this generalized manifold will then be
identifiable with the non-isometric extensions one started with.

This opens the door to a modal interpretation of non-Hausdorff
d-manifolds, at least of the variety constructible in the context of a failure
of the initial value problem by the mentioned technique. This interpretation
sticks to the standard GR identification of space-times with Hausdorff
d-manifolds (with some more constraints), and reads a non-Hausdorff
manifold resulting from gluing together non-isometric extensions as
representing alternative space-times, all of which develop from a certain
common region, which is given by the maximal globally hyperbolic
d-manifold. This interpretation gives physical meaning to a significant
variety of non-Hausdorff d-manifolds occurring in GR. By the construction,
a non-Hausdorff manifold of this variety witnesses indeterminism in
Butterfield’s sense, because it comprises non-isometric extensions of a space-
time. Finally, the interpretation dissolves most objections leveled against
non-Hausdorff manifolds in the GR literature; see Luc (2020). For more
details on the modal interpretation of non-Hausdorff d-manifolds in GR,
see Luc and Placek (2020).

The big question now is whether a generalized d-manifold constructed
from non-isometric extensions of some space-time can be viewed as a BST
structure. The next section suggests a negative answer to this question. This
negative answer reflects a philosophically interesting point about indeter-
minism, which we explore in Section 9.3.5.

9.3.4 On bifurcating curves in GR

BST is a theory of local indeterminism. For such indeterminism, there is a
small and well-defined locus at which one of a set of alternative possibilities
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is realized, whereas all the other alternatives stop being possible. The locus
is idealized to a set of particular point events. Depending on whether we
assume PCP92 or PCPNF, there is either a maximal event in the intersection
of any two histories, or there is a minimal event in the difference of any two
histories. We can express the same point in terms of modal forks, by which
we mean a pair of maximal chains that (1) share an initial segment, (2) the
shared segment is fully within the overlap of some histories, h1 ∩h2, and (3)
the separate segment of each chain is in a different difference of histories,
h1 \h2, or h2 \h1. A modal fork is thus a pair of maximal chains that belong
to two histories in a particular way. Since chains are obviously defined by
the pre-causal ordering, read as “something can happen after something
else”, a maximal chain is readily interpreted as a potential trajectory of a
point-like object. Thus, a modal fork can naturally be seen as representing
initially coinciding alternative possible evolutions for some point-like object.
Now, some modal forks have maximal elements in the shared segments—we
call them modal forks of the first kind. Other modal forks have no maximal
elements in the shared segments (they rather haveminimal elements in each
separate arm)—we call themmodal forks of the second kind. Clearly, a BST92
structure with more than one history contains at least one modal fork of the
first kind, whereas in BSTNF structures, all modal forks are of the second
kind (cf. Fact 3.21).

To recall our topological discussion of Section 9.2.3, BST92 structures with
multiples histories are non-starters for yielding generalized d-manifolds,
whereas BSTNF structures stand a good chance. Indeed, we have already
seen cases in which the base sets of BSTNF structures admit a generalized
d-manifold structure.Thus, as BST92 is out of the game, and as BSTNF allows
for modal forks of the second kind only, the question is whether generalized
d-manifolds in GR admit bifurcating trajectories of point-like entities that
are topologically like modal forks of the second kind. The required notion,
introduced in the GR literature by Hájíček (1971a), is that of bifurcating
curves of the second kind, defined as follows:

Definition 9.11. A bifurcating curve of the second kind on a Cr generalized
d-manifold M is a pair ⟨C1,C2⟩ of Cr-continuous curves C1 : [0,1] → M,
C2 : [0,1]→ M such that for some k ∈ (0,1]: ∀x ∈ I [x < k ⇔C1(x) =C2(x)].

Thus, in a bifurcating curve of the second kind there is no maximal element
in I at which C1 and C2 agree. A bifurcating curve of the first kind is
defined analogously (by the condition ∀x ∈ I [x 6 k ⇔C1(x) =C2(x)]), and
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topologically it is like a modal fork of the first kind. Note that, in contrast to
modal forks, bifurcating curves of GR as defined by Hájíček (1971a) do not
have any overt modal aspect.

We know that there are non-Hausdorff d-manifolds with bifurcating
curves of the second kind; for a simple example, pick the bifurcating real
line at the bottom of Figure 3.1 (p. 44). Relying on the visual intuition from
that example, one might think that given a failure of Hausdorffness, such
bifurcating curves should be easily available. After all, there must be a pair
of points witnessing non-Hausdorffness, and onemight think that one could
simply pick two curves that overlap everywhere below the pair, but then pass
through different elements of the pair. However, concrete cases from GR
argue against this intuition:There are no bifurcating geodesics (a special class
of causal curves) of the second kind in the generalized (non-Hausdorff) d-
manifold representing non-isometric extensions of Misner space-time. Nei-
ther do the generalized (non-Hausdorff) d-manifolds resulting from pasting
together non-isometric extensions of Taub space-time admit bifurcating
geodesics of the second kind (Hawking and Ellis, 1973).1⁴

Thus, the question of under what conditions non-Hausdorff d-manifolds
admit bifurcating curves of the second kind is non-trivial. The question
is answered, by providing necessary and sufficient conditions, by Hájíček’s
(1971a) theorem. To state it, we need one auxiliary notion, which is illus-
trated in Figure 9.1.

