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Abstract and Keywords
This chapter introduces normal propositional modal logics, then non-normal 
systems which invalidate the Necessitation rule (N). It shows how to model these 
logics using non-normal or impossible worlds, thought of as ‘logic violators’. This 
approach comes with non-uniform truth conditions: some operators are 
understood in one way at normal worlds, in another way at non-normal worlds. 
This may or may not be a problem. The specific case of non-adjunctive and non- 
prime worlds are then discussed, where conjunction and disjunction can behave 
in unusual ways.

Keywords:   normal propositional modal logics, non-normal systems, Necessitation, non-normal worlds, 
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4.1 Normal Modal Logics
We begin with a rehearsal of standard or normal modal logic. To keep things 
simple, we limit ourselves to a propositional language , including a set of 
atoms AT: p, q, r, p1, p2, …. We have negation ¬, conjunction ∧, disjunction ∨, the 
material conditional ⊃, and the box □ and diamond ◇ of necessity and 
possibility. We use A, B, C, … as metavariables for formulas of . The well- 
formed formulas are the atoms in AT and, if A and B are well-formed formulas, 
then so are:

Outermost brackets are normally omitted.

◇
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A normal possible worlds frame or Kripke frame  for  is a pair 《W, R》, 
where W is a set of possible worlds and R ⊆ W × W is a binary accessibility 
relation between them. A frame becomes a model , when 
endowed with a valuation function v. This assigns to each atom either the value 
1 (true) or the value 0 (false) at a world. So we write ‘vw(p) = 1’ to mean that p is 
true at w, and ‘vw(p) = 0’ to mean that it is false there.

The valuation function v is extended to the whole language via the following 
recursive clauses:

(S¬) vw(¬A) = 1 if vw(A) = 0, and 0 otherwise.

(S∧) vw(A ∧ B) = 1 if vw(A) = vw(B) = 1, and 0 otherwise.

 (p.96)

(S∨) vw(A ∨ B) = 1 if vw(A) = 1 or vw(B) = 1, and 0 otherwise.

(S⊃) vw(A ⊃ B) = 1 if vw(A) = 0 or vw(B) = 1, and 0 otherwise.

(S□) vw(□A) = 1 if for all w1 ∈ W such that Rww1, , and 0 
otherwise.

(S◇) vw(◇A) = 1 if for some w1 ∈ W such that Rww1, , and 0 
otherwise.

Logical consequence or entailment ‘⊨’, is defined as truth preservation at all 
worlds of all models (for any set of formulas Γ):

Γ ⊨ A iff for all models  and all w ∈ W: if vw(A) = 1 for all B 

∈ Γ, then vw(A) = 1.

For single-premise entailment, we will write A ⊨ B instead of {A} ⊨ B. Logical 
equivalence, A ⫤⊨ B, is two-way entailment between A and B. Logical validity or 
logical truth, ⊨A, defined as truth at all worlds of all models, is a special case of 
entailment by the empty set, ∅ ⊨ A.

The semantics makes □A equivalent to ¬◇¬A and ◇A equivalent to ¬□¬A, as 
desired. It also validates the Distribution principle or K-principle:

(K) □(A ⊃ B) ⊃ (□A ⊃ □B)

The logic induced by the semantics (the set of valid sentences) is called K, after 
Kripke. This is the weakest normal modal logic. In the context of modal logic, 
‘normal’ means that the logic includes all the classical tautologies plus (K), and 
is closed under modus ponens and the Necessitation rule:

(N) If ⊢A, then ⊢□A

《 》

《 》
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(Be careful in how you read this rule. It doesn’t say that A implies □A: that 
would trivialize modality by committing us to treating all truths as necessary 
truths. Rather, it says that, if A is a theorem of the logic/a logical truth, then so is 
□A.)

