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Abstract and Keywords
Correlation is the first exploitable relation we will consider. Correlations turn 
into content when they are exploited by a system: the content-constituting 
correlations are those which unmediatedly explain a system’s performance of its 
task functions (and thereby qualify as UE correlational information). This 
chapter shows that this approach works for fixing content in a range of case 
studies from cognitive science. It does so without having to appeal to 
representation consumers whose outputs play a content-constituting role. In 
each case study, contents fixed in this way do a good job of underpinning the 
characteristic explanatory grammar of representational explanation: correct 
representation explains successful behaviour and misrepresentation explains 
failure.
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4.1 Introduction
(a) Exploitable correlational information

Chapter 2 introduced a framework for understanding representational content. 
Chapter 3 filled in one half of the framework: the functions being performed by 
an organism or other system. The other half is having an internal organization 
that capitalizes on exploitable relations—relations between internal states and 
the world that are useful to the system. Not all task functions are achieved 
representationally. Representation arises where a system implements an 
algorithm for performing task functions. That in turn has two aspects: internal 
vehicles stand in exploitable relations to features of the environment which are 
relevant to performing the task; and processing occurs over those vehicles 
internally in a way that is appropriate given  (p.76) those relational properties. 
Content is constituted in part by exploitable relations: internal processing 
implements transitions between vehicles which make sense in the light of these 
relational properties, transitions called for by an algorithm which is suited to 
producing the input–output mapping given by the system’s task functions. This 
chapter focuses on cases where correlation is the candidate exploitable relation. 
The next chapter looks at structural correspondence.1

The account shares with teleosemantics a reliance on teleofunctions (Chapter 3) 
and the insight that the way a representation is used downstream is important to 
fixing its content (for me, also the way it is produced). However, we will see that 
my account does not presuppose that there are dedicated representation 
consumers that play a special role in constituting content. That is an advantage 
of my view over some standard teleosemantic treatments (§1.4, §1.5).

An object or process carries correlational information just in case one or more of 
its properties correlates with the properties of some other object or process. 
More formally:

Correlational Information

Item(s)2 a being in state F carries correlational information about b being 
in state G

iff
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P(Gb|Fa) ≠ P(Gb)

When a carries correlational information, observing the state of a is potentially 
informative, at least to some extent, about the state of b. Such correlations are 
obviously useful, the more so the stronger they are; that is, the more a’s state 
changes the probability of b’s state.3 An organism which needs to condition its 
behaviour on whether some state of the world obtains, but can’t directly observe 
that state of the world, can instead condition its behaviour on the state of an 
item which carries correlational information about the relevant state of the 
world.

Our definition of correlational information relies on there being nomologically 
underpinned probabilities in the world (propensities, objective chances, 
nomologically based frequencies, or the like). An organism that observes a 
positive correlation between Fa and Gb can form an expectation, when next 
encountering an instance of Fa, that Gb is more likely. That expectation is well- 
founded if the reason for the correlation in the originally observed samples 
carries over to the new sample. It need not. Suppose that a particular shade of 
green that occurs on meat, green-123 say,  (p.77) is a sign of a bacterium which 
will multiply in the gut and lead to illness. A person could notice that eating 
something green-123 made them ill. They could well form the expectation that 
anything green-123 is poisonous and should not be eaten. As a result, they also 
avoid eating some vegetables. Suppose that, in plant leaves, green-123 happens 
to be a sign of a toxin produced by plants to discourage herbivores. Then 
green-123 in a leaf does indeed raise the probability that the leaf is poisonous to 
eat. But it is only by accident that the correlation that exists in meat extends to 
plants. An organism observing the correlation in meat and projecting an 
expectation to plants would get things right, but only by accident. There is no 
nomologically underpinned correlation which explains why the expectation 
formed in one case should carry over to the other.

We are interested in the correlations that can be exploited by an organism to 
learn from samples and project to new cases, so it should be non-accidental that 
correlations encountered in one region (in the history of the individual or its 
ancestors) should project to new cases. That point generalizes. We are going to 
rely on the way exploitable correlations figure in causal explanations of 
behaviour and its success. So, we need to have recourse to correlations where it 
is not an accident that the correlation extends from one region to another. The 
correlation must subsist for a univocal reason.

Correlations can be useful if they raise probability or if they lower probability, 
but not if they do so unpredictably. What is useful is if there is a region where 
probability is raised throughout that region, or if there is a region where 
probability is lowered throughout that region.
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Accordingly, I define exploitable correlational information as follows:4

Exploitable Correlational Information

Item(s) a being in state F carries exploitable correlational information 

about b being in state G

iff

(i) there are regions D and D’ such that if a is in D and b is in D’,
P(Gb|Fa) > P(Gb) for a univocal reason
or
(ii) there are regions D and D’ such that if a is in D and b is in D’,
P(Gb|Fa) < P(Gb) for a univocal reason

‘Region’ is intended to connote a spatiotemporal region but can be understood 
more widely to include sets and other kinds of collection. Items a could be all 
members of a species, or even all organisms, or just one individual. Where a is a 
particular object, the region will just be the places and times where a is (or the 
singleton set whose only member is a). The region could be smaller. Anya-while- 
adolescent may exhibit a correlation between a facial expression and a 
subsequent behaviour. The relevant region would then be Anya during 
adolescence. The items a may also be a type of object, such as human facial 
expressions. The restriction to regions means  (p.78) there is no need for 
universality. The correlation may be highly local, such as facial expressions of 
Hoxton twentysomethings in the early 2010s. It is of course implicit that the 
items carrying exploitable correlational information are only the ones drawn 
from the relevant region.

The definition above is point-wise: one state raises the probability of another. In 
many natural cases a can be in a range of states, each of which raises the 
probability of b being in one of a range of other states. For example, the number 
of rings in a tree core correlates with the age of the tree: there being two rings 
makes it probable that the tree is two years old; three rings, three years old; and 
so on. Then F and G above can take a range of values, with each value of F 
mapping to a corresponding value of G about which it raises the probability.5 An 
organism may learn or evolve to make use of this systematic relationship. It can 
then extend that expectation to new instances of the same overall relationship. A 
person could observe a few instances of the correlation between tree rings and 
age and then form the general expectation that tree age is equal to the number 
of rings. They may never have encountered forty-two rings in a tree core before; 
nevertheless, when they count forty-two rings and form the expectation that the 
tree is forty-two years old, that expectation is correct for an underlying univocal 
reason that extends from the cases they learnt about to the new case.6 A further 
feature is that the different states X that a may be in exclude one another: any 
particular a can only be in one of these states at a time. In many cases they form 
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a partition, covering all the possibilities (e.g. all possible numbers of tree rings). 
We can define a notion of exploitable correlational information carried by a 
range of states as follows:

Exploitable Correlational Information Carried by a Range of States

Item(s) a being in states X carries exploitable correlational information 

about b being in states Y

iff

there are regions D and D’ such that, if a is in D and b is in D’, for a 
univocal reason, for every value F of X there is some value G of Y such that 
P(Gb|Fa) > P(Gb) or P(Gb|Fa) < P(Gb)7

 (p.79) Animal signalling is an obvious case where correlations are exploited in 
the service of a function—in those cases, an evolutionary function. If there is 
also robustness in how the outcomes prompted by the signals are achieved, 
which there often is, then these cases will fit squarely within our framework. As 
we saw in discussing teleosemantics (§1.4), the correlations that feed into an 
explanation of how behaviour prompted by signals achieves its evolutionary 
function are correlations with distal features of the environment (e.g. with the 
location of nectar). Skyrms-style signalling models also turn on correlations 
being exploited as stand-ins on which receivers can condition behaviour (Skyrms 

2010, Shea et al. 2017). (These models abstract away from the machinery of 
robustness.) There, which correlations are relevant can be read off directly from 
the payoff matrix: correlations with world states in which, given appropriate 
actions, payoffs are delivered.

The definition of exploitable correlational information is extremely liberal. There 
are very many different regions within which a correlation subsists. There will 
often be subregions where a correlation is stronger and larger regions where it 
is weaker; also partially overlapping regions. I don’t attempt to define a unique 
reference class with respect to which a univocally based correlation exists. 
There is exploitable correlational information with respect to any region within 
which a univocal reason extends, whether or not that reason also extends to a 
wider region. What counts is the region within which an organism operates: the 
instances of a it encounters and the instances of b on which success of its 
behaviour depends. The basis for the correlation is objective and independent of 
the organism, but the correlation strength that matters partly depends on the 
organism’s point of view.

For our purposes below, there has to be an exploitable correlation within the 
region where outputs were stabilized and robustly produced. And the correlation 
encountered there has to be strong enough to explain stabilization and/or 
robustness. What counts as strong enough will depend on the facts of the case.8 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-1#oso-9780198812883-chapter-1-div1-5
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https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-272
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An extremely weak correlation might form an adaptive basis for avoiding 
predators, for example, because the costs of being eaten are so high. What 
matters in explaining stabilization is that the correlation is strong enough in the 
region in which stabilization occurs. If we are instead looking forward, 
predicting the likelihood that its behaviour will be successful, then it is 
correlation strength in the region where the organism will be operating that is 
relevant.

Correlation has been the focus of a lot of scientific work on representation in the 
brain.9 At the level of individual neurons, neuroscientists have consistently 
looked  (p.80) for correlations between neural firing rate and certain kinds of 
stimuli; for example, neurons that respond to an edge in a specific location in the 
visual field (Hubel and Wiesel 1962).10 In standard region-based fMRI the search 
has been for regions of the brain whose activity correlates with a particular type 
of stimulus or task. More recent multi-voxel pattern analysis looks for 
correlations between the distributed pattern of activation across a region of 
interest and a stimulus or task type. And model-based fMRI looks for regions 
whose activation varies parametrically in step with quantities that the brain may 
be computing.