(a)

(1)

(2)
(b)

(1)

(2)

Figure 9.1 Gluing of two surfaces in two dimensions. (a) Not continuously
extendible; (b) continuously extendible.

Definition 9.12 (Continuously extendible gluing). Let W1 = ⟨W1,AW1 ,g1⟩
and W2 = ⟨W2,AW2 ,g2⟩ be GR space-times. Then φ : U1 7→U2, where U1 ⊆
W1,U2 ⊆W2, is a gluing function if (1) U1 is open and (2) φ is an isometry.

1⁴ To see why the visual intuition is wrong, note that these manifolds are constructed in a
particular way, viz., by pasting via an equivalence relation. Margalef-Bentabol and Villaseñor (2014)
showhownon-Hausdorffness combineswith the absence of bifurcating curves inMisner space-time.
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Moreover, φ is said to be continuously extendible iff there exist U ′
1,U

′
2,φ ′

such that U1 (U ′
1 ⊆W1,U2 ⊆U ′

2 ⊆W2, φ ′ : U ′
1 7→U ′

2, φ ′ is continuous and
φ ′|U1 = φ .

Clearly, the definition implies that U2 is open as well, and that U2 ( U ′
2.

Significantly, however, φ ′ above need not be an isometry between U ′
1 and

U ′
2, thus it need not be a gluing function.
Hájíček’s theorem says:

Theorem 9.3. The necessary and sufficient condition for a d-manifold con-
structed by gluing together Hausdorff d-manifolds to admit bifurcating curves
of the second kind is that the gluing be continuously extendible. (Hájíček,
1971a)

According to the already mentioned results of Luc and Placek (2020),
every non-Hausdorff d-manifold is constructible via the gluing of Hausdorff
d-manifolds. Therefore, Hájíček’s theorem produces a universal method to
determine whether, for any non-Hausdorff d-manifold, it admits bifurcating
curves of the second kind or not.

In plain English, Theorem 9.3 says that a non-Hausdorff d-manifold
admits the sought-for bifurcating curves of the second kind exactly if among
the component space-times that give rise to it, there are two particularly
related space-times. These space-times are pasted together by a gluing func-
tion φ , with isometric domain and counter-domain U1 and U2, respectively.
That gluing function φ can be extended to a function φ ′ on a larger domain,
where φ ′ is to be continuous (but not necessarily an isometry).This does not
mean that one can improve on the gluing φ ; it merely says that φ , U1, and
U2 are particularly related.

We have already encountered non-Hausdorff d-manifolds that result from
gluing together Hausdorff d-manifolds. A case in point are non-Hausdorff
d-manifolds on base sets of MBSs with multiple histories: see Fact 9.11.
Another example is provided by the one-dimensional non-Hausdorff topo-
logical manifold Mb that results from gluing together two copies of the
real line, sketched at the bottom of Figure 3.1 (p. 44).1⁵ Significantly, in
each of the mentioned cases, it can be proved (see Exercise 9.7) that the
gluing that is used is continuously extendible. Via Theorem 9.3, each of

1⁵ For an argument that this non-Hausdorff topological manifold gives rise to a C∞ d-manifold,
see Exercise 9.6. The Lorentzian metric g is trivially derived from the standard metric on the real
line. The individual lines are Hausdorff d-manifolds, and in fact sub-manifolds of the bifurcating
lines.
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these non-Hausdorff d-manifold thus harbors bifurcating curves of the
second kind. Do these MBS examples provide evidence that there are in GR
non-Hausdorff d-manifolds, constructible from non-isometric GR space-
times that arise from a failure of IVP for GR and that contain bifurcating
curves? We do not think so. In the case of GR, one glues together non-
isometric space-times. In our BST constructions, in contrast, the Hausdorff
d-manifolds that form the basis of the resulting non-Hausdorff d-manifold
are isometric. Even more importantly, in the case of a failure of the IVP in
GR, the non-isometric solutions to the EFE are not globally hyperbolic—
each extends a maximal globally hyperbolic space-time (guaranteed to exist
by the Choquet-Bruhat and Geroch theorem). In contrast, the manifold on
the real line, as well as Minkowski space-time which forms the base set of
the mentioned MBS constructions, are globally hyperbolic. The fact that
there are bifurcating curves of the second kind in MBS constructions does
not imply that analogously bifurcating non-Hausdorff d-manifolds can be
constructed from the multiples solutions to the EFE that are available from a
failure of the IVP. And, to repeat, the non-Hausdorff d-manifolds resulting
from pasting together extensions of Misner space-time1⁶ or non-isometric
extensions of Taub space-time do not contain bifurcating geodesics of the
second kind. It is a general and difficult open problem to prove whether
there are non-Hausdorff d-manifolds with a Lorentzian metric that are
constructible fromnon-isometric extensions of amaximal hyperbolic space-
time by continuously extendible gluing.1⁷ Only suchmanifolds harbor bifur-
cating curves of the second kind. If they exist, one may hope to obtain
a GR-based BSTNF structure with multiple histories that are individually
identifiable with maximal Hausdorff d-submanifolds of the structure.

