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Plurals and Modals

10.1 Introduction

Just as the interaction between first-order quantification and modalities
raises a number of interesting and difficult questions, so does the interaction
between plural quantification and modalities.∗ In this chapter, we discuss
the central aspects of the problem of how plurals and modalities should be
combined. We have two main goals. The first is to provide a useful map of
the current literature. The second is to argue for the metaphysical claim that
pluralities are modally rigid. What does this claim mean?

Consider some things, and choose any one of them. Is the chosen thing
necessarily one of the things from which it was chosen? It is usually assumed
that the answer is positive—so long as the things in question still exist.1
If some things did not include our chosen thing, then these things would
simply not be the things with which we started, that is, the things from
which we made a choice. If the things from which we chose exist at all, then
necessarily, whenever they exist, they include the chosen thing. Likewise, if
someother thing isnot one of the things fromwhichwe chose, then this too is
a matter of (conditional) necessity. With the help of an existence predicate E,
these two modal constraints on plural membership can be formalized as
follows:2

2∀x∀yy(x ≺ yy → 2(Eyy → x ≺ yy))(Rgd+)
2∀x∀yy(x ⊀ yy → 2(x ⊀ yy))(Rgd−)

The claim that pluralities are rigid is the conjunction of these constraints,
which we abbreviate as (Rgd).

∗ This chapter is a revised and expanded version of Linnebo 2016.
1 See Williamson 2003, 456–7; Rumfitt 2005, section VIII; Williamson 2010, 699–700;

Uzquiano 2011; Williamson 2013, 246–8. The view is challenged in Hewitt 2012a.
2 One might have thought that more existential presuppositions were needed. We will later

see that that isn’t so.
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The rigidity principles can be regarded as a form of extensionality, stating
that pluralities are tracked extensionally across possible worlds.The ordinary
principle of extensionality states that if every one of these things is one of
those things and vice versa, then these things and those things are the very
same things. (We will return to the question of how best to formalize this
principle.) This is widely assumed to provide a criterion of identity for plu-
ralities; and like criteria of identity in general, the principle is widely thought
to hold of necessity. Even so, the principle provides no information about
how pluralities are tracked across possible worlds. The rigidity principles fill
this gap. They tell us that necessarily any given things have their members
by necessity. A plurality is therefore not allowed to vary in its membership
across possible worlds. Any variation in membership would result in our
talking about some other things, not the things in question.

To appreciate how the rigidity claims for pluralities have real bite, it is
useful to contrast pluralities with groups, such as teams, clubs, committees,
and the like.3These entities do not have their members necessarily. Consider
the Department of Philosophy of the University of Athens. It might have had
other members than it in fact has: Sophus might have been hired instead of
Sophia. Someone who is a member of this department might not have been
so; and someone who is not a member might nevertheless have been one.
Thus, a group such as a philosophy department does not have its members
necessarily. The same is true of other typical groups.

If pluralities are rigid but groups are not, what explains the difference?One
might try to appeal to the distinction between many and one. A plurality is
many, while a group is one. But this distinction cannot explain the relevant
modal difference between pluralities and groups. For a set is one and yet has
its members necessarily. So rigidity is compatible with being one.

A far more promising response arises from the following basic thought:
a plurality is nothing over and above its members and is thus fully specified
when we have circumscribed its members. Tracking a plurality across possi-
ble worlds is therefore trivial: it is simply a matter of tracking its members.
Unlike a plurality, a group is something over and above its members: it is
not fully specified when we have circumscribed its members. For example,
we additionally need to specify its membership criterion. A group such as
a department of philosophy will be associated with a membership criterion
that is sanctioned by the statutes of the university. So tracking a group across

3 For useful discussions of groups, see, e.g., Landman 1989a, Landman 1989b, and Uzquiano
2004b.
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possible worlds is not trivial; it goes beyond tracking each of its members.⁴
By contrast, since a plurality is nothing over and above its members, there
is no material available that might underwrite a non-trivial tracking across
possible worlds. All we have to go on are the members. So the only way to
track a plurality is the trivial one, which ensures plural rigidity.⁵

Sets—understood according to the iterative conception—resemble plu-
ralities in this respect, with the additional and complicating factor that their
members are “bound together” into a single object (see Section 4.4).