All these techniques are probing the way neural activity carries correlational 
information. Three features of these practices are worth noting. First, strength 
of correlation is always assumed to be important: carrying more information is, 
ceteris paribus, more useful; and so it is assumed that strong correlational 
information is a better candidate for what the brain is really representing. 
Secondly, the correlations being probed are very often with distal features of the 
environment: properties of the stimuli being presented or the task the organism 
is called on to perform. Thirdly, there often seems to be a tacit assumption that 
only information that is being used is relevant to understanding what the brain 
is computing (deCharms and Zador 2000). For example, there might be 
substantial information carried by the phase difference between neural firing 
rates, but that is of no interest unless there is a way for downstream neurons to 
detect and make use of those phase differences. That is at the level of the 
vehicle, and a similar constraint is often in the background at the level of the 
content. Incidental correlational information that just happens to be carried by a 
pattern of neural firing is not a candidate to figure in the computational or 
information-processing story unless it is somehow relevant to how the organism 
is behaving (Hunt et al. 2012).

(b) Toy example

Before putting forward a concrete proposal about how correlational information 
gives rise to content, let’s look at a simple example in which correlation is being 
exploited by a system to perform a task. Consider the toy system from the last 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-146
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-79
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-149
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 (p.83) Figure 4.1  Toy system discussed 
in the text.

chapter which moves along a line until it reaches a point T, where it stops 
(§3.6a).

Our toy system has four internal vehicles, t, r, δ and a (Figure 4.1). In the final 
version, t initially varies randomly across multiple episodes of behaviour, until its 
value is fixed by a recharge. Because of this, the value which t eventually adopts 
correlates with the location of a power source. The obvious useful correlations 
then are those given in Table 4.1: (p.81)

Table 4.1. Useful correlations carried by components of the toy 
system

Vehicle Correlation

r system’s position on the line

t location of a power source on the line

δ distance of the system from a power source

a velocity with which the system moves along the line

Those correlations make the 
performance of the system 
intelligible. That is the heart of 
the reason why the vehicles 
listed on the left of Table 4.1 are 
representations and the 
conditions on the right are their 
respective contents. Firing rate 
(let us say) of vehicle r 

correlates with distance from 
the origin, of vehicle t with 
location of a power source. 
Therefore, vehicle δ, whose 
firing rate correlates with the 
difference between the firing rates of r and t, will correlate with the distance of 
the system from a power source. The firing rate of vehicle a is proportional to 
that distance. If that rate is linearly transformed in an appropriate way into 
velocity, then the system will move from any point along the line so as to reach 
the power source. Given that those four internal elements carry the correlational 
information listed above, internal processing over those elements, which 
proceeds in virtue of vehicle properties, constitutes an algorithm for performing 
the distally characterized task being performed by the system (reaching T). 
These contents meet our desideratum (§2.2): they allow us to see why 
representational contents enable a better explanation of the system’s behaviour 
than would be available without them.

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-3#oso-9780198812883-chapter-3-div2-5
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-chapter-4-figureGroup-15
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-chapter-4-tableGroup-1
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-chapter-4-tableGroup-1
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-2#oso-9780198812883-chapter-2-div1-9
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 (p.82) Those internal components carry lots of other correlational information 

—information that is less relevant to explaining how the system performs the 
task. For example, r correlates with the activity of some sensory receptors just 
upstream on the system’s periphery. That correlation would also help explain 
performance, but only when supplemented with the fact that activity of the 
sensory receptors correlates with position along the line. So the correlation 
between r and sensory stimulation would figure in a less direct explanation of 
how the system performs the task. On the output side, a correlates with the 
speed of rotation of the wheels. That correlation is only explanatorily relevant 
because rotation of the wheels correlates with the velocity at which the system 
moves. So that too is less directly explanatory of how the internal components 
conspire together to allow the system to achieve its task function.

Suppose light falls on the engineer’s workbench from one side, diminishing in 
intensity along the bench. Then component r correlates with the intensity of light 
at the toy’s location and component t with light intensity at the power source. 
These distal correlations would also explain why the difference δ correlates with 
the distance of the system to a power source, but only when supplemented with 
the information that light intensity correlates with distance along the bench. So, 
this set of correlations carried by the internal components offers, collectively, a 
less direct explanation of how the system performs its task function.

We should beware of seeking determinacy where it’s the wrong place to find it. 
And, indeed, there is some indeterminacy in what this simple toy system 
represents, according to my account. There are other collections of correlational 
information that are just as good for explaining task performance—that 
collectively figure in just as direct an explanation: between t and the location of 
something worth reaching (and between δ and the distance to something worth 
reaching) for example; or between t and the location of a place where an 
outcome that reinforces behaviour and promotes persistence occurs (with a 
corresponding correlation at δ). These alternative contents are not equivalent, 
since they could come apart, but they make distinctions that are more fine- 
grained than those that are relevant to the system. In the life of this very simple 
toy system being a place worth reaching is coextensional with being a charging 
point. Component t is correlated equally strongly with both. As theorists we 
should say that the content represented by the system is indeterminate between 
these options.11 We will deal with indeterminacy in more detail in §6.2, with the 
benefit of the positive accounts of content set out in this chapter and the next.

4.2 Unmediated Explanatory Information
(a) Explaining task functions

In looking at a toy example in the last section, we saw that not all correlations 
are on a par for the purposes of explaining how a system manages to achieve its 
task functions. Some correlational information carried by internal components 
figures directly in an explanation of how a system with such internal processing 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-6#oso-9780198812883-chapter-6-div1-44
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is able to perform the task and become stabilized by feedback; other 
correlational information is only more indirectly explanatory; and some is 
explanatorily irrelevant. Recall that the underlying motivation for 
representationalism—the practice of adverting to content properties carried by 
real internal components to explain behaviour—is the idea that the system’s 
internal organization implements an algorithm for performing a task being 
carried out by the system. Correlations between internal elements and distal 
features of the environment show how a system’s internal organization is keyed 
into the world so as to perform the distally characterized task. Content fixed in 
that way would meet our desideratum (to produce a theory which allows us to 
see how contents explain behaviour). So, the correlations that are content- 
constituting should be those which explain how the system achieves task 
functions (i.e. stabilization and robustness).

The move I make here involves a subtle shift of perspective. One could hold that 
content is fixed directly by its role in representational explanation: a system 
represents whichever contents best account for the pattern of behaviour the 
system produces.12 Rather than representational explanation, my account is 
founded on causal explanation. Which correlations figure in causal explanations 
of stabilization and robustness? The former approach makes a very tight 
connection between what contents are and what contents explain, generating 
considerable indeterminacy. Causal explanations of stabilization and robustness 
are less indeterminate (§4.1a, §6.2).

To put this more carefully, we first define the explanandum, using a term of art, 
‘explaining S’s performance of task functions’; then we define ‘unmediated 
explanatory information’, which is the correlational information that figures in 
the explanans. The explanandum has two elements, corresponding to the two 
elements of task function (§3.5). First, we can explain how outcomes have been 
stabilized (hence count as stabilized functions). Secondly, we can explain how 
outcomes are robustly produced (hence count as robust outcome functions). No 
single term is perfectly suited to encompass these two explananda. In a sense 
we are explaining why an outcome F is a task function of a system S, but that in 
turn calls for an explanation of how it was stabilized and robustly produced, so 
‘why’ becomes somewhat misleading. ‘Explaining performance of task functions’ 
is neutral enough to cover both explananda. It also  (p.84) emphasizes that we 
are focused on explaining how the system does or has done something (in its 
environment).

Explanandum

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-chapter-4-div2-7
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-6#oso-9780198812883-chapter-6-div1-44
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-3#oso-9780198812883-chapter-3-div1-19
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To explain S’s performance of task functions Fj is to explain:

(a) how producing each of the Fj has been systematically stabilized 
through evolution,13 learning or contribution to persistence (see 
§3.4d);
and/or
(b) how each Fj has been produced in response to a range of 
different inputs and achieved in a range of different relevant 
external conditions

Unmediated Explanatory Information

The UE information carried by a set of components Ri in a system S with 
task functions Fj

is

the exploitable correlational information carried by the Ri which plays an 
unmediated role in explaining, through the Ri implementing an algorithm, 
S’s performance of task functions Fj

The idea that some correlations play an unmediated role in an explanation calls 
for clarification. In the classic example of the frog’s fly-catching mechanism, the 
correlation of retinal ganglion cell firing (R) with little black things figures in an 

explanation of how the system was stabilized by evolution, but that explanation 
also mentions the fact that being a little black thing (condition C) correlates with 
being a nutritious flying object (condition C’). Without that background 
correlation, it would be opaque how the correlation between R and C enabled 
frogs to achieve an evolutionarily beneficial outcome. So, the role of the R–C 
correlation in that explanation is mediated. There is another explanation of 
stabilization that adverts directly to the correlation between R and nutritious 
flying objects (C’). The role of the R–C’ correlation in that explanation is 
unmediated. A correlation between an item R and condition C plays a mediated 

role in an explanation if its role depends on the explanation adverting to a 
further correlation between C and some further condition C’; otherwise it plays 
an unmediated role.

The discussion in the last section effectively argued that the correlations set out 
in Table 1 qualify as UE information carried by the components of our toy 
system. (It also argued that this list is not exhaustive: there are other sets of UE 
information carried by the same components, hence some indeterminacy.) My 
claim is that, where correlation is the relevant exploitable relation, the 
correlational information that is content-constituting is UE information. More 
specifically, a sufficient condition for a vehicle to represent content p is that it 
carries UE information about p.

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-3#oso-9780198812883-chapter-3-div2-4
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 (p.85)

Condition for Content based on Correlational Information

If component R of a system S with task function or functions Fj carries UE 
information about condition C,

then R represents C

There is no need for an account of content to accord with what scientists relying 
on content think it is. For example, scientists may have no idea that content is 
connected to functions which are partly historically based. Nevertheless it is 
interesting to see that my theory of how content is constituted closely parallels a 
recently developed method for finding out which computations are being 
performed in a neural system, the method of model-based fMRI (Corrado et al. 
2009). The method starts with behavioural data. For example, subjects may be 
asked to choose between pairs of fractal images, where different images are 
more or less likely to be rewarded. Subjects learn through feedback which 
images are rewarded when. The probabilities change during the experiment and 
subjects’ behaviour adjusts accordingly. A large number of choices produces a 
rich source of data about how subjects’ choices are influenced by the history of 
feedback they have received for past choices.