Yet, in the cases that we know, gluing together non-isometric extensions
of a maximal hyperbolic space-time produces a non-Hausdorff d-manifold
without bifurcating geodesics. Gluing the extensions of Taub space-time
is a case in point. Interestingly, such non-isometric extensions witness
indeterminism according to the definition that represents the received view
in the philosophy of science (see Def. 9.10). We would like to capture this
kind of indeterminism in BST as well. After all, BST theory promises to
analyze local indeterminism, as occurring in spatio-temporal contexts. Yet
BST cannot capture these GR cases, since it requires bifurcating curves.

1⁶ Extensions of Misner space-time are isometric, though, see Chruściel and Isenberg (1993).
1⁷ A qualification is needed to avoid, e.g., cunningly gluing two Taub space-times on regions that

are a bit smaller than isometric regions and then presenting standard gluing as an extension.



branching in relativistic space-times 329

It appears thus that the philosophy of science notion of determinism and
indeterminism is different from that assumed by BST: the former is global,
whereas the latter is local.1⁸ We turn to this issue in the next section.

9.3.5 Global and local determinism and indeterminism

There are two traditions of thinking about determinism, one centered on
individual objects and the other centered on the entire universe. The former
tradition focuses on relatively small objects or processes (that is, small if
compared with the universe) and asks if these objects or processes could
evolve differently than they actually did. The cloak story that Aristotle tells
in De Interpretatione 19a clearly exemplifies this way of thinking: the issue
is that the cloak might wear out, but that it could also be cut up first. If we
deliberate over whether the cloak case argues in favor of indeterminism or
not, the data we look at are limited in space and time. It is of course the cloak
thatmatters, but some of its surroundings are relevant as well. However large
these surroundings are compared to the cloak, we typically do not extend
them to the entire universe. That is, we limit the data for the determinism
question to a relatively small region of our spatio-temporal universe. This
observation also applies to another great example we owe to Aristotle, that
of tomorrow’s sea battle. Although armadas ofmilitary vessels, together with
sailors, their commanders, weather conditions, etc., occupy a relatively large
area of the sea, this area is just a tiny spatio-temporal region of the entire
universe. In some examples used in this tradition, namely those involving
human agents and their decisions, the data is even further restricted—to
a particular person, or more precisely, to some particular period in that
person’s life.

This local approach to determinism and future contingents is a charac-
teristic feature of theories of agency. Putting philosophical disputes aside, it
is this approach that is used in everyday contexts, including in science labs.
A chemistry student investigating a catalytic reaction may wonder, seeing
different outputs of seemingly identical processes in subsequent runs of her
experiment: is the varying output due to the indeterministic nature of the
process, or to some tiny differences in the reaction’s initial conditions in

1⁸ A distinction between global and local notions of determinism has been argued for, e.g., by
Belot (1995), Melia (1999), and Sattig (2015).
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subsequent runs of the experiment? In an attempt to clarify the issue, she
focuses on local matters of fact: is the catalyst, as well as other chemical
substances used, sufficiently similar in subsequent runs of the reaction? Are
the temperature, pressure, concentrations, and other relevant characteristics
the same in all these runs? For these questions, the universe as a whole and
its possible global evolutions play no role.

The second tradition centers on global notions like that of the universe, the
world or its history, or a theory’smodels.That tradition is invariably linked to
Laplace’s vision of determinism. In Laplace’s well known metaphor, a super
intelligence is capable of “seeing” the entire past and future of the universe,
thanks to its grasp of the instantaneous state of the universe and its knowl-
edge of all the forces acting in the universe. After the removal of its epistemic
overtones, signalled by words like “knowledge” or “seeing”, the vision forms
the backbone of the current received analysis of the determinism of theories.
The basic intuition of this approach is that of “once similar, always similar”,
that is, a theory is deterministic iff whenever two models of the theory agree
on initial segments, they agree as wholes. A theory’s model, like a possible
world, is a global notion. In GR, models are of course GR space-times, and
similarity is identified with isometry. A general notion of determinism and
indeterminism in the global style that is applicable to GR has been given via
Def. 9.10.

The local and the global ways of thinking about determinism and indeter-
minism are in conflict. The combination of global determinism and local
indeterminism is known from the literature (Belot, 1995; Sattig, 2015).1⁹
Non-isometric extensions of a maximal hyperbolic space-time point in the
opposite direction, as these cases seem to combine global indeterminism
with local determinism. We find this combination paradoxical, wondering
how to conceive of a world that faces alternative possible evolutions, whereas
each object in this world has a deterministically fixed evolution.