 (p.97) K is the base normal modal logic, in that its semantics puts no 
conditions on the accessibility relation R. If we impose some conditions on R, we 
obtain stronger normal modal logics. The normal modal logics obtained in this 
way contain all the K-theorems, plus some extra ones too. (In semantic terms, 
we get more entailments by putting further conditions on the accessibility 
relation R.) Table 4.1 shows the most well-known cases:

Table 4.1: axiom-frame correspondence

Axiom name Axiom scheme Frame condition

D □A ⊃ ◇A R is serial: ∀x∃yRxy

T □A ⊃ A R is reflexive: ∀xRxx

B A ⊃ □◇A R is symmetrical
∀x∀y(Rxy → Ryx)

4 □A ⊃ □□A R is transitive
∀x∀y∀z(Rxy ∧ Ryz → Rxz)

5 ◇A ⊃ □◇A R is euclidean
∀x∀y∀z(Rxy ∧ Rxz → Ryz)

The logic KTB adds the T and B axioms, for example, and so corresponds to to 
the reflexive and symmetrical frame. Corresponding to the serial and euclidean 
frame is the logic KD5. And so on.

Whether we accept these additional axioms depends on how we understand the 
involved modalities. The D axiom says that what is necessary is possible, and 
this seems plausible on most readings of the notions of possibility and necessity. 
For D to hold, we need every world in W to access some world (that’s Seriality). 
For if a world w accesses no world, given (S□), all formulas of the form □A are 
true at w. And given (S◇), all formulas of the form ◇A are false at w, for there is 
no accessible world where A is true. Thus, D fails. (The label ‘D’ comes from 
‘deontic’, inspired by the reading of necessity as ‘it ought to be the case that’ 
and of possibility as ‘it is permissible that’.)

If the relevant necessity is factive, then the T axiom must hold: if A is necessary 
(at a given world w), then it should be true (at that  (p.98) world). This won’t 
hold in general without Reflexivity (every world is possible relative to itself). For 
without Reflexivity, it could be that A holds at all worlds accessible from w but 
not at w itself.

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-4#oso-9780198812791-chapter-4-tableGroup-1
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If the relevant necessity is unrestricted, then the 4 and 5 axioms look very 
plausible. If A is unrestrictedly necessary (or possible) in the relevant sense, this 

fact should not be contingent on anything and so it should be necessary as well. 
This may not be so for factive but restricted or relative necessities. Against 4, for 
instance, it might be physically necessary (determined by the laws of physics) 
that bodies do not accelerate through the speed of light; but its necessity may 
not be determined by the laws of physics. The 4 and 5 axioms are characteristic 
of two important normal modal logics, S4 (= KT4) and S5 (= KT5), due to C.I. 
Lewis (Lewis and Langford 1932), a founding father of modern modal logic.

If we read ‘□’ as an epistemic operator expressing knowledge, it is doubtful that 
either 4 or 5 holds. In epistemic logic, 4 is called the Axiom of (Positive) 
Introspection, or KK-principle. It says that, if one knows that A, then one knows 
that one knows that A. One has perfect introspective access to what one knows. 
It seems, however, that this has counterexamples. Think of yourself panicking 
the night before the exam, but doing fine with your essay the day after. You may 
truthfully say: ‘Yesterday I didn’t know I had learned so much by studying, but 
today it turned out that I did’. You knew the answers, but didn’t know that you 
knew them all.

The 5 axiom is even more suspect in an epistemic setting. It is equivalent to 
¬□A ⊃ □¬□A, which, in an epistemic setting, says: if one doesn’t know that A, 
then one knows that one doesn’t know that A. That doesn’t seem at all plausible. 
For one thing, we often think we know things we don’t in fact know. In those 
cases, we don’t believe, and so don’t know, that we don’t know them.

As we shall see in Chapter 5, it is indeed doubtful that any normal modal logic 
can provide an adequate formal treatment of epistemic notions like knowledge 
and belief. This is due to the logical omniscience phenomena, which were 
introduced in Chapter 1, and to which we shall return in §5.1.

 (p.99) 4.2 Non-Normal Modal Logics
This section expands on Berto and Jago 2018. Normal Kripke frames are 
celebrated for having provided suitable interpretations of different systems of 
modal logic, including S4 and S5. Before Kripke’s work, we merely had lists of 
axioms or, at most, algebraic semantics many found rather uninformative. Kripke 
also introduced non-normal worlds (Kripke 1965), in order to provide world- 
based semantics for modal logics weaker than the basic normal modal system K. 
These are non-normal modal logics, including C.I. Lewis’s systems S2 and S3.