The first step is to find which computations the subjects could be performing: 
algorithms that are capable of producing the observed pattern of behaviour. In 
our terms, that is to find a list of candidate algorithms that could perform the 
task functions these organisms have been trained to perform. The second step is 
to go into the brain to see which potential algorithm is most consistent with 
neural activity. An algorithm calls for various quantities to be computed on the 
way to making a choice: expected reward, reward received at this time step, 
prediction error, adaptive learning rate, etc. The fMRI BOLD signal reflects the 
amount of neural activity in small areas of the brain, hence can reflect the 
quantities being represented by an algorithm implemented in the brain. We look 
to see if there are areas of the brain whose activity varies, trial-by-trial, with the 
varying quantities called for by a candidate algorithm. When areas show up as 
potentially representing quantities called for by the algorithm, we check that it 
is plausible, in terms of neural architecture, that they are computing those 
quantities in the right sequence. This process is repeated for other candidate 
algorithms and then a ‘model comparison’ is performed to see which algorithm 
is most consistent with the neural data. There are many assumptions behind the 
method, not all of which are strongly supported yet, but nevertheless when 
algorithm A fits the behavioural and neural data better than rivals B and C, that 
gives us some reasonable evidence that the brain is implementing algorithm A 
rather than B or C (Mars et al. 2012). What is striking for our purposes is that 
the method is effectively looking for correlational information in the brain which 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-58
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-183
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explains how a person performs the task function observed in their behaviour. 
Model-based fMRI is looking for the properties which, according to varitel 
semantics, are constitutive of content.

An implementations of an algorithm has a dual character, one aspect purely local 
to the system and another that depends on relational properties of components 
of the  (p.86) system. So, having components carrying relevant correlational 
information is only one half of what it takes to implement an algorithm. The 
other is that they should be processed in the right way—in a way that makes 
sense in the light of the correlational information they carry and will thereby 
generate appropriate behaviour. That is, when the processing is characterized in 
terms of local properties, independent of correlational information carried by the 
vehicles, it should proceed through the steps called for by the algorithm.

That in turn puts tight constraints on which correlations are likely to be 
explanatory, since an algorithm usually calls for different vehicles to be doing 
different things. For example, an algorithm might call for one vehicle that 
correlates with shape and another with colour, putting that information together 
in a third vehicle that correlates with object category. There would be an 

assignment of content to vehicles according to which all three steps simply 
register object category, quite noisily in the first two cases. But that set of 
correlational information carried by components implements a less explanatory 
algorithm—an algorithm that does a less good job of explaining how the system 
performs its task functions. For this reason, an algorithm that relies on different 
vehicles carrying different correlational information will generally be more 
suited to explaining task performance (§6.2f). We saw that at work in our toy 
example: an explanatory set of correlational information has r correlating with 
position and δ with distance to the power source (rather than both registering 
distance to the power source, say). In the definition of UE information, 
‘unmediated’ does not count against this. To count as explanatory, an algorithm 
will generally have different contents at different stages. The computation of 
what to do is mediated through a complex series of internal states, but the job of 
each should be to keep track of an external condition directly, not in a way that 
depends on presuming a further background correlation holds.

UE information covers output correlations as well as those that are due to how a 
system responds to inputs. The algorithm in our toy system relies on the fact 
that a drives the toy with a certain velocity: it correlates with velocity by causing 
motion. Not all UE information can be about outputs, however. Part of explaining 
performance of a task function is to explain robustness, in particular how an 
output was produced in response to a range of different inputs. That will require 
some components of the system to carry correlational information that they 
reflect rather than produce. To anticipate the distinction we will discuss in 
Chapter 7, components can have directive contents when UE information 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-6#oso-9780198812883-chapter-6-div2-26
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concerns outputs, but there has to be some descriptive content in the system 
somewhere.

Often output-based UE information will concern the means by which a task 
function is performed. In our toy example, moving with a certain velocity is a 
means by which the toy reaches a power source from a range of different 
starting positions. However, sometimes the relevant correlation will be to output 
an F which is itself a task function of the system. For example, humans have a 
learning-based task function of getting  (p.87) sugar (in circumstances when it 
is needed and available). In calculating how to do that, it looks like we have an 
internal state in orbitofrontal cortex whose job is to correlate at input with 
whether we need sugar and to correlate at output with obtaining sugar (Rolls 

2015, Rushworth et al. 2011, Alexander and Brown 2011). How can that output 
correlation be explanatory of the task function? Isn’t it identical with the task 
function? The answer is that UE information falls out of the way the whole 
internal mechanism explains how outputs are produced robustly and stabilized. 
That requires more than just producing output F. It requires producing F in a 
range of different circumstances and keying it into the environmental 
circumstances in which it was stabilized. The algorithm as a whole is 
explanatory of that. A component correlating with F is one part of the overall 
explanation, but only when combined with other components carrying other UE 
information, some of which will have descriptive content. (Recall again, we are 
not asking which contents would best explain the behaviour; UE information is 
based on how an internal mechanism forms part of a causal explanation of 
robustness and stabilization.)14

This account of the way correlation can ground content is very much in the spirit 
of Dretske (1986, 1988). Dretske considers the case where an internal 
component correlates with a feature about which the system is disposed to 
learn, in the sense that instrumental conditioning will shape the system so as to 
condition its behaviour on that feature. For example, it could be because an 
internal state correlates with the location of a peanut (on the left or the right) 
that the animal comes to condition its reaching behaviour on that internal state 
(reaching left or right, respectively). Dretske calls the correlation with the 
location of the peanut a ‘structuring cause’ of the system’s later behaviour.

That is one version of the idea that explanatory connections between 
correlations and the stabilization of behaviour are relevant to content 
determination. However, I have a more general account of why Dretske’s recipe 
produces the right answer in the case he deals with. It is because of the role of 
correlations in explaining stabilization and the establishment of task functions. 
Instrumental conditioning of the kind Dretske points to is one specific example 
of that. My account is more general in three respects. First, it applies to a wider 
range of cases than just those which involve instrumental conditioning.15 

Secondly, my view does not require there to be pre-existing correlations  (p.88) 
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between internal states and distal features. The correlations could develop at 
the same time as the system is being tuned to behave in a certain way. That is 
what happens when an artificial neural network is trained, for example. Thirdly, 
it applies to cases where several different correlational vehicles are involved in 
generating behaviour, as in the toy example we have been discussing. Dretske’s 
recipe only applies straightforwardly where one correlational vehicle comes to 
be wired up to drive behaviour in virtue of the correlational information it 
carries.

The latter point is important, because any plausible account of representation in 
the brain will have to deal with the fact that very many representational vehicles 
interact in complex ways to produce behaviour. In §4.4 we will see a variety of 
ways that can arise.

(b) Reliance on explanation

The definition of unmediated explanatory information (UE information) places 
heavy reliance on the concept of explanation (obviously). It bases content on 
causal-explanatory connections. I am assuming a realist account of explanation 
according to which the causal-explanatory relations that figure in explanations 
are objective metaphysical dependence relations.16,17 This is not special 
pleading. Varitel semantics is making use of a resource here which other 
sciences also take for granted. It is not the task of a theory of content to give a 
theory of why causal-explanatory relations are objective.

Recall that contents are fixed, not by the role of contents in representational 
explanations, but by the role of correlations in causal explanations. So, my 
theory of content is not interest-relative or pragmatic. If the definition of UE 
information is not empty, then it picks out a property in the world. UE 
information then exists, irrespective of whether anyone chooses to refer to it. It 
might be an interest-relative matter whether we go in for explanations that 
appeal to this property, that is, whether we go in for representational 
explanations. I have been arguing that UE information (and UE structural 
correspondence, in the next chapter) underpins a distinctive scheme of 
explanation, one where correctness explains success and misrepresentation 
explains failure. Our epistemic interests may affect whether we appeal to this 
scheme of explanation.

If I’m wrong to assume that causal-explanatory relations are objective, then my 
accounts of content necessarily inherit any interest-relativity of causal 
explanation. However, the same would then be true throughout the sciences. If 
causal-explanatory  (p.89) claims in all sciences are ineliminably interest- 
relative, then it would be no surprise that representational contents are no 
different.18

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-chapter-4-div1-27
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Defining a property in the way I have always raises another pressing question. 
It’s not enough to just show that the property exists (the definition is non- 
empty), and exists independently of anyone’s interests. Is the definition any use, 
does it pick out a worthwhile category? I say ‘yes’, of course. My argument is 
that UE information meets our desideratum. It allows us to explain how 
representational content can explain behaviour. UE information is thus a 
worthwhile property because, if I’m right, it is the property that figures in many 
explanations in cognitive science.

(c) Evidential test

Carrying UE information not only explains, but also makes it more likely that the 
system will achieve its task functions. That gives us another way of getting at 
the UE information carried by a vehicle: increasing the correlation strength of 
UE information should increase the likelihood of the system achieving its task 
functions; similarly, weakening the correlation should decrease it. So, we can 
supplement the constitutive condition above with an evidential test—a (fallible) 
way of working out what UE information is carried by elements of a system.

Evidence of UE information

For component R in a system S performing a task function or functions Fj

the correlation of the state of R with a condition G involving natural 
properties and objects in S’s environment

whose strengthening most increases and whose weakening most decreases 
the likelihood of S achieving Fj

is a good candidate to be UE information carried by R

To see how this works, let’s go back to our toy system. Suppose there is some 
random noise in the system, so that each component has a small chance of going 
into a random state during an episode of behaviour. Then the probability that the 
system is at location x, say, when r is in a particular state R1, although high, is 
not certain. There will be some occasions when r is in R1 and the system is in 
fact at random other locations. On those occasions, the system would not 
achieve its task function of reaching T. If the correlation between r’s being in 
state R1 and the system’s being at location x were strengthened, the system 
would achieve its task function more often. Similarly, weakening that correlation 
(increasing the noise) would reduce the frequency with which the system would 
reach T.

Now consider the correlation between r and light intensity. Strengthening that 
correlation might increase the likelihood of the system reaching T, provided the 
light intensity gradient is reasonably stable, but not by as much as strengthening 
the correlation with the system’s location on the line would (since light intensity 
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is not a  (p.90) perfect correlate of location). So, the evidential test suggests 
that the correlation with light intensity is a less good candidate to be UE 
information.