How then shall we define the local determinism and indeterminism of
theories? Our point of departure is a given theory, together with some inter-
pretation. An appeal to interpretation is needed, since in the next step we ask
what individuals (that is, local objects that persist over time) are admissible,

1⁹ The context of their examples is Lewis’s (1983) definition of determinism, applied to an ideally
(axially) symmetric column with a critical weight on it, known as the ‘buckling column’. Common
sense and elasticity theory say that the direction of the column’s buckling is not determined, whereas
Lewis’s analysis delivers the verdict “determinism”. Lewis’s analysis is global, whereas the common
sense analysis is local.
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and the response may vary from interpretation to interpretation of a given
theory. We focus on systems admitted by a given theory, together with its
interpretation. In GR, systems are space-times.We then ask if a given system
of the theory is locally deterministic or locally indeterministic. To address
this question, we need to consider smaller objects, the constituents of the
system, that are admitted by the theory and its interpretation. There might
be theories with systems without constituents—we leave such theories and
systems aside. Considering a given system, we need to investigate whether it
has constituents that evolve indeterministically. If a system contains at least
one indeterministically evolving admissible object, we call the system locally
indeterministic. If a theory has at least one locally indeterministic system, the
theory is also called locally indeterministic accordingly.2⁰

How can we learn that a small object admitted by a theory (plus its inter-
pretation) evolves indeterministically? Here the theory’s evolution equations
come to the fore. Finding that the equations allow for multiple global
solutions for a small object is a clear signal that the object might evolve
indeterministically. Clearly, solutions are not to be outright identified with
possible evolutions, as their difference might come from the mathematical
features alone, that is, they might represent the same physical reality, with
their difference residing in mathematical surplus structure only. In the
parlance of physics, one says that such solutions exhibit gauge freedom.
Further, since solutions to evolution equations describe states posited by a
given theory, a further question is how these posited states are related to
reality, as conceived by the theory (with its interpretation). Clearly, going
local does not absolve one from the usual toil involved in attempts to infer
determinism or indeterminism for particular interpreted theories.

Turning to GR, in order to get to grips with local determinism vs. inde-
terminism, we need the concept of the trajectory of a particle in that theory.
In GR, the (potential) worldlines of free test point particles are standardly
assumed to be geodesics (i.e., curves that satisfy the geodesic equation;
see Section 9.2.4). Here “test” means that the particles do not alter the
geometry of the space-time they move in. By the Einstein Field Equations,
a particle’s motion is governed by the space-time metric, but the metric
is generally influenced by the particle’s motion as well. In the case of test
particles, however, their influence on the space-time metric is assumed to

2⁰ For a formal rendering of similar ideas, but assuming the simpler framework of Branching
Time, seeMüller and Placek (2018). For a different analysis of local indeterminism, see Sattig (2015).
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be negligible; the test particle is thought of as moving before the background
of an independent metric, following a geodesic.

Earlier, we distinguished bifurcating curves of the first vs. second kind;
that distinction carries over to bifurcating geodesics. Now, quite generally,
there are no bifurcating geodesics of the first kind in GR space-times, even
if the usual requirement of Hausdorffness is dropped—this follows from
the local uniqueness result for geodesics (see Chruściel, 2011, p. 6).21 Thus,
only bifurcating geodesics of the second kind are left on the stage. If the
Hausdorff property is assumed, it is possible to glue together locally unique
solutions to obtain a globally unique solution, and then there is no room for
bifurcating geodesics of any kind. In summary, only bifurcating geodesics of
the second kind stand a chance at all in GR, and they require non-Hausdorff
d-manifolds.

The quest for bifurcating geodesics to support local indeterminism in GR
might seem paradoxical, since they have been considered a bad thing by the
physics community. To give some examples, Earman (2008, p. 200) asks:
“how would such a particle [moving along a bifurcating geodesic] know
which branch of a bifurcating geodesic to follow?” In a similar vein,Hawking
and Ellis (1973, p. 174) opine that “a [bifurcating] behavior of an observer’s
world-line would be very uncomfortable”, with “one branch going into one
region and another branch going into another region”. Hájíček (1971b, p. 79)
observes that a system cannot have two solutions unless these solutions
form a bifurcating curve, and concludes: “Therefore, in view of the classical
causality conception coinciding with determinism it is sensible to rule out
the bifurcate curves”.

The underlying assumption of these objections is determinism. We agree
that a bifurcating actual trajectory is barely understandable, echoing Hawk-
ing and Ellis’s uneasiness of there being an observer present simultaneously
in two regions. But this is not what a modal interpretation offers, as it
takes separate branches of a bifurcating geodesic to be alternative possible
trajectories of a test particle. Note also that given indeterminism, there
are no answers to questions like “why did a particle go along a particular
trajectory, which is but one ofmany alternative possible trajectories?” Taking
indeterminism seriouslymeans acknowledging that, sometimes, there are no
such contrastive explanations for what happens.