In what follows, we attempt to clarify and develop the basic thought that
a plurality is fully specified when we have circumscribed its members. The
result will be a disentangling and clarification of several aspects of the basic
thought. We will find that plural rigidity figures at the heart of a network
of ideas having to do with what we will call the extensional definiteness of
pluralities.

10.2 Why plural rigidity matters

The question whether pluralities are rigid has emerged as the central ques-
tion about the interaction between plural quantification and modalities. The
reason for this has to do with the important ramifications of the question in
philosophical logic, metaphysics, and the philosophy of mathematics.

One example is the debate about the relation between plural logic and
second-order logic discussed in Chapter 6. Can plural logic be replaced by
monadic second-order logic or even reduced to it? Or is some reduction in
the opposite direction possible? If pluralities are rigid, then the two forms of
logic have different modal profiles. For the modal behavior of predication is
clearly non-rigid, as the following sentences illustrate.

(10.1) Timothy Williamson is a philosopher, but he might not have been
one.

(10.2) Hillary Clinton is not a philosopher, but she might have been one.

⁴ Uzquiano 2018 provides a systematic development of the idea that, since tracking them is
trivial, pluralities can be seen as a limiting case of generally non-rigid groups.

⁵ Roberts (forthcoming) provides a systematic investigation of this basic thought, resulting
in a defense not only of (Rgd) (which is ourmain concern in this chapter) but also some further
modal principles.
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As we have seen, however, the difference between the modal profile of
predication and that of plural membership makes at least one kind of
reduction problematic (see Section 6.4).

A related example concerns the semantics of predication. In Section 7.5,
we showed that if we have ordered pairs at our disposal, it is technically
possible to use plurals to give a semantic analysis of predication. Specifically,
we can take the semantic value of a predicate to be the plurality of tuples
of which the predicate is true. In addition to the lack of homophonicity
even on the intended interpretation and the need for ad hoc tricks to handle
predicates that are true of nothing, there is a violation of the constraint
that semantic values should have the same modal profile as the expressions
of which they are semantic values. So considerations pertaining to modal
rigidity can help us decide among competing semantics.

Next, the rigidity of pluralities plays a central role in one of Williamson’s
main arguments for necessitism, the metaphysical view that, necessarily,
everything necessarily exists.⁶The denial of this view is contingentism. When
we go on to consider arguments for the rigidity of plurals, it will be important
to keep inmind whether the argument is intended to be given in a necessitist
setting (which is always easier) or in a contingentist setting (which requires
greater care).

Finally, the question of the rigidity of pluralities plays an essential role
in an approach to mathematics and to the phenomenon of indefinite exten-
sibility developed in recent work by one of us (Linnebo 2010 and Linnebo
2013).⁷

10.3 Challenges to plural rigidity

We aim to survey a number of arguments for the claim that pluralities are
rigid. Before doing that, however, we should address some alleged counter-
examples to plural rigidity.

The first one involves plural descriptions. Assume that Sophia is one of
the philosophers. Does it follow that she is necessarily one of the philoso-
phers? (For simplicity, we leave implicit the assumption that the entities in

⁶ See Williamson 2010, 2013.
⁷ While this approach to mathematics and indefinite extensibility draws inspiration from

Parsons 1983b and to some extent also Putnam 1967 and Hellman 1989, these earlier views do
not rely in the same way on the rigidity of pluralities.
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question still exist.) If so, we would have to accept the implausible claim
that, necessarily, Sophia is a philosopher. Thus, we must deny that Sophia
is necessarily one of the philosophers. Does the case of Sophia provide us
with a counterexample to plural rigidity?

Long ago Kripke taught us how to respond. Let pp be the things such
that anything is one of them if and only it is in fact a philosopher. What is
necessarily the case is that Sophia is one of pp. But it is not necessary that pp
are all and only the philosophers. Sophia might have become a psychologist,
not a philosopher.Then she would not have been included in the ranks of the
philosophers, although she would still have been one of pp. It is important
not to misunderstand the rigidity claim.

Other apparent counterexamples involve pronouns rather than plural
descriptions. A nice example is the following ad we once saw for a gym:

(10.3) Join, and become one of us!

The plural pronoun ‘us’ is naturally taken to stand for a plurality. But when so
interpreted, the message presupposes that it is possible to become a member
of a plurality of which one is not already a member.⁸ If there were such a
possibility, we would have a failure of rigidity.

How are we to respond to these apparent counterexamples to the rigidity
of pluralities? Interesting though they are, these examples are inconclusive.
Consider, for instance, a bohemian parent who upon seeing some particu-
larly smug business school students tells her daughter:

(10.4) I’m glad you’re not one of them.