Correlations on the output side can also be assessed using the evidential test. 
Where slippage in the wheels or noise in the motor system impairs performance, 
strengthening the correlation between component a and the velocity of the 
system will have the biggest effect in increasing the likelihood that the system 
performs its task function of reaching T.

The evidential test uses the effect of correlation strength on likelihood of 
achieving task functions as a proxy for how directly a collection of correlations 
carried by components explains the achievement of those functions. However, 
those things are not bound to align. Nor is there a guarantee that there will be 
an item of correlational information that satisfies the evidential test. A 
correlation whose strengthening improves performance may not be such that its 
weakening reduces performance, for example if there is a backup mechanism 
that puts an effective floor on the likelihood of performing a function. Even when 
there is correlational information that satisfies the evidential test, that is no 
guarantee that carrying this information figures in an unmediated explanation of 
performing task functions.19

The evidential test is restricted to correlations with natural properties, in order 
to focus on correlations that are candidates to figure in a causal explanation of 
task performance. General principles about explanation will make complex 
disjunctive or gruesome properties poor candidates to figure in such 
explanations. (Other theorists of content have also pointed to such 
considerations as ruling out some problematic putative contents.) There will 
clearly be correlations with non-natural properties whose strengthening would 
do more to increase the likelihood of success. In our toy example, if the state of 
vehicle r correlated with the location of the system and there being no noise 
anywhere in the system, then success would become very much more likely. 
These kinds of constructed properties are much less good candidates to figure in 
a causal explanation of stabilization and robustness, and hence less good 
candidates for content.

To apply the evidential test, we need first to have a collection of candidate 
correlations that assigns different correlations to different vehicles. As we’ve 
just seen, that is needed if implementing the algorithm (internal processing over 
components) is going to explain how outputs were produced robustly and 
stabilized by interactions with the environment. Then we fix on one candidate 
correlation, hold everything else fixed, and consider what would happen if the 
world were changed to make that correlation stronger. Rather than being at 
location x 95 per cent of the time when component r is in state R1, what would 
the effect on robustness and stabilization be if it were at location x 100 per cent 
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of the time when r is in R1? In that case, the task-functional output (getting to 
the power source) would have been produced more robustly and would still have 

 (p.91) been stabilized. Strengthening the correlation of r with patterns of 
sensory input would have less of an effect on successful task performance, since 
sensory input is itself an imperfect correlate of location. So, the evidential test 
suggests that r carries UE information about the toy’s location.

It is most appropriate to assess these counterfactuals against the circumstances 
that obtained during episodes of stabilization. However, it is only an epistemic 
test. Assessing what would happen to the system in its current circumstances 
will also give us some evidence, to the extent that the system’s current 
environment is relevantly similar to the circumstances in which its behaviour 
was stabilized.

4.3 Feedforward Hierarchical Processing
In the next six sections we see how this account of UE information can be 
applied to a variety of case studies. The first case is where there is simply 
feedforward hierarchical processing of sensory input through a series of layers. 
Marr’s account of 3D vision is a well-known example: inputs are processed into 
an array of point-intensities, then into a ‘primal sketch’ involving detectors for 
blobs, edges, and so on, then on into detectors for local surfaces and their 
orientations, and so on (Marr 1982). Hierarchical structure is also found in the 
successive layers of the artificial neural networks that have used ‘deep 
convolutional’ learning algorithms so effectively to categorize a huge array of 
natural visual scenes (Krizhevsky et al. 2012, Kriegeskorte 2015). To work with a 
simpler case, consider the ALCOVE neural network model (Kruschke 1992; see 
Figure 4.2).
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 (p.94) Figure 4.2  The ALCOVE network 
(Krushke 1992).

The task of ALCOVE is to 
categorize objects, using its 
sensitivity to perceptual 
features. To give it a clear task 
function, let us suppose that it 
has been trained to sort objects 
into boxes according to whether 
the object falls under category 
A or category B. The training 
regime gives rise to task 
functions because internal 
configurations of connection 
weights that tend to produce 
incorrect behaviour are 
replaced, and those which 
produce correct behaviour are 
stabilized. As a result of 
training, the system can use its 
input-sensitivity to brightness, 
size, etc. in order to sort objects 
into the correct box. Putting an 
object of category A into box A 
is then a task function of the trained system.

It performs that function by taking an intermediate step before performing the 
sorting action. Training produces an array of ‘exemplar nodes’ at the network’s 
hidden layer. These act a bit like names for individual objects. Activation of each 
correlates with encountering a particular object. The network solves the 
problem by first recognizing which individual object it is faced with, then sorting 
that object into the appropriate category. Input nodes correlate with features of 
the objects. Output nodes correlate with whether the object falls under category 
A or category B; they also correlate with where the object gets placed. Consider 
the correlational information carried by one of the exemplar nodes. Its activation 
raises the probability that:

(i) input nodes are activated thus-and-so
(ii) the object encountered has visual features abc (those characteristic of 
exemplar 1)
 (p.92) (iii) the object encountered is exemplar 1
(iv) the object encountered has visual features xyz (those characteristic of 
objects in category A)
(v) the object encountered belongs to category A
(vi) the object encountered will be placed in box A
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Those correlations are presented in decreasing order of strength ((v) and (vi) are 
equal). Consider how these can be combined with the correlations carried at 
input and output so as to implement an algorithm for sorting objects into boxes. 
Correlation (iii) fits together with the input correlation with object features and 
the output correlation with object category to instantiate an algorithm for 
performing the task. The correlation of hidden layer nodes with groups of 
perceptual features (ii) would make for a less explanatory set of correlations. An 
algorithm that correlated with object category (v) at the hidden layer and then 
again at the output layer would be less explanatory of how the system actually 
manages to compute what to do and perform robustly. So (iii) is UE information 
carried by the hidden layer. These considerations also imply that the output 
layer carries the UE information given by clauses (v) and (vi) above.

 (p.93) How does the evidential test apply to this case? At the output layer, it is 
indeed the correlation with category whose strengthening and weakening most 
strongly affects the likelihood of success (excluding non-natural properties that 
would have an even tighter connection). At the input layer, it is reducing noise in 
the correlations with perceptual features that would have the strongest effect. 
Making an input node correlate more closely with exemplar or category would 
help in some circumstances but hinder in others, since input nodes are activated 
by more than one exemplar and more than one category.

The evidential test is equivocal when applied to the hidden layer. Because there 
is a straightforward many-to-one mapping from exemplars to categories, 
mistakes at the hidden layer that confuse one exemplar for another in the same 
category do not compromise overall performance of the system. So, tightening 
the connection between a hidden layer node and exemplar (iii) or category (v) 
will both improve performance, and to the same extent. To decide between them 
we have to turn to the consideration just mentioned: one collection of 
correlations (perceptual features, exemplar, category) provides a better 
understanding of how the system performs its task function than the other 
(perceptual features, category, category), since the latter overlooks some of the 
internal structure used by the system to perform the task (see also §4.1a).

Basing content on UE information has two general effects in these cases. It can 
select amongst coextensive properties about which the system carries 
information so that the most explanatory one figures in the content. And, since it 
is connected with explaining distal results achieved by the system, it tends to 
deliver contents that concern distal properties—properties that are relevant to 
how the system performs its tasks. So if we take JIM, a more sophisticated 
development of ALCOVE with more layers of processing, there is a layer of 
processing that detects geons—certain configurations of 3D shapes that objects 
can exemplify (Hummel and Biederman 1992). Does this layer represent 
properties of objects, or does it instead represent regular ways in which objects 
affect the system’s sensory apparatus? If content is fixed by UE information 
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carried by the layer, then it will be representing the former: properties of the 
distal objects.

A further development of ALCOVE uses a network with feedback connections 
between layers (Love et al. 2004). This raises the problem of reciprocal 
processing connections, which we will turn to with a different case study in §4.8 

below.

It is worth noting that we have given an account of content for this system 
without having to give representation consumers a content-constituting role. 
Content comes out of how all the components interact to achieve task functions. 
In standard teleosemantics a consumer system is a special component, the 
evolutionary functions of whose outputs determine content. We noted above that 
it is not obvious how to extend the consumer idea to more complex cases (§1.5). 
That problem is not acute in this first, straightforward case study, but by 
eschewing a content-determining consumer even here we have an approach 
which is readily extendable to more complex cases.

4.4 Taxonomy of Cases
In §§ 4.5–4.8 we see how the UE approach can be applied to various cases from 
the empirical literature. A quick look at a typical wiring diagram for even a 
simple neural processing system shows that representation processing in the 
brain takes place in complex ways. The diagram of the primate visual system 
below is representative (Figure 4.3). (p.95)

I pick out four kinds of 
complexity that a theory of 
content will have to deal with— 

ways that representations are 
processed that show up 
regularly in information 
processing theories in cognitive 
neuroscience (Figure 4.4). 
Sections 4.5–4.8 then select 
case studies that exemplify each 
structure and show that the UE 
approach delivers appropriate 
contents. The cases are not 
exhaustive, but they do serve to 
demonstrate that the approach 
can be applied across a broad 
range of systems.
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Figure 4.3  Diagram of the primate visual 
system (from Felleman and van Essen 

1991).

Figure 4.4  The four kinds of cases 
exemplified in §§ 4.5–4.8, respectively. 
(Inputs to the representational vehicles R 
and R’ are not shown.)

These cases also serve to 
highlight an important contrast 
with standard, consumer-based 
teleosemantics. We saw in the 
previous section that 
teleosemantics already faces a 
problem when we move away 
from cases like animal 
signalling where a single 
representational stage mediates 
between producer and 
consumer. When there are 
multiple layers of processing it 
faces a challenge in explaining 
why different stages represent 
different aspects of the 
problem. The consumer-based 
approach has an even bigger 
problem dealing with the kinds 
of cases taxonomized here, 
which are merely simplified 
treatments of some of the complex interconnections found in a typical neural 
processing diagram. The absence of a simple hierarchy and the presence of 
feedback loops make it very hard to identify, for each putative representation, a 
single consumer system which conditions its behaviour on that representation 
(Godfrey-Smith 2013; Cao 2012, 2014; cf. Artiga 2016).