21 For the particular subtleties related to the uniqueness result, see Chruściel (1991, Appendix F).



branching in relativistic space-times 333

We return to the case of non-isometric extensions of a maximal hyper-
bolic space-time, exemplified for instance by the extensions of maximal
hyperbolic Taub space-time. As we saw above, the Taub example satisfies
Def. 9.10 of global indeterminism (see Chapter 9.3.2). Is the example locally
indeterministic as well? Suppose that there are some objects in Taub space-
time. Could then at least one of these object face indeterministic evolutions,
with each possible evolution going to a different non-isometric extension?22

To be more specific, what are the objects in Taub space-time and its non-
isometric extensions? We focused on geodesics in the last section, which
are standardly interpreted as trajectories of unaccelerated test particles. One
might wonder what the trajectories of “real” particles in GR are. A dominant
tradition, going back to Einstein and Grossmann (1913), assumes that
particles of sufficiently small mass and size move along geodesics as well.
That tradition is supported by topological theorems to the effect that, given
certain idealizations are assumed, the particle moves along a geodesic. A
theorem to this effect is proved by Ehlers and Geroch (2004).23

Consider, therefore, a Taub space-time inhabited only by photons which
satisfy the required idealizations. In this case, all individual objects can be
safely assumed to move along geodesics. Now consider a photon that moves
along a lightlike geodesic in Taub space-time (such geodesics are called
“null”). This space-time has two non-isometric extensions, ⟨M++,g++⟩ and
⟨M+−,g+−⟩. What happens to the photon as it leaves the initial region?
That is, what does the photon’s geodesic look like as the photon leaves Taub
space-time and proceeds to a new region in one of the two extensions?
By the discussions of Chapter 9.3.2, we know that there are no bifurcating
geodesics. Thus, there are two classes of null geodesics in Taub space-time.
Geodesics of the first class are completed in one extension, and geodesics
of the other class are completed in the second extension (cf. Hawking and
Ellis, 1973, pp. 170–178, and Chruściel and Isenberg, 1993, Lemma 3.2).
The photon’s evolution appears predestined: depending on which class the
photon’s geodesic belongs to, it will continue to one extension or to the other.
Thus, no object living in Taub space-time faces an indeterministic evolution.
The moral is that non-isometric extensions of Taub space-time inhabited
by photons satisfying the mentioned idealizations are locally deterministic,

22 More mathematical sophistication is needed to formulate this question precisely; see Chruściel
and Isenberg (1993).

23 Of course, the direct way to study a particle’s trajectory is to find an exact solution to a (relevant)
problem of motion of GR, yet there are only very few exact solutions of this kind.
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yet they satisfy the definition of global indeterminism, Definition 9.10.
We thus have a disturbing combination of global indeterminism and local
determinism.

This result confronts us with a dilemma concerning how to further
develop branching style-theories.The problemwe face is metaphysical: How
can we capture the notion of a possible history, which intuitively is a maxi-
mal possible course of events? Belnap (1992) opts for an order-theoretical
criterion that is based on the “later witness” intuition (see Chapter 2.2):
a history is a maximal directed subset of the base set W of a BST92 (or
BSTNF) structure W . That definition captures local indeterminism, but not
the combination of global indeterminism plus local determinism that we
discussed in this section. A remedy, suggested by the topological results
concerning MBSs and discussed at the end of Chapter 9.1.2, might be to
resort to topological foundations as an alternative to defining BST structures
in terms of an ordering. The idea would be to identify a BST structure with
a generalized manifold, and to define histories to be maximal Hausdorff
submanifolds.This idea is further supported by the gluing technique applied
to non-isometric extensions ofmaximal hyperbolic space-times of GR.With
this remedy, a new BST-style theory could accommodate both varieties
if indeterminism, local and global. Whether this remedy is attractive and
worth pursuing depends on one’s stance on the combination of global
indeterminism and local determinism that we described: Does it reflect a
feature of our world, or is it merely a mathematical gimmick coming from
the theory of differential manifolds? We remain skeptical.

9.3.6 A note on closed causal curves and BST

As we have signaled, there is another relevant issue at the interface of GR
and BST: some GR space-times admit closed causal curves, which means
that the (strict) ordering determined by these curves is not asymmetric. This
contradicts a basic a postulate of BST, viz., that W = ⟨W,<⟩ is a (strict)
partial order. Thus, in general, causal curves in GR allow one to define just
an irreflexive and transitive relation ≺, called a strict pre-order, rather than
the strict partial ordering that BST calls for.2⁴ In the following section we
show that this ordering problem can be resolved by slightly generalizing

2⁴ A strict pre-order has a reflexive companion, 2, called a pre-order.
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BST. For simplicity’s sake, we limit our attention to structures without
modal funny business as discussed in Chapter 5. We will construct modal
structures (i.e., possibly with multiple histories) in which the ordering can
be non-asymmetric. The construction of generalized BST, call it genBST, is
motivated by the following theorem of GR.2⁵

Theorem 9.4. For every event p in an arbitrary GR space-time there exists an
open set U with p ∈U such that for every q,r ∈U there is a unique geodesic
connecting q and r, and staying entirely inU .