It is natural to understand the parent as expressing joy that her offspring is
not (in some salient respect) like the students in question rather than pleasure
with a fact about plural non-membership. Thus, (10.4) poses no more of a
challenge to the rigidity of pluralities than the following sentence poses to
the necessity of identity:

(10.5) I’m glad you’re not him.

In particular, the apparent counterexamples can be explained away if we
allow that a plural pronoun can sometimes function as a covert description

⁸ A similar example is attributed to Dorothy Edgington in Rumfitt 2005. Further examples
are found in Hewitt 2012b.
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or refer to a group.⁹ Either way, the behavior of the pronoun would be
consistent with plural rigidity: as observed above, plural descriptions can
function non-rigidly, and groups need not be rigid. Of course, more work
would be needed to dispel an apparent counterexample such as (10.3) and
establish an alternative explanation consistent with plural rigidity. What our
discussion does show, however, is that it is advantageous to base our assess-
ment of plural rigidity on more systematic and theoretical considerations.

As mentioned, we will see that plural rigidity figures at the heart of a
network of ideas having to do with the extensionality of pluralities. Since
the ideas in this network are true of a core use of our plural resources in
ordinary language and thought, we commend them as an explication of
these resources. We do, however, accept the existence of non-rigid groups.
So we have no trouble admitting that there may be uses of plural resources
(including plural variables) to stand for groups. Nor do we have any trouble
admitting that there are plural expressions (e.g. some plural descriptions)
that fail to satisfy rigidity.

10.4 An argument for the rigidity of sets

It will be useful to begin our investigation of the rigidity of pluralities
by reminding ourselves of an argument for the necessity of identity and
distinctness made famous by Saul Kripke (1980, Lecture III) and often
attributed to Ruth Barcan Marcus (1947).1⁰ As we will see, this argument has
striking consequences for the metaphysics of sets. Throughout this chapter,
we assume the modal system T as our background modal logic. When
stronger modal axioms are used, this will be noted explicitly.

The argument turns on Leibniz’s law:

(Leibniz) 2∀x∀y(x = y → (φ(x) ↔ φ(y)))

where, as usual, the relevant argument place of φ occurs in a transparent
context, namely outside the scope of quotations and propositional attitudes.

⁹ For arguments in support of the first strategy, see e.g. Heim 1990 and Neale 1990,
Chapter 5. The possibility of the kind of reference assumed in the second strategy is shown
by examples such as ‘Yesterday, the committee/club/team met. They decided to issue a press
release.’ Sentences such as these are natural and contain a plural pronoun, ‘they’, that appears to
be anaphoric on a group.

1⁰ See Burgess 2014 for a recent discussion of the origin of the argument.
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Given the assumption2(x= x), Leibniz’s law entails2∀x∀y(x= y→2x= y).
Moreover, given the Brouwerian axiom (or just B for short)

φ → 23φ

we can also derive the necessity of distinctness:2∀x∀y(x ≠ y → 2 x ≠ y).11
(Proof sketches of these arguments are provided in Appendix 10.B.)

A contingentist may object to the assumption of 2(x= x). After all,
in a negative free logic, ‘x= x’ can be used as an existence predicate, in
which case what is assumed is the necessary existence of x. The problem
is easily circumvented. The contingentist will have no problem with the
assumption that x satisfies the following open formula whose sole argument
is represented by ‘. . .’:

2(x = x → x = . . .)

Applying (Leibniz), this enables us to derive formulations of the necessity of
identity and distinctness that are acceptable to the contingentist:12

2∀x∀y(x = y → 2(x = x → x = y))(2 =)
2∀x∀y(x ≠ y → 2 x ≠ y)(2 ≠)

The derivation of the latter from the former relies, as before, on B.
As Kripke realized, Leibniz’s law has important metaphysical conse-

quences. The case of sets provides a nice illustration. Consider the set-
theoretic principle of extensionality:

(Set-Ext) ∀x∀y(∀u(u ∈ x ↔ u ∈ y) ↔ x = y)

Leibniz’s law reveals a respect in which this is quite a strong principle. Let x
and y be coextensive sets. By (Set-Ext), x and y are identical. Observe now
that x satisfies the open formula

2∀u(u ∈ . . . ↔ u ∈ x)

11 In fact, as Williamson (1996) has pointed out, (2 ≠) can also be derived without use of
the Brouwerian axiom by invoking suitable principles of actuality.