The first kind of case shown in Figure 4.4 is where a single representational 
vehicle R, with a range of states Ri correlating with a range of properties, acts as 
input to two distinct subsystems conditioning their behavioural outputs on the 
state of R (Case 1).  (p.96) The two subsystems may be acting for different 
purposes and so may be making use of different correlations carried by R. The 
second kind of case is the converse: two different representations are made use 
of by a single consumer (Case 2). For example, R may correlate with colour and 
also with motion, where in some contexts behaviour should be conditioned on 
colour and in others on motion. R’ indicates which context the system is in. In 
order to produce appropriate output, the organism conditions its behaviour on 
the conjunction of the state of R and the state of R’.

In the third and fourth cases, input influences output via more than one route. In 
Case 3 the two routes run in parallel. Like Case 2, the behaviour of the output 
subsystem depends on two different representational vehicles, but the state of 
the second vehicle is also dependent on the state of the first. In Case 4 we 
incorporate feedback: the state of vehicle R’ is affected both by current input 
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from R and also by input fed back from processing that took place on one of its 
own earlier states.

Real neural systems often include several of these elements at once. Below we 
pick out case studies that contain each in isolation. The aim is to show that none 
of them presents an obstacle to applying the UE approach.

4.5 One Vehicle for Two Purposes
A vehicle that carries correlational information about one state of affairs will 
usually carry information about many. Different downstream systems may be 
interested in different pieces of information: different correlations may be of use 
to each (Case 1 in Figure 4.4 above). There are many examples of that in animal 
signalling. A firefly produces flashes of light that signal its location to 
conspecifics. The signal means something like receptive female here. The signal 
also carries the information there is a small nutritious insect here. This second 
piece of information is capitalized on by predators.

In that simple case only one of the uses is part of a cooperative signalling 
system. Stegmann (2009, p. 873) gives an animal signalling example where both 
uses are at least partly cooperative. A chicken seeing a predator makes a 
distinctive call. This notifies conspecifics that there is a predator nearby so they 
can avoid it. It also notifies the predator that the chicken has seen it and could 
easily escape. Predator and prey share an interest in avoiding a pursuit if it will 
be unsuccessful. So, they share an interest in producing and acting on this 
signal. Conspecifics act on one piece of correlational information carried by the 
signal, potential predators on another.

When we turn to representations within a single organism, it is rarer that a 
representation is output to two entirely discrete consumer subsystems. Corollary 
discharge is perhaps one relatively clear case.20 The signal sent to the motor 
system to drive action is also sent to perceptual mechanisms, which rely on it for 
the information it carries about what the animal is about to do. Very roughly, to 
the motor system it means move thus and so and to perceptual systems it means 

I am actively moving thus and so.  (p.97) In Chapter 3 we saw that this second 
use of the motor signal, the efference copy, has an important role in enabling 
actions to be controlled smoothly.

Corollary discharge or efference copy is a very general principle of nervous 
systems, found even in the simplest organisms (Crapse and Sommer 2008). In 
more complex organisms like mammals it operates simultaneously at low levels 
(e.g. gating reflexes), and at higher levels (e.g. to allow predictive 
computations). A very simple example is found in the model organism C. elegans 

(widely studied because its nervous system has only 302 easily accessible 
neurons). When it senses pressure at the front, it produces a balancing motor 
response, which serves to stabilize its position. That reflex would get in the way 
when the animal pushes itself forward. So, the motor signal driving forward 
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locomotion also serves to cancel the stabilizing reflex, freeing the animal to 
make forward progress. Thus, the corollary discharge signal both instructs the 
animal to move forward and informs the stabilization mechanism that the animal 
is going to move forward under endogenous control.21

That is a simple case of reuse, albeit one where arguably the two contents are of 
different kinds: one instructs that a world state be produced (directive content) 
and the other is designed to reflect the world (descriptive content). On another 
reading there are two kinds of directive content here: telling the motor system 
to push the animal forward and telling the stabilizing system to be inactive on 
this occasion. Chapter 7 deals with the question of what makes a content 
descriptive or directive. The importance of corollary discharge for now is that it 
shows how one vehicle can have two different contents deriving from two 
different downstream uses.

There are also likely to be other cases where the two contents are both 
descriptive, as with the chicken case, rather than one being directive and the 
other descriptive. Section 7.4 discusses a case where that arises in a slightly 
subtle way. The cases we will look at below are ones where it turns out that two 
different systems are using the same representational content, relying on it for 
different (but overlapping) purposes in different contexts.

4.6 Representations Processed Differently in Different Contexts
(a) Analogue magnitude representations

One potential case of the same vehicle meaning different things in different 
contexts comes from the analogue magnitude system.22 It is used to represent 
numerosity, but it  (p.98) seems to be capable of representing different things in 
different contexts: numbers of objects, tones, light flashes, and so on. I will 
conclude that this is actually a case where there is a common representation of 
numerosity. So the case will show how representations with a common content 
can be processed differently in different contexts.

Analogue magnitude representations correlate with the number of objects 
perceived in various situations: moving visual objects, static arrays of objects, 
tones, taps, flashing lights, and so on. There is very good evidence showing how 
the analogue magnitude system works in adults, infants, and non-human 
animals.23 It can be used to compare numerosity across modalities; for example, 
judging if the number of tones heard is more or less than the number of objects 
in a visually presented array. However, the correlation between the analogue 
magnitude register and numerosity is imperfect. The further apart two 
magnitudes are, the more accurate subjects will be in comparing them (5 vs. 10 
is easier than 5 vs. 6), but the more things there are to compare, the less 
accurate the comparative judgement (5 vs. 10 is easier than 15 vs. 20). That is, 
the representations follow Weber’s law: discriminability is a function of the ratio 
of the difference between quantities to the overall quantity being compared.
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Figure 4.5  Case 2.

There is evidence for one common register in the parietal cortex in which these 
numerosities are being recorded (Piazza et al. 2004, Nieder and Dehaene 2009). 
Registering numerosity in a common code affords ready comparisons across 
modalities and explains various priming and interference effects. Activation of 
this register R correlates with the number of items in the array or sequence 
presented, be they visual objects, flashes, tones, etc. Could R be a 
representation that has different contents for different downstream processes: 
numbers of objects in some contexts, numbers of tones in others, and so on? Or 
does R represent something common—numerosity—for all the uses to which it is 
put? Information about the types of item presented is not lost. Subjects can 
reach out to touch a flashing light, can follow moving objects with their eyes, 
can orient towards tones, and so on. So, there must be another component in the 
system somewhere with the functional role of telling downstream processing 
what kind of item it is dealing with, even if the number of items of that kind is 
recorded in a common register R. Simplifying considerably, let’s suppose that 
contextual information about the kind of item is recorded in a separate register 
R’. Schematically, the set-up is the one we identified as Case 2 (Figure 4.5).

To home in on a task function, 
suppose people have been 
trained for monetary reward to 
report the number of items they 
have just been presented with. 
A visual array should be 
reported by pressing a button a 
corresponding number of times, 
and a sequence of tones is 
reported by moving a graduated 
slider on a screen. We can 
suppose that this input–output 
behaviour is a task function as a result of feedback-based learning. (The system 
will also have a more general task function as a result: to obtain money.) States 
R1, R2, etc. are states of increasing activation of register R, correlating  (p.99) 

with the number of items just presented. State R’1 correlates with the array 
being visual and R’2 with it being auditory. The output behaviour is proportional 
to the activation of R, but the type of behaviour produced depends on whether 
register R’ is in state R’1, which leads to button presses, or in state R’2, in which 
case the subject moves the slider.

When we look for UE information, this functional specialization is an important 
part of the algorithm that allows the system to perform its task functions. One 
register keeps track of item type and another deals with numerosity in general 
in a common register. That commonality is also crucial to the way the system is 
able to make cross-modal comparisons of numerosity. So, R comes out as 
carrying UE information about numerosity and R’ about stimulus type. We could 
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treat R as representing different contents for different uses: visual objects for 
some downstream uses, auditory events for others, and so on. However, 
recognizing that R is a common register for numerosity offers a more 
perspicuous explanation of how the system performs its tasks than if we were to 
treat it has having different representations for different downstream uses. So, 
the UE information approach suggests that R is simply representing the 
numerosity of the presented array.24 It is a common representation which 
combines with another representation R’ to generate different outputs in 
different contexts.

These kinds of considerations will often be at work in applying the UE 
framework to real systems. Where a register is deployed in a variety of contexts, 
that will push in the direction of its having a common content, one which 
abstracts away from particular  (p.100) sensory features of particular 
situations. That is, ‘triangulating’ on a common content, while not built into the 
framework, will often fall out of the explanatory considerations that underpin UE 
information. Perceptual representations will generally work like that. Being 
decoupled from any specific behavioural response also pushes in the direction of 
their having purely descriptive content, as we will see later (§7.4).

The analogue magnitude system also illustrates the idea that exploitable 
correlational information can be carried by a range of different states (§4.1a 

above). The activity of R varies and how active it is correlates with numerosity. 
That systematic relationship can extend to new cases. As a result of learning, R 
carries UE information according to a system that maps activity levels to 
numerosities: R1 to one item, R2 to two items, etc. Suppose that it happens that a 
numerosity of seven was never encountered during learning. R7 nevertheless 
forms part of the same systematic relationship, so it carries the UE information 
that there are seven items present. Thus, when there is exploitable correlational 
information carried by a range of states in a systematic way, UE information can 
generalize beyond the instances that were encountered during stabilization 
(evolution, learning or contribution to persistence).25

(b) PFC representations of choice influenced by colour and motion

We are after a case where one and the same vehicle carries two kinds of 
correlational information, and intuitively one part of downstream processing 
makes use of it because of one kind of information that it carries, and another 
for another. In the previous example the functional specialization of the parietal 
cortex counted in favour of there being a dedicated common system for 
representing numerosity. So, we turn instead to the prefrontal cortex, which is 
less functionally specialized and carries information in a more domain-general 
way.
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Figure 4.6  Behavioural task in Mante et 
al. (2013).