Since geodesics fall into three classes, namely time-like, space-like, and
null-like geodesics, the uniqueness of connectability means that in a time-
orientable GR space-time the geodesics can be used to define a strict partial
ordering≺ on any U of the kind that the theorem above guarantees to exist:
q ≺ r iff q and r are different events and q is connectible to r by a future
directed time-like or null-like geodesic. On each U we can thus construct a
BST structure (being topologically prudent, onemight prefer BSTNF, prepar-
ing for cases with bifurcating geodesics). Since the U ’s (the “patches”) cover
the entire space-time, the genBST structure needs to somehow combine
together all these little BST structures.

For our definitions, we recall the terminology introduced inChapter 4.4.1:
Let ⟨W,≺⟩ be non-empty strict pre-order. Then

1. MC is the set of maximal chains in ⟨W,≺⟩, and MC(e) =df {t ∈ MC |
e ∈ t};

2. t≺x = {z ∈ t | z ≺ x}, where t ∈ MC(x) and x ∈ W (t2x, t≻x, and t3x

are similarly defined).

Note that elements of MC, of MC(e), as well as chains t≺x, t2x, t≻x, and t3x

can contain loops, i.e., there can be y,z ∈ t for which both y ≺ z and z ≺ y.

Definition 9.13 (genBST structure). Let W ̸= /0, ≺ be a strict dense pre-
order on W , and O ⊆P(W ). A triple W = ⟨W,≺,O⟩ is a genBST structure,
iff for every e ∈W there is a patch Oe ∈ O around e such that:

1. e ∈ Oe;
2. ⟨Oe,≺|Oe⟩ is a nonempty dense strict partial order satisfying the

following:

2⁵ See Wald (1984, Theorem 8.1.2).
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(a) ∀e′∈Oe ∀t∈MC(e′) ∃x,y∈t∩Oe [x≺|Oe e′ ≺|Oe y ∧ t≻x∩t≺y⊆Oe];
(b) every chain in ⟨Oe,≺|Oe⟩with a lower bound in Oe has an infimum

in Oe;
(c) if a chainC in ⟨Oe,≺|Oe⟩ is upper bounded by b ∈ Oe, then Bb =df

{x ∈ Oe |C 2|Oe x∧ x 2|Oe b} has a unique minimum,
(d) if x,y ∈ Oe and x ≺ z ≺ y, then z ∈ Oe.

In a genBST structure ⟨W,≺,O⟩,W and≺ form a non-empty dense strict
pre-order, and O contains local patches, at least one for each e ∈ W . One
may think of W and ≺ as a non-Hausdorff d-manifold with a Lorentzian
metric and the ordering relation determined by geodesics on this manifold.
A patch for e must satisfy some conditions: First, Oe contains e (it is a patch
for e, after all) and the pre-order ≺ restricted to Oe is a dense strict partial
order (asymmetric, thus containing no loops). Any maximal chain passing
through e extends in Oe below and above e. The conditions (b) and (c)
emulate the infima postulate and the suprema postulate of common BST
structures. Note that (c) makes room for multiple history-relative suprema
of a chain, provided that there are multiple upper bounds of the right kind.
The next condition forbids Oe from having holes. A genBST structure may
contain causal loops, but for any e there is a patch Oe ∈ O , within which the
order is partial, so the patch does not contain any causal loops.

In the usual way, for each Oe we define choice sets in Oe (see Def. 3.11).
And we say that a subset E ⊆ W is a choice set in W if it is a choice set in
some Oe ∈O for some e ∈W .The existence of choice sets hinges on how the
condition (2c) of Def. 9.13 is satisfied. If for every upper bounded chain in
Oe there is just one minimum for all sets Bb defined in this condition, then
there are no choice sets in Oe. This is exactly what happens in a generalized
d-manifold (with a Lorentzian metric) with no bifurcating geodesics.

One may wonder how the global pre-order ≺ meshes with choice pairs.
Somewhat worryingly, our postulates so far allow for distinct elements of
a choice set to have an upper bound. Recall that we identified a choice set
with something at which alternative possibilities becomemodally separated:
while before the choice set all the relevant alternative possibilities are avail-
able, at each element of the choice set only one alternative possibility is
available. Allowing for a common bound of distinct elements of a choice
set thus sounds like permitting previously excluded alternative possibilities
to be possible again. Before certain events, both alternative possibilities are
open, then no matter how the world develops, only one of them is open and
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the other is excluded, but then again, we have both the alternative possibil-
ities available. As this return of once excluded possibilities contradicts the
basic intuition of no backward branching, we prohibit it by accepting the
following postulate:

Postulate 9.1 (Separation). For every choice set c̈ ⊆ W , and any x,x′ ∈ c̈: if
x ̸= x′, then there is no z ∈W such that x ≺ z∧ x′ ≺ z.