12 Since the necessitation of (Leibniz) ensures 2(x= y→ x= x), the existential presupposi-
tion ‘x = x’, present in (2=), would be redundant in (2 ≠). Forwere x ≠ y to fail, thementioned
presupposition would anyway be satisfied. (Thanks to Tim Williamson for this observation.)



212 plurals and modals

So by Leibniz’s law, y too satisfies this formula. We conclude that two
coextensive sets are subject to necessary covariation:

(Set-Cov) ∀x∀y(∀u(u ∈ x ↔ u ∈ y) → 2∀u(u ∈ x ↔ u ∈ y))

Thus, the set-theoretic principle of extensionality logically entails, via
(Leibniz), that two coextensive sets are necessarily coextensive.13 In fact,
since (Set-Ext) holds of necessity, (Set-Cov) does too.

This consequence of Leibniz’s law is important. It brings out a fun-
damental difference between sets and other kinds of collections, such as
groups, which are tracked across possible worlds in some intensional way.
Consider the covariation claim concerning groups: “If two groups in fact
have the same members, they are identical and thus necessarily have the
same members.” This claim is wildly implausible. Membership in a group
is contingent and thus subject to “drift”, in the sense that the group may
have different members at different possible worlds. But once membership
drift is permitted, there is no guarantee that two groups that in fact coincide
will necessarily coincide. In the case of sets, by contrast, the principle of
extensionality and Leibniz’s law entail that there can be no such drifting
apart.

Theobserved difference between sets and groups derives from the fact that
sets, unlike groups, are subject to the principle of extensionality. Having the
same members suffices for two sets to be identical, but not for two groups.
Let us dig deeper. Why does having the same members suffice for two sets
to be identical, but not for two groups? The only explanation, we contend,
is that sets, unlike groups, are constituted by their members. A set is fully
characterized by specifying its members. So when two sets have the same
members, they are identical. By contrast, a group has additional features that
go beyond its members, which means that having the same members need
not suffice for identity.

It is these additional features of groups that allow them to be tracked
from possible world to possible world in non-trivial ways, permitting, for
example, a philosophy department to have different members at different
possible worlds. Sets are fundamentally different. Since a set is constituted by
its members, there is nothing other than its members to go on when tracking
it from world to world. Sets are therefore tracked rigidly. Just as in the case

13 Here and in the remainder of this section, we leave implicit the proviso that the sets still
exist.
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of pluralities, the claim that sets are rigid, abbreviated as (Set-Rgd), can be
formalized as the conjunction of two statements:1⁴

2∀x∀y(x ∈ y → 2(Ey → x ∈ y))(Set-Rgd+)
2∀x∀y(x ∉ y → 2(x ∉ y))(Set-Rgd−)

Let us take stock. Although our argument for (Set-Rgd) does not rest on
purely logical premises, it is hard to resist. The principle of extensionality
holds for sets, unlike groups, because sets, unlike groups, are constituted by
their members. Thus, when tracking a set across possible worlds, there is
nothing other than its members to go on. This ensures that the tracking is
rigid. Not so for groups, which have additional features that go beyond their
members and thus permit non-trivial tracking.

These considerations give rise to a dilemma that applies not only to sets
but to any other notion of collection (including groups). Either we have to
give up the principle of extensionality (as in the case of groups), or else we
have to accept rigidity as well (as in the case of sets).1⁵ There is no stable
middle ground. The only explanation for the principle of extensionality also
supports rigidity.1⁶

We will now consider two objections to our argument for the dilemma.
The first objection is based on a mereological analogue of the argument for
the rigidity of sets. Let ≤ indicate the relation of parthood. Assume that
x and y share all their parts; that is, ∀z(z ≤ x ↔ z ≤ y). Provided that
parthood is reflexive and anti-symmetric, it follows that x and y are identical.
Furthermore, since necessarily x shares all of its parts with itself, it follows by
(Leibniz) that necessarily x and y share all of their parts. Yet these conclusions
seem compatible with parthood being non-rigid!This calls into question our
claim that analogous conclusions concerning sets support the rigidity of set
membership.1⁷

1⁴ Even for a contingentist, no further existential presuppositions are required, for reasons
analogous to those that apply in the case of plurals (see Section 10.6).