Non-normal modal systems do not include the Necessitation rule:

(N) If ⊢A, then ⊢□A

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-184
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-5#
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-1#
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-5#oso-9780198812791-chapter-5-div1-32
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-36
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-175
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As we said in §4.1, (N) holds in the weakest normal modal logic K and all its 
normal extensions. A semantic counterpart of (N) would tell us that if A is a 
logical truth, then so is □A. This principle cannot be avoided when □ is 
understood in line with (S□). For if A is a logical truth, then it is by definition 
true at all worlds of all models. So given any world w, A is true at all worlds 
accessible from w, so also □A is true at w. Since this applies to any world of any 
model, □A will thereby be a logical truth, too.

Non-normal worlds enter the stage in order to make (N) fail. Take the same 
language  of §4.1 and give it the following semantics. A non-normal worlds 
frame  for  is a triple 《W, N, R》, with W the set of worlds and N ⊆ W the 
subset of normal worlds, so that the items in W − N are the non-normal worlds. R 

is as before. A frame becomes a non-normal model  when 
endowed with a valuation function v assigning truth values to formulas at 
worlds.

The truth conditions for the extensional logical vocabulary are defined as in §4.1. 
But we now take the clauses (S□) and (S◇) to apply to normal worlds only. If w ∈ 

W − N, the clauses are:

(NS□) vw(□A) = 0

(NS◇) vw(◇A) = 1

 (p.100) At non-normal worlds, formulas of the form $A, with $ a modal 
operator, are not evaluated depending on the truth value of A at other 
(accessible) worlds, but get assigned their truth value directly. Specifically, all □- 
formulas are false and all ◇-formulas are true. In a sense, non-normal worlds of 
this kind are worlds where nothing is necessary and anything is possible. These 
worlds are deviant only in this respect: their behavior, as far as the extensional 
connectives are concerned, is quite regular. Notice also that, as is easy to check, 
(NS□) and (NS◇) still deliver the equivalence of □A with ¬◇¬A and of ◇A with 
¬□¬A.

Logical consequence or entailment is defined as truth preservation at all normal 
worlds in all models:

Γ ⊨ B iff for all models  and all w ∈ N: if vw(A) = 1 for 
all A ∈ Γ, then vw(B) = 1

Logical validity is truth at all normal worlds in all models.

Restricting logical consequence and validity to normal worlds in this way is a 
common, though not universal, move in semantics that include non-normal or 
impossible worlds. The insight behind this comes from the second 
characterization of impossible worlds as ‘logic violators’ from §1.4: worlds where 

《 》

《 》

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-4#oso-9780198812791-chapter-4-div1-27
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-4#oso-9780198812791-chapter-4-div1-27
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-4#oso-9780198812791-chapter-4-div1-27
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-1#oso-9780198812791-chapter-1-div1-7
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logic is different, or where the laws of logic fail. If this is the interpretation of 
the items in W − N, then we should not refer to, or quantify over, such worlds 
when we characterize logical consequence and validity. For these, we want to 
look only at possible or normal worlds: worlds where logic is not different.

This setting gives us a basic non-normal modal logic, which Priest (2008) calls N. 
If one adds the condition that R be reflexive, one gets C.I. Lewis’s modal system 

S2. If one takes R to be reflexive and transitive, one gets S3 (Kripke 1965).

This kind of semantics makes (N) fail. Take any classical propositional tautology, 
say, of the form A ∨ ¬A. This holds at all worlds of all interpretations. Therefore, 
□(A ∨ ¬A) holds at all normal worlds of all interpretations, so ⊨□(A ∨ ¬A). But 
by (NS□), □(A ∨ ¬A) does  (p.101) not hold in any non-normal world. So □□(A 

∨ ¬A) is false at normal worlds that have access, via R, to any non-normal world. 
As there must be some such world in some model, we have ⊭□□(A ∨ ¬A).