This postulate restricts Def. 9.13, as it implies that not every genBST
structure ismetaphysically sound. Significantly, it prohibits one kind of loop:
those that pass through distinct elements of a choice set.2⁶ Note the interplay
between local and global notions: if x and x′ are separated by elements of a
choice set c̈ in some patch Oe in the sense that c 6 x and c′ 6 x′ for c,c′ ∈ c̈
with c ̸= c′, then x and x′ have no common upper bound, no matter how far
we go along ≺, possibly outside Oe.

We next define consistency in order to anchor the notion of a history.
Note that our definition excludes the possibility of modal funny business as
discussed in Chapter 5.2⁷

Definition 9.14 (Compatibility and consistency). e,e′ ∈ W are compatible
iff there is no choice set E ⊆ W with distinct x,x′ ∈ E such that x 2 e and
x′ 2 e′.
A ⊆W is consistent iff ∀e,e′ ∈ A : e and e′ are compatible.

Provably, there are maximal consistent subsets of W in a genBST struc-
ture.2⁸ We identify them with histories:

Definition 9.15. Let W = ⟨W,≺,O⟩ be a genBST structure. Histories in W

are maximal consistent subsets of W .

It can be proved that histories in genBST are downward closed, and that
genBST structures satisfy PCPNF. However, histories in genBST are not
necessarily directed, as they need not satisfy one direction of the later witness
intuition: there might be e,e′ in some history that have no upper bound
in that history. However, genBST structures satisfy the following weaker
condition:2⁹

2⁶ Note that a bifurcating and reconvening geodesic that involves a choice set is different from a
closed causal curve in a single GR space-time, as the latter does not involve a choice set.

2⁷ To accommodate MFB, one needs to keep track of which sets of elements of choice sets are
consistent, and which are inconsistent. We do not discuss this topic, as the aim of this section is only
to serve as an illustration of how to handle a non-asymmetric ordering in a branching approach.

2⁸ This is the proof of Lemma 9.1 of Placek (2014).
2⁹ See Fact 9.14 of Placek (2014). See that paper for a proof.
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Fact 9.15. If e,e′,e∗ ∈ W and e 2 e∗ and e′ 2 e∗, then there is a history h
such that e,e′,e∗ ∈ h.

In this sense, histories in genBST generalize the properties of histories in
BSTNF structures.

Histories in genbBST structures and the structures themselves have wel-
come topological properties, as discussed in Placek (2014). We do not
develop genBST here further, as it does not fully resolve the main obstacle to
modeling the indeterminism of GR arising out of a failure of the IVP—the
lack of bifurcating geodesics. The structures of genBST do, however, show
that causal loops are not a fatal problem for BST.

9.3.7 Summary on General Relativity

In our discussion of indeterminism in GR and its modeling in BST, we
focused our attention on indeterminism arising from a failure of the IVP
for GR, restricted to vacuum solutions. The salient feature of the known
cases of this sort is that a manifold representing the involved space-times
is non-Hausdorff, but does not contain bifurcating geodesics of the second
kind. To analyze such cases in BST, local Euclidicity (definitionally assumed
in mainfolds) compels the use of BSTNF. Then, in order to represent inde-
terminism and satisfy PCPNF, one needs modal forks of the second kind
(see Sec. 9.3.4). The GR analogue of a modal fork of the second kind is
a bifurcating causal curve of the second kind. Thus, a bare minimum for
modelling indeterminism in GR in the BSTNF framework is the existence
of bifurcating causal curves of the second kind in realistic GR manifolds.3⁰
However, the lack of bifurcating geodesics in the known GR constructions
suggests that there might be no bifurcating causal curves of the second kind
in GR.

SuchGRmanifolds, which are non-Hausdorff but do not contain bifurcat-
ing causal curves of the second kind, are curious. Our diagnosis is that such
cases present a surprising combination of global indeterminism and local
determinism. That is the reason why they cannot be modeled by BST, which
focuses on local notions like choice sets or choice points. To contrast this
withMinkowskianBranching Structures, which areBST structures: these are

3⁰ The word “realistic” is meant to put aside some artificial constructions like the one mentioned
in footnote 17.
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constructed by gluing together copies ofMinkowski space-time (aGR space-
time indeed), butwithoutmotivation provided by GR’s dynamical laws.That
is, the gluing does not come from the fact that these copies of Minkowski
space-time, with different fields ascribed, are multiple solutions of GR’s laws
of evolution.

We do not know whether the absence of natural cases of bifurcating
geodesics is just limited to known cases, or whether it is general (i.e.,
concerning the results of gluing together non-isometric extensions of any
maximal hyperbolic space-time of GR). We thus do not know whether there
are cases of local indeterminism resulting from a failure of IVP in GR. The
known non-trivial cases of indeterminism in GR are global, not local.

Does this mean that GR has refuted the metaphysical version of local
indeterminism underlying BST, showing that that it is not what the world
is like? Undoubtedly, there is a conflict between BST and GR but, as to
informing us about the world, GR is the theory of the large. It does not easily
integrate with our best theory of the small, quantum mechanics. And, by the
very nature of the BST project, it is the behavior of the small that is decisive
for the success or failure of local indeterminism. Thus, the physics data for
local indeterminism, if it is ever to emerge, will be from quantum gravity, a
theory that would unify GR and QM, and not from GR alone.