Mante et al. (2013) offer a model of information integration and context- 
dependent choice in the prefrontal cortex. Subjects (macaque monkeys) view an 
array of moving red and green dots (Figure 4.6). Sometimes the average motion 
is to the left, other times to the right, in each case with more or less coherence, 
making it more or less easy to judge the direction of coherent motion. Another 
dimension of variation is the proportion of dots of each colour: sometimes more 
red, sometimes more green. That discrimination is harder when the numbers of 
each colour are nearly matched. The task is either to judge the average direction 
of motion or to judge the preponderant colour. The task changes trial-by-trial, 
indicated by another stimulus (a yellow square or a blue cross at the bottom of 
the screen). The monkey responds by making an eye movement, either to a red 
circle on one side of the screen or to a green circle on the other side. When the 
‘colour task’ stimulus is on, the monkey has to make an eye movement to the red 
circle if most dots are red, and to the green circle if most dots are green. When 
the ‘motion task’ stimulus is on, the monkey has to make an eye movement to 
the left if most dots are moving left, and to the right if most dots are moving 
right. (p.101)

Mante et al. (2013) present 
neural and modelling evidence 
that the task is performed as 
follows. A network of neurons in 
the prefrontal cortex 
accumulates evidence about the 
majority colour and the 
preponderant direction of 
motion of the dots. We can think 
of this simply as having a 
representational vehicle that 
varies along two dimensions, 
one corresponding to colour 
and the other to motion. The 
graded nature of these 
dimensions allows for evidence 
accumulation. The longer the 
monkey looks at a stimulus, the 
more information it gathers 
about which is the preponderant colour and direction of motion. So, the activity 
along these dimensions increases with time, and does so more rapidly when the 
difference in the array of dots (of colour or motion, respectively) is more 
pronounced.

Activity in this network evolves over time towards one of two states, 
corresponding to making an eye movement in one of two directions. In the 
context of the motion task, evolution towards one action or the other is driven by 
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Figure 4.7  Schematic representation of 
the processing in Mante et al. (2013).

evidence accumulated along the motion dimension. Information along the colour 
dimension is preserved (indicating the proportion of dots of each colour), but it 
has little or no effect on which choice is  (p.102) programmed. The reverse 
occurs in the context of the colour task: the colour-based dimension of variation 
drives evolution of the network towards a choice; motion-based information is 
preserved but non-efficacious. The contextual cue has the effect of selecting 
which dimension of variation of the representation will drive choice.

To capture the core of the case for our theorizing, let’s ignore the graded 
activation and accumulation of evidence and consider the simplified processing 
diagram in Figure 4.7 (Case 2 again). We can treat the system as having two 
vehicles. C1/C2 correlates with the context cue indicating whether motion or 
colour will be the basis of reward in the current trial. The other vehicle can be in 
one of four states: R1 or R2 (colour) can each be paired with either R3 or R4 

(motion). A processing step takes these states as input and produces A1 or A2 as 
output, corresponding to the two possible actions (simplifying slightly, suppose 
that these just program a saccade to the left or right, respectively). When in 
state C1, R1 vs. R2 determines whether A1 or A2 is produced; R3 vs. R4 has no 
effect. The converse is true in state C2.

As a result of learning, this 
system has the task function of 
obtaining juice. To find the UE 
information, we need to know 
what worldly conditions have to 
obtain for the monkey to get 
this reward. That has been set 
up in this case in distal terms, 
in terms of properties of the 
stimuli. The training regime 
was that the left/right decision 
is rewarded on the basis of the preponderant colour of the stimulus in one 
context and the preponderant motion in the other. Amongst all the correlational 
information carried by the components, the correlations which directly explain 
achieving these rewards are:

C1: colour will be rewarded (if preponderant colour is red a saccade 
to the red circle will produce juice, if …)
C2: motion will be rewarded (if preponderant motion is left a saccade 
to the left circle will produce juice, if …)
R1: the preponderant colour is red
R2: the preponderant colour is green
R3: the preponderant motion is left
R4: the preponderant motion is right
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We could consider a different set of correlational information, the correlations 
with sensory inputs. C1/C2 correlates with certain sensory states (going with the 
yellow square or blue cross at the bottom of the screen); states of R also 
correlate with activity  (p.103) in the organism’s primary sensory cortex. But an 
explanation of task functions in terms of this set of correlations would not be 
unmediated. It would have to be supplemented with further information about 
how neural properties relate to worldly properties. Then the correlations with 
the worldly properties would be doing all the explanatory work.

Lumping the states of C and R together into a single vehicle on which behaviour 
is conditioned would be less explanatory, for the same reasons we saw in the 
analogue magnitude case: it would overlook an important aspect of how internal 
processing manages to perform the task. Another alternative is that the system 
represents in a context-dependent way. In C1, it represents motion information 
but nothing about colour (those are mere correlations); in C2 the converse. But 
that overlooks the way those vehicle properties make a difference in the 
converse case.

Nevertheless, content attributions based on UE information retain some 
indeterminacy in this case. We already saw that there are two ways of capturing 
the UE information carried by components C: C1 with colour will be rewarded, or 
with if preponderant colour is red a saccade to the red circle will produce juice, 
if preponderant colour is green a saccade to the green circle will produce juice. 
There is also indeterminacy at R, for example R1 seems indeterminate between 

the majority of the dots are red and the colour density in the middle of the 
screen is predominantly red; or even the moving surface in the middle of the 
screen is mostly red. These collections of correlational information are equal 
candidates for explaining how the task of obtaining juice was performed robustly 
and stabilized by interactions with the environment. I would argue that finding 
this residual indeterminacy is the right result in this case.

4.7 One Representation Processed via Two Routes
The structure of Case 3 is illustrated again in Figure 4.8. Action is conditioned 
on two different representational vehicles, as in the previous section, but the 
second vehicle is also affected by the first. That is, the first representation 
affects behaviour via two routes.

Van Essen and Gallant (1994) 
produced an influential 
description of the primate visual 
system. One aspect of their 
account contains an example of 
the structure we are interested 
in (see Figure 4.9). There are 
several interconnections, and 
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Figure 4.8  Case 3.

Figure 4.9  A detail from the visual 
information processing network 
described by van Essen and Gallant 
(1994).

lots of  (p.104) connections 
into and out of the visual system 
that are not shown in Figure 

4.9.26 We restrict our attention just to processes occurring within the visual 
system, and amongst those just to the stages circled in Figure 4.9. The ‘Thin 
stripe’ area in V2 processes wavelength information, which is input directly to 
MT, and also affects processing in ‘Thick stripe’ V2 which in turn also affects 
processing in MT.

Van Essen and Gallant were 
primarily concerned to 
catalogue the functional 
connections in the visual 
system. Their claims about what 
information is being processed 
at each stage are more tentative 
and are a long way from being 
specified computationally. In 
order to have a concrete 
example to theorize about I will 
simplify and then fill in some 
details. That will give us a 
simplified but more specific 
case to work with.

Let us suppose that each box acts as a filter. Thin stripe V2 is tuned to colour 
dimensions, with different cells for different parts of visual space (we can think 
of this as retinal space). Area MT contains four different filters, but we can focus 
on just one, the one for plaid motion. These cells are sensitive to the direction of 
motion of surfaces in the visual field. They integrate local motion information 
and thereby correlate with the overall direction of motion of a presented surface. 
In some circumstances when observing gratings, that fusion can be broken so 
that the observer sees two superimposed gratings moving in different directions 

—so-called ‘plaid’ motion (Adelson and Movshon 1982; Burr 2014, pp. 766–9). 
We are supposing that this is in part because MT contains cells that are sensitive 
to the direction of motion of more than one surface in roughly the same portion 
of the visual field. In other conditions the observer will see just one moving 
grating.

This sensitivity to the direction of motion of surfaces is affected by chromatic 
information (Croner and Albright 1999; Thiele et al. 2001; Bell et al. 2014, p. 
238). One route  (p.105) shown by van Essen and Gallant (1994) is direct, from 
Thin stripe V2 direct to MT. When portions of nearby space have the same colour 
they are more likely to be treated as parts of the same surface. There is also an 
indirect effect of chromatic information, from Thin stripe V2 to Thick stripe V2 

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-bibItem-101
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-chapter-4-figureGroup-23
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-4#oso-9780198812883-chapter-4-figureGroup-23
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-2
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-39
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-64
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-291
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-20
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-101


Correlational Information

Page 30 of 39

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 
2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. 
Subscriber: Raja Narendra Lal Khan Women's College; date: 14 June 2022

and then on to MT. Chromatic information affects the way Thick stripe V2 
calculates the local direction motion. That in turn affects MT’s calculation of 
where the surfaces are and how they are moving.

To theorize about content in this case I will simplify dramatically, so as to focus 
just on the dual route structure we are interested in. To give the mechanism a 
simple task function, suppose that the organism has been trained to reach out 
and intercept a moving object, doing so by tracking the direction of motion of 
observed surfaces. Then we can focus on one vehicle in MT, correlating with 
plaid motion direction, and suppose that it acts as input to the motor system so 
as to produce correlative reaching behaviour. That is a plausible task function if 
the organism has undergone training with feedback. Then the internal 
processing will have been tuned to enable the organism to catch objects stably 
and robustly.

Which set of correlational information, carried by internal vehicles, is directly 
explanatory of the system’s ability to perform that task? The relevant MT activity 
correlates with the direction of motion of the surfaces of presented objects. (In 
our simplified setting it also correlates at output with reaching direction.) Thick 
stripe V2 has an array of vehicles each of which correlates with the local 
direction of motion of one portion of the visual field. The chromatic information 
in Thin stripe V2 correlates with many relevant properties; for example, with the 
wavelengths reflected by local areas, and with the colours of local areas. It is 
useful for this task because, when nearby areas have the same colour, they are 
likely to be part of the same surface. What is important, then, is the way activity 
in Thin stripe V2 for a local part of the visual field correlates with some property 
of presented surfaces that tends to be invariant for a given surface. Call that a 
chromatic-surface-property.27

In reality each of these components is involved in very many different task 
functions, and that will much more tightly constrain their contents. Even with 
our simplification, it is still clear that UE information will concern aspects of the 
distal objects the system is interacting with (e.g. motion properties), and 
features of the behaviour it performs on them (reaching direction). Most 
importantly, it is clear that the UE information will differ as between the three 
components we are considering. They are doing more than simply indicating 

surface moving in such-and-such direction with different levels of reliability at 
different stages. The problem of catching the object has been split up by having 
vehicles that track a series of relevant properties and performing a computation 
over those vehicles which is suited to calculating where to reach.