Another welcome feature of this semantics is that it does not make the 
‘irrelevant’ conditional A ⥽ (B ⥽ B) valid. This is one of the ‘paradoxes’ of the 
strict conditional (§1.3). It fails in non-normal models once one reads A ⥽ B as 
the necessitation of the horseshoe, □(A ⊃ B). Then the paradox is □(A ⊃ □(B ⊃ 

B)). This is valid in K, but not in N (and extensions): take a world w ∈ N 
accessing a non-normal w1 where A holds but (since the world is non-normal) 
□(B ⊃ B) fails.

Non-normal worlds semantics of this kind does not provide a systematic 
framework for dealing with all cases of irrelevance (nor was it intended to do 
so). Nevertheless, this way of handling one paradox of the strict conditional 
hints at a general strategy: make irrelevant conditionals fail by taking into 
account non-normal or impossible worlds, understood as worlds where logical 
truths such as B ⥽ B may fail. We’ll see more of this approach in Chapter 6.

The semantics for non-normal modal logics such as S2 and S3 is based on a 
valuation function which assigns the same truth value to all □-formulas (false) 
and all ◇-formulas (true) at non-normal worlds. We also mention the modal 
system S0.5, due to Lemmon (1957). This is a non-normal system whose 
semantics, initially provided by Cresswell (1966), includes non-normal worlds at 
which formulas that begin with a modal operator are assigned arbitrary truth 
values. The valuation function v treats modal formulas as atomic. 
(Interpretations for S2 or S3 are special cases of interpretations for S0.5: those 
cases in which the valuation function uniformly treats □-formulas as false and ◇- 
formulas as true at non-normal worlds.) This setting makes the inter-definability 
of □ and ◇ via negation fail.

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-247
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-175
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-1#oso-9780198812791-chapter-1-div1-6
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-6#
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-182
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-66
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 (p.102) 4.3 Non-Uniform Truth Conditions
A key idea in impossible worlds semantics of various kinds is that certain 
complex formulas are assigned arbitrary values at non-normal worlds. They are, 
in effect, treated as atomic sentences. At worlds that behave this way, the syntax 
of a formula can be partly or wholly disregarded. As we shall see in Chapter 5 on 
epistemic logics, this insight can be fruitful, and is at work in semantic 
frameworks including non-normal or impossible worlds.

This approach requires the truth conditions of some operators not to be spelled 
out in a uniform way across worlds. In particular, at non-normal worlds complex 
formulas can have truth values assigned in a non-recursive way. But this 
approach raises worries. Fine (2019) claims that it is a ‘theoretical virtue in 
itself’ for a semantics to be uniform:

we would like the compositional clauses for the logical connectives to be 
‘uniform’ or non-disjunctive. … without uniformity, it is not even clear that 
we will have clauses for the logical connectives themselves as opposed to 
some gerry-mandered product of the theoretician’s mind.

Fine (2019, 1)

A similar worry is pressed in Williamson (2017).

It is not clear, however, why disjunctiveness would be a problem. The fact that a 
concept has a disjunctive characterization per se does not make the concept 
itself gerrymandered or gruesome. The notion Australian citizen, for instance, is 
obviously perfectly fine even though it works just as follows: x is Australian 
citizen iff either x was born in Australia or x has been naturalized. (The example 
is due to Priest (2005, 237).)

A more serious worry is lack of compositionality. If truth-at-a-world-conditions 
constitute meaning, and we want meanings to be compositional for them to be 
graspable by finite minds, then the truth-at-a-world-conditions of whole formulas 
should be given in terms of those of their subformulas. If there are infinitely 
many non-normal worlds in our setting, however, we may have no way finitely to 
do this.