9.4 Conclusions

In this chapter wemade good on our promise of exhibiting BSTNF structures
in which histories are isomorphic to Minkowski space-time, with their
content being given by the attribution of physical properties to points. Our
construction of Minkowskian Branching Structures relies on a number of
conditions on property attributions. A significant result of this construction
is that each history in a BSTNF structure derived from anMBS can be viewed
as a Hausdorff d-manifold, whereas the whole structure itself can be seen as
a generalized d-manifold, which is non-Hausdorff iff it contains multiples
histories.These results suggest amore prominent role for topological notions
in constructing BST structures.

We next discussed whether differential manifolds can generally be built
on BSTNF structures. The BST postulates are too frugal to always allow for a
topological, let alone a differential manifold structure. However, the slogan
“nice input in, nice output out” is vindicated to a large extent. That is, if
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one begins with BSTNF histories that all admit Hausdorff Cr d-manifold for
the same r, the entire structure will be a topological manifold; furthermore,
if this manifold is not a Kervaire-like case, it admits a Cr generalized
d-manifold structure.

Having reviewed some of the basic notions of GR, we attempted a BST-
based analysis of indeterminism in GR. We described in detail one case of
this sort, namely non-isometric extensions of Taub space-time. Although
this case has the desired topological description, with the set of extensions
interpretable as a generalized d-manifold, and each extension a maximal
Hausdorff d-submanifold, it cannot be given a BST reading, because it does
not contain bifurcating geodesics. Bifurcating causal curves are, however,
needed to introduce alternative possibilities in the BST framework. Fur-
thermore, bifurcating geodesics are not present in other non-Hausdorff
manifolds naturally constructible from multiple solutions to the Einstein
Field Equations, at least as far as we know. Whether this signals a general
non-existence theorem on bifurcating geodesics in GR is an open problem.

Our diagnosis of this situation is that non-isometric extensions of Taub
space-time (and similar systems) oddly combine global indeterminism with
local determinism. Whether this combination is a universal feature of non-
Hausdorff manifolds constructible from multiple space-times is not clear.
Nevertheless, we take it that this opposition of local vs. global varieties of
indeterminism is the major obstacle to modeling GR indeterminism in the
order-theoretic framework of BST. The presence of closed causal curves in
some space-times of GR, however, is not a devastating obstacle for a BST
analysis, as a pertinent generalization of BSTNF, genBST, is available.

9.5 Exercises to Chapter 9

Exercise 9.1. Prove the transitivity of <R of Def. 9.7.

Exercise 9.2. Prove the density of <R of Def. 9.7.

Exercise 9.3. Furnish the detail of the chain construction in the proof of
Fact 9.2(2).

Hint: This construction is given in the proof of Lemma 8 of Wroński and
Placek (2009). We copy it in Appendix B.9.
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Exercise 9.4. “Old” MBSs, as defined by Müller (2002), Wroński and Placek
(2009), or Placek and Belnap (2012), yield BST92 (not BSTNF) structures of
the form ⟨B,<R⟩. Show that the open-ball topology onR4 does not yield the
b-ball topology on B, if the structure comprises multiple B-histories.

Hint: By the premise, B has a choice point for some histories hσ and hη .
This choice point is then in b-balls with label σ and in b-balls with label
η . Observe that the intersection of such two b-balls with different labels is
not open (i.e., cannot be constructed as an arbitrary union of b-balls). Thus,
b-balls are not open and hence they fail to deliver a topology on B.

Exercise 9.5. Let ⟨B,<R⟩ be the BSTNF structure determined by an MBS
⟨Σ,F,P⟩ and ⟨B,A⟩ be a generalized d-manifold on B. Show that for any
B-history hσ in B, hσ is open and connected in the manifold topology
induced by atlas A on B.

Exercise 9.6. Show that the non-Hausdorff topological manifold depicted
by Figure 3.1(b) and described below it can be equipped with a C∞ atlas A
and a Lorentz metric g, the result being a C∞ generalized non-Hausdorff
d-manifold.

Hint: Consider an open ball b = {[⟨x, i⟩] | x ∈ (x1,x2)}, where (x1,x2) is
an open interval in the reals and i = 1 or 2, and the mapping is given by
φ([⟨x, i⟩]) = x, restricted to the ball. Take the atlas A generated by suchmaps.
Assume that g has signature −1, so the metric is defined via r1r2 = −1 |
r1 || r2 |, where ri are co-vectors in this manifold. Argue finally that local
Euclidicity is satisfied, but the Hausdorff condition is not.

Exercise 9.7. Show that our construction of MBSs involves continuously
extendible gluing.

Hint: Write down the function that glues together two copies of Minkowski
space-times into two MBS histories. Argue that their shared region is open.
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