The consumer-based approach could bundle together the outputs of Thin stripe 
V2 and Thick stripe V2 and treat them as a single input, a vehicle which can be 
in a wide  (p.106) range of states, and on which the output of MT is 
conditioned. The behaviour-relevant contents that can be ascribed to this 
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Figure 4.10  The neuronal computation 
proposed by Bogacz (2015) for deciding 
between available actions (adapted).

conjunctive system are simply correctness conditions like there is an object in 
such-and-such region moving in such-and-such direction. Such contents offer no 
insight into how the system manages to compute the integrated motion of the 
surfaces of objects. It throws no light on the separate roles of wavelength 
information and achromatically driven local motion information in performing 
that computation. And it entirely overlooks the dual computations performed on 
wavelength information in solving the problem.

In short, this is another case in which the UE information approach does a good 
job of elucidating the way representational explanation works—and does so 
without having to appeal to a content-constituting representation consumer. 
Varitel semantics has no difficulty dealing with cases where a representational 
vehicle has a dual effect on behaviour via two different routes.

4.8 Feedback and Cycles
The final case involves feedback and cyclical information processing (Bogacz 

2015). Rafal Bogacz describes a fully specified computational model of how the 
brain calculates the probabilities used to decide between a number of available 
actions (Figure 4.10). The model is far from being definitively established as the 
truth about how the brain generates this behaviour, but it is well supported by 
current evidence and it suits our purposes because it is specified in enough 
detail to get our theorizing off the ground.

The computation specified in 
Figure 4.10 calculates the 
probability that each available 
action is the best one to 
perform in the current content. 
When one of the probabilities 
reaches a threshold 
(determined by an attempt to 
maximize speed at a given 
accuracy), that action is 
performed. So, let us suppose 
that the P(Ai) are inputs to a 
decision layer that detects when 
one of the inputs crosses a 
threshold and programs the 
corresponding action (added as 
a rectangular box in Figure 

4.10). The computation shown 
calls for representations, not 
just of states of affairs, but of 
probability distributions over 
states of affairs. That is a new feature. Before getting into the details of the 
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computation proposed by Bogacz, we need first to understand how the UE 
approach can apply to probabilistic representations.

A system can make use of the way its internal states carry probabilistic 
information.28 In previous case studies we have only been concerned with the 
fact that a representation makes an individual world state more likely (R raises 
the probability that condition C obtains). But computations could make use of 
more fine-grained information carried by R: that when R is tokened, 75 per cent 
of the time the peanut is on the right and 25 per cent of the time the peanut is 
on the left, for example. When calculating what to do, the system can make use, 
not just of the fact that R raises the probability of some condition C1, but of the 
fact that when R is tokened, the probability that C1 obtains is p, the probability 
that C2 obtains is q, and so on. When this kind of fine-grained  (p.107) 

correlational information figures in explaining a system’s performance of its task 
functions, internal states will end up having probabilistic representational 
contents.

To apply my account to these cases, all that’s needed is a straightforward 
extension of the definition in §4.1a of exploitable correlational information 
carried by a range of states. A putative vehicle of content can be in one of a 
range of mutually incompatible states, so it counts as a random variable X. Now 
consider any item in the world that can be in a range of mutually incompatible 
states. It is another random variable Y. There is a joint probability distribution 
p(x,y) relating the two states. For every possible state of the representational 
vehicle, this gives the corresponding probability of each of the possible states Y. 
One way to think about p(x,y) is just in terms of frequency: fix on one particular 
state of the representational vehicle and ask how often Y is then in each of its 
possible states; repeat for each possible vehicle state.29 A fine-grained 
exploitable correlation carried by X about Y is a joint probability distribution 
p(x,y) between X and Y that subsists for a univocal reason. (In defining X and Y 
as random variables it is implicit that each is constituted by states of items 
within delimited regions D and D’, respectively. We are concerned with the 
probability distribution that subsists within those regions.)

 (p.108) The joint probability distribution thus counts as a species of exploitable 
correlational information. The definition of UE information applies without any 
modification. A representational vehicle X enters into joint probability 
distributions with many different conditions in the world. When a system S 
encounters an object, the states of X might induce a probability distribution on 
possible sizes, possible directions of motion, possible categories of object, 
whether an object is animate or inanimate, and so on. For familiar reasons, X 
will also induce a probability distribution on more proximal facts like states of 
the retina and other brain states. All these probability distributions are 
candidates for UE information. Which qualifies depends on which figures in 
explaining S’s performance of its task functions. For example, the probability 
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distribution over motion directions may be directly relevant, given the way 
states of X are transformed in internal processing; probability distributions over 
states of the retina are less relevant.

When we were previously just concerned with probability raising, P(C|R) was 
important, and so was how much R changed the probability, i.e. how much P(C| 
R) differed from the unconditional probability P(C). That is also relevant here. 
Random variable X changes the probability of worldly states Y by comparison to 
the unconditional probabilities of states Y. This is measured by the mutual 
information between X and Y.30 A set of conditions in the world about which a 
representational vehicle X carries more mutual information is, other things 
being equal, a better candidate to qualify as UE information carried by X.

We also need to generalize the idea of a correctness condition. The content 
represented by one of the values of X, x1 say, is a probability distribution (call it 
p̂) over world states Y: p̂(y|x1). When x1 is tokened its content would be 
completely accurate if p̂(y|x1) exactly matched the actual probabilities of world 
states given x1. When there is not an exact match we need a graded notion of 
accuracy/inaccuracy—of how close the content (represented distribution) is to 
the true distribution. There are various ways to measure how much the true 
distribution p(y|x1) differs from the represented distribution p̂(y|x1). A standard 
measure is the Kullback-Leibler divergence. The Kullback-Leibler divergence of 
the true distribution p(y|x1) from the represented distribution p̂(y|x1) measures 
how inefficient it is to assume that the distribution is p̂(y|x1) when the true 
distribution is p(y|x1). It tells you how much more information (in bits) you would 
need in order to describe the true state of the world if you had represented it as 
p̂(y|x1).31 (p.109) This is an appropriately graded notion of inaccuracy, going to 
zero when the world is exactly as it is represented to be.

Returning to Bogacz’s model, the computational steps are as shown in Figure 

4.10. The quantities are represented on logarithmic scales so that multiplication 
of quantities can be performed by adding firing rates. The system starts with 
prior probabilities for each of the Ai. It then gets sensory input S. It can then 
calculate how likely action A1 is to be rewarded given S, P(A1|S), and so on. First 
it calculates P(A1) P(S|A1), P(A2)P(S|A2), etc. These then have to be normalized 
by dividing each by the sum of all of them so as to derive posterior probabilities 
for each action: P(A1|S) etc. So, the representations in frontal cortex are used in 
two ways. They go off to STN where they are summed, and the value of each is 
simultaneously preserved unmodified via the striatum, so that each separate 
value can be divided by this sum. If any of the P(Ai) exceed the threshold at this 
point, the corresponding action is programmed. If not, these resulting P(Ai) act 
as new priors for the next step of the calculation, performed on the next sensory 
input S.
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Figure 4.11  Case 4.

For present purposes we are interested in the fact that information processing 
proceeds around a feedback loop before issuing in behaviour (Case 4, see Figure 

4.11). The system has been tuned by learning to produce the action that is most 
likely to be rewarded given current sensory input, and to wait before acting in a 
way that gathers the optimal amount of sensory information to make a decision 
which optimizes a speed–accuracy trade off. It does so by tracking sensory 
information, processing it, and relying on that processing to program an action.

If the computational model 
above is well-supported, then it 
is likely to give the UE 
information carried by the 
components. According to the 
cognitive neuroscientists, 
organisms are acting near- 
optimally in a probabilistic 
environment in order to obtain 
the maximum amount of 
rewarding feedback. They look 
at how brain areas are 
probabilistically connected to 
states of the world in order to 
explain how the brain can be calculating appropriately—making calculations so 
that the behaviour will produce reward as often as possible. So, the test of the 
cognitive neuroscientific model’s accuracy is the same as our test for UE 
information. If Bogacz (2015) is right about  (p.110) the correlational 
information carried by the brain areas he points to, and if he is right that neural 
firing is transformed in the way he suggests,32 then his computational model is a 
good hypothesis about the UE information carried by these brain areas, and 
hence about their representational contents.

In short, the UE information approach does allow us to give a good account of 
why the components of this system have the contents they do, an account which 
in turn feeds into an understanding of why representational contents are suited 
to explaining behaviour. Here again, we had no need to appeal to a consumer 
system that plays a special content-constituting role. Internal processing 
involving feedback presents no obvious obstacle to applying the varitel 
framework.

4.9 Conclusion
Chapter 2 argued that representational content arises in many cases from the 
way relational properties of components of a system combine with facts about its 
internal processing. Taken together, internal processing over components 
standing in exploitable relations to features of the environment can amount to 
the implementation of an algorithm, an algorithm by which the system performs 
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various input–output mappings. Turning this around, if we take a relevant input– 

output mapping, content is fixed by the exploitable relations carried by 
components which make the internal processing an implementation of an 
algorithm by which the system instantiates that mapping. Chapter 3 argued that 
task functions give us the input–output mappings that are relevant to content- 
determination. That was because of a cluster in which outcomes stabilized by 
natural selection, learning or contribution to persistence are also produced 
robustly and are generated by an algorithm that makes use of exploitable 
relations.

This chapter filled in the final part of the account, showing how correlational 
information counts as an exploitable relation within this framework. Correlations 
turn into content when they are exploited by a system—exploited in a very 
particular sense. Our definition of UE information pins down that sense: the 
content-constituting correlations are those which unmediatedly explain a 
system’s performance of its task functions. We saw in this chapter how the UE 
approach fixes content in a range of case studies from cognitive science. It does 
so without having to appeal to representation consumers whose outputs play a 
content-constituting role. In each case study, contents fixed in this way do a 
good job of underpinning the characteristic explanatory grammar of 
representational explanation: correct representation explains successful 
behaviour and misrepresentation explains failure.