 (p.103) We think this is a serious philosophical worry. We’ll offer a 
philosophical response to it in §8.5, by showing how to get a compositional 
account of content involving impossible (non-normal) worlds. Here, our focus is 
on the logical applications of impossible worlds. We want our impossible worlds 
models to give us a notion of logical consequence that’s useful for certain 
applications, for example. But that isn’t to demand that they are all 
compositional. A model can be useful, even if it isn’t capable of underpinning a 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-5#
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-113
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-113
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-344
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-246
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-chapter-8#oso-9780198812791-chapter-8-div1-55
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theory of meaning for a language like English. So for pragmatic logical 
purposes, we’re happy to dismiss the worry.

4.4 Non-Adjunctive and Non-Prime Worlds
This section draws on Berto and Jago 2018. Rescher and Brandom (1980) 
introduce impossible worlds of a different kind to the ones we just saw. (Their 
book’s subtitle is A Study in Non-Standard Possible-Worlds Semantics and 
Ontology, but, as we shall now see, the worlds making their semantics non- 
standard deserve the label of impossible worlds.)

In their formal semantics, standard possible worlds are taken as maximal 
consistent aggregates of states of affairs. Their non-standard worlds are 
obtained combinatorially, by means of two recursive operations having standard 
worlds as their base. These are schematization (‘∩’) and superposition (‘∪’). 
Given w1 and w2, a schematic world w1 ∩ w2 is one at which all and only the 
states of affairs obtain which obtain both at w1 and at w2. A superposed (or 
inconsistent) world w1 ∪ w2 is one at which all and only the states of affairs 
obtain which obtain either at w1 or at w2. With respect to the definitions listed in 
§1.4, Rescher and Brandom’s inconsistent-superposed worlds are impossible 
worlds of the fourth kind, that is, contradiction-realizers: they can make both A 
and ¬A true. (Just superpose a possible world, w1, at which you are 1.70m tall, 
and another one, w2, at which you are not.)

 (p.104) Unlike Kripke’s non-normal worlds, which require different truth 
conditions only for the modal operators, Rescher and Brandom’s non-standard 
worlds behave peculiarly with respect to extensional operators. The standard 
clause for conjunction (S∧) from §4.1 has to go for superposed worlds: A and B 

can each be true without A ∧ B’s being true. These worlds still have a certain 
amount of logical structure. They behave in quite a standard fashion with 
respect to essentially single-premise inferences (Priest et al. 1989, 161). But 
they are anarchic with respect to essentially multiple-premise inferences.

Dually, schematic worlds can be non-prime: it can happen that A ∨ B is true at a 
world without either A or B being true at that world. One application that can 
motivate non-prime worlds is the handling of under-determined information: one 
may have the information that Strasbourg is either in France or in Germany, 
without having information as to which is the case.

Now ‘dualizing’ back, one may use inconsistent-superposed worlds to model 
inconsistent databases. These may consist in sets of data or information, 
supplied by different sources which are inconsistent with each other, such as 
incompatible evidence presented by different witnesses in a trial. The non- 
adjunctive features of superposed worlds are useful here. Intuitively, one is 
allowed to draw the logical consequences of the data or information fed in by a 
single source, but one does not conjoin data from distinct sources which may be 
inconsistent with each other. The database is ‘compartimentalized’: occasional 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-36
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812791.001.0001/oso-9780198812791-bibliography-1#oso-9780198812791-bibItem-265
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inconsistencies are placed in separate sectors, and not conjunctively asserted. 
This is an example of a non-adjunctive system. Hyde (1997), Lewis (1982), and 
Varzi (1997) each discuss different uses of this kind of approach. We will come 
back to uses of impossible worlds in information theory in more detail in Chapter 

9.

Chapter Summary
After recapping standard normal modal logics and their frame correspondeces 
(§4.1), we introduced non-normal modal logics,  (p.105) which invalidate the 
Necessitation rule (N). We showed how to model these logics using non-normal 
or impossible worlds, thought of as ‘logic violators’ (§4.2). This approach gives 
comes with non-uniform truth conditions: some operators are understood in one 
way at normal worlds, in another way at non-normal worlds (§4.3). This may or 
may not be a problem; we’ll come back to it in §8.5. We then discussed the 
specific case of non-adjunctive and non-prime worlds (§4.4), where conjunction 
and disjunction can behave in unusual ways. (p.106)
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