The next chapter argues that another exploitable relation also plays a content- 
constituting role, a relation in the ballpark of mirroring, isomorphism, or 
structural correspondence.

Notes:

(1) We leave aside two other candidate exploitable relations because they don’t 
arise in our simple systems: subject-predicate structure of the kind found in 
natural language (genuine singular and general terms); and the semantic or 
inferential connections between concepts, which potentially play a content- 
constituting role there. There may be more.

(2) I am deliberately neutral about what should count as an item. It could be a 
particular object, e.g. a = the flagpole on top of Buckingham Place and F = the 
Union Jack is flying. Or it could be a collection of objects or a type of object, e.g. 
a = human faces and F = having red spots. It could also be a process or a type of 
process.

(3) This ‘change’ need not be causal—‘change’ is simply convenient way of 
saying that the conditional probability differs from the unconditional probability.

(4) Modifying Millikan’s definition of ‘soft natural information’ (Millikan 2000, 
Appendix B).
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(5) This is closely related to Shannon’s theory of information, which connects a 
range of states of a receiver with a range of states of a source. Our point-wise 
correlational information is a special case of this. Shannon information 
additionally takes account of the probability distribution across this range of 
states.

(6) Millikan (1984) made this important observation about evolutionary 
functions. Suppose that a bee dance of exactly 42.5° to the vertical has never 
been performed in the history of the honeybee. Nevertheless, this dance has the 
evolutionary function of sending consumer bees off at 42.5° to the direction of 
the sun. The function of the particular dance derives from the systematic 
relationship bees evolved to respond to (angle of dance to the vertical = 
direction of nectar in relation to the sun). I am making a parallel point about 
exploitable correlations. Where there is a univocally grounded, nomologically 
underpinned, systematic probability-raising relationship, expectations acquired 
for some values can be extended, non-accidentally, to other values drawn from 
the same system.

(7) For a particular pair F and G, Fa must raise the probability of Gb across the 
region or lower it across the region; raising probability in some subregions and 
lowering it in others would not count. (This is explicit in the definition of 
exploitable correlational information above.) But the mapping from values of X 
to values of Y may be such as to raise the probability for some values of X and Y 
and to lower it for other values of X and Y.

(8) There are also several aspects of correlation strength that will be important 
in different ways: sensitivity, specificity, positive predictive value, negative 
predictive value, etc. The following are always important: how likely the world 
state Gb is given the vehicle state Fa, i.e. P(Gb|Fa), and how informative the 
vehicle state is about the world state, i.e. how different P(Gb|Fa) is from the 
unconditional probability P(Gb).

(9) In ‘information processing’ or ‘computational’ theories in psychology and 
cognitive science, the ‘information’ is usually a matter of representational 
content rather than bare correlation.

(10) One type of correlation is where maximum firing rate corresponds to a 
particular feature at a particular location, dropping off with distance or variation 
in the feature (e.g. rotation of a line). Another type of correlation is filtering, 
where it is not the maximum firing rate that is most important, but the 
sensitivity of changes in firing rate to changes in the stimulus. A neuron whose 
firing rate goes up and down substantially as the orientation of a bar changes, 
say, will thereby carry fine-grained information about orientation. The 
orientation to which it is most sensitive will be somewhere in the middle of its 
range of firing rates, not at the maximum.
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(11) There are different ways of capturing that indeterminacy. One is to say the 
representation has a correctness condition which is the disjunction of these 
conditions. An alternative is to say that the words we theorists use to describe 
the correctness condition are only an imperfect expression or model of the true 
correctness condition; and that each way of capturing the correctness condition 
using the fine-grained machinery of natural language is bound to be only 
approximate, each equally good.

(12) That would make it hard to meet our desideratum.

(13) Recall that in this case ‘S’ picks out a lineage of organisms, typed by a 
lineage-based category (§3.3). Then we have explananda like how honeybees 

reach locations of nectar, or how E. coli bacteria avoid toxic chemicals. Species 
(e.g. honeybee, E. coli) are lineage-based classes of organisms.

(14) A different kind of case is more straightforward to deal with. Sending 
consumer bees off foraging 200 m away in the direction of the sun when there is 
nectar at that location is a task function of a bee colony. It is an output that was 
stabilized by evolution and robustly produced. A dance of four waggles (say) in a 
vertical direction correlates with sending consumer bees foraging at that 
location. That output correlation is with an F which is a task function. But it also 
explains how the colony achieves another, more general, task function: getting 
nectar (from a variety of different locations). So, some correlations with task- 
functional outputs get explanatory purchase through explaining other, related 
task functions.

(15) Dretske does allow that natural selection can give an internal state the 
function of indicating something. The internal state can then be called a 
representation. But he argues, mistakenly in my view, that this is not a case 
where contents (reasons in his terminology) explain behaviour, since what the 
states indicate, ‘is (and was) irrelevant to what movements they produce’ (1988, 
p. 94), see also Dretske (1991, pp. 206–7).

(16) This is compatible with the view that explanations are semantic entities (e.g. 
sentences, models); as well as with the ‘ontic’ view of explanation (Salmon 1984, 
Craver 2014).

(17) In causal explanations, ‘explains’ does not introduce an intensional context, 
in the sense that in an intensional context it matters how we pick out the 
properties referred to. A neuron in a macaque’s OFC that carries UE information 
about orange juice thereby carries UE information about my favourite juice (as it 
happens). Explanation does not of course in general allow substitution salva 
veritate of one property for another property which has the same extension. (In 
that sense causal explanations do not in general allow substitution salva veritate 

of coextensional property terms.)

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-chapter-3#oso-9780198812883-chapter-3-div1-17
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-95
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-241
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198812883.001.0001/oso-9780198812883-bibliography-1#oso-9780198812883-bibItem-63


Correlational Information

Page 38 of 39

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 
2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. 
Subscriber: Raja Narendra Lal Khan Women's College; date: 14 June 2022

(18) As we’ve just seen, the relevant interests would be those related to giving 
causal explanations (of stabilization and robustness), rather than interests 
related to giving content-based explanations.

(19) Suppose a computational step depends on comparing the values of two noisy 
representations and selecting the larger (as in analogue magnitude comparisons, 
see §4.6a below). If the noise is asymmetric around the mean, then reducing the 
noise in one register might cause the system to select the wrong option more 
often.

(20) Thanks to Rosa Cao for suggesting this example.

(21) Where there is an efference ‘copy’ it may be that there are in fact two 
separate representational vehicles, one instructing the animal to move forward 
and a separate descriptive representation telling the stabilization mechanism 
that the animal is going to move forward. In cases where there is just one signal, 
then there will be a single representational vehicle which plays both these roles.

(22) I adopt the common label without making any claims about whether these 
representations qualify as analogue (rather than digital) in any useful sense; or 
about how best to draw the analogue–digital distinction and to characterize 
analogue computation.

(23) Barth et al. (2003) in adults; Xu and Spelke (2000) in infants; Brannon and 
Terrace (1998) in monkeys. For reviews see Dehaene (1997) and Carey (2009, 
pp. 118–31).

(24) There is a legitimate question here of what it is to represent numerosity, 
given that in many situations the domain being represented is discrete, whereas 
the vehicle of representation is either continuous-valued (e.g. a firing rate), or if 
it is discrete-valued (e.g. because it represents in terms of number of 
depolarizations, which are discrete events) then it has many more discrete 
values than there are integer values to be represented. Option 1 says that there 
are different values of the vehicle that all represent the same number of objects. 
Option 2 says that each state represents that the input has a certain non-integer 
magnitude (rational or real valued), and that it does so only approximately. How 
correctly or incorrectly it represents is given by the difference between the 
(real-valued) representational content and the (integer-valued) actual number of 
items; where degree of correctness can explain behavioural success and failure 
(e.g. the closer you are to getting it right, the more often the behaviour will be 
exactly appropriate to the number; and if appropriateness falls off in degrees, 
the more appropriate your behaviour will be).

(25) As noted above (§4.1a), this mirrors a point made by Millikan (1984), which 
she describes as a kind of systematicity.
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(26) More recent work has altered this picture somewhat, but only serves to 
confirm that the feature we are interested in is indeed exemplified: not only is 
feedback vitally important, but it is also confirmed that visual processing does 
not occur in a strict hierarchy of subsystems or neural areas. Instead there are 
at least three streams that work in parallel, with interconnections between them 
(Shigihara and Zeki 2013).

(27) I won’t divert into considering whether these properties are identical to 
colour properties. In any event, there may well be some indeterminacy here: a 
range of surface properties that Thin stripe V2 activity correlates with, each of 
which is an equally good candidate for explaining performance of this particular 
task.

(28) Shea (2014b) works out this idea in a canonical model of probabilistic 
population coding in the brain.

(29) As before (§4.1a), this account depends on there being nomologically 
underpinned probabilities in the world, so these would have to be non- 
accidental, nomologically based frequencies; or they could be propensities or 
objective chances.

(30) Taken on its own, the unconditional probability of Y is distributed across its 
possible states a certain way. That could be very indeterminate (e.g. all states of 
Y are equally likely) or already quite determinate (the unconditional probability 
of one or two states of Y is already quite high). This is measured by the entropy 
of Y, H(Y). Sharper distributions have lower entropy. States of X sharpen the 
distribution of Y, to a greater or lesser extent. That is to say, the entropy of the 
conditional distribution Y|X is less than the distribution of Y taken on its own (if 
X and Y are not wholly independent). This difference measures how informative 
X is about Y. So the mutual information between X and Y, I(X;Y) is given by the 
formula: I(X;Y) = H(Y) − H(Y|X).

(31) The Kullback-Leibler divergence is given by:

￼

(32) I.e. that neural activity in these areas is added and subtracted in the way set 
out in the model—a way that is suitable to implement multiplication and division 
of quantities that are carried, not linearly, but on a scale that is related 
logarithmically to activation.
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