1⁵ For sets, the former option is unattractive. As Boolos (1971, 229–30) reminds us, if ever
there was an example of an analytic truth, then the extensionality of sets is one.

1⁶ These considerations pose a challenge to Fregean and neo-Fregean approaches to collec-
tions (or extensions, orWertverläufe). On the one hand, such approaches adopt the principle of
extensionality as a criterion of identity. On the other hand, they view a collection as somehow
“derived from” its defining (Fregean) concept, which is plausibly regarded as non-rigid. So they
are potentially on a collision course with the rigidity thesis. See Parsons 1977b for a discussion
of Frege’s concept of extension.

1⁷ Thanks to Jeremy Goodman for articulating this objection.
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Our response is to deny that the two cases are analogous. The crux of our
argument is the claim that any reason to accept the set-theoretic principle
of extensionality is also a reason to accept the rigidity of set membership.
By contrast, there is a reason to accept that sameness of parts suffices for
identity that is not also a reason to accept the rigidity of parthood. Here is
the intuitive idea. To make sense of contingent parthood, it is useful to think
of objects as involving both matter and form.1⁸ For instance, a molecule that
is part of you might not have been so because tracking you across possible
worlds involvesmore thanmerely tracking yourmatter. On this hylomorphic
conception, it is natural to take parthood to be sensitive to both matter and
form. Mutual parthood would then ensures identity not only of matter but
also of form—and hence also ensures the identity of the objects in question.
But this explanation is perfectly compatible with objects involving form,
not only matter, and thus being tracked non-trivially from world to world.
In short, the principle that sameness of parts ensures identity admits of an
explanation that does not support the rigidity of parthood.1⁹

The second objection takes its departure from the well-known fact that
Leibniz’s law needs to be restricted. Assume that Nikita is the shortest spy. Of
course, necessarily the shortest spy is the shortest spy. But it does not follow
that necessarily Nikita is the shortest spy. It is often proposed that Leibniz’s
law be restricted to rigid designators—defined as terms that refer to the same
object at every world at which they refer at all—thus excluding terms like
‘the shortest spy’. Ordinarily, this restriction works well. But when reasoning
about sets or other kinds of collection, the restriction threatens to undermine
our dilemma between denying the principle of extensionality and accepting
the rigidity principles.

To understand this threat, we need to distinguish between two completely
different notions of rigidity. Until the previous paragraph, we have been
concerned exclusively with a metaphysical notion of rigidity. Sets and other
kinds of collection are said to be rigid if their membership is a matter of
necessity, in the precise sense laid down by the kind of rigidity claims stated
above. But as we have just seen, there is also the semantic notion of a rigid
designator.

1⁸ Abstract objects would be a limiting case where the material contribution is nil.
1⁹ A better analogue of the set-theoretic principle of extensionality is the principle that

sameness of material parts ensures identity. Now the analogy with our argument is restored.
Any reason to accept thementionedmereological principle is also a reason to accept the rigidity
of material parthood. Of course, anyone attracted to non-rigid parts should respond to this
observation by denying that sameness of material parts ensures identity.
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The problem is that it can be hard to disentangle the two kinds of rigidity.
Assume that a term t refers at w1 to a collection comprising a and b, where
a and b are all and only the Fs atw1. Assume that t refers atw2 to the singleton
collection of a, where a is the one and only F at w2. Is t a rigid designator?
The question cannot be answered until we have been told how to track the
relevant kind of collection fromworld to world. If the collections are tracked
extensionally, we are considering different collections, with the result that
t is not a rigid designator. But if the collections are tracked intensionally in
terms of theirmembership criterion, wemaywell be considering one and the
same object, namely the collection of Fs, in which case t is a rigid designator
after all.

The threat to our dilemma is now apparent. To show that our use of
Leibniz’s law is permissible, we must first show that the terms in question are
rigid designators.This involves showing that they refer to the same set across
possible worlds. But this presupposes that we already know how to track sets
across possible worlds! As we have seen, this is a matter of answering the
question ofmetaphysical rigidity. Our argument therefore appears powerless
to answer the question of metaphysical rigidity. The permissibility of its
appeal to Leibniz’s law presupposes that the question has already received
an affirmative answer.

Fortunately, the threat can be avoided by reformulating the restriction on
Leibniz’s law. Say that a term is purely referential if its semantic contribution
to linguistic contexts in which it occurs is exhausted by its referent, or, as
Quine put it, if the term “is used purely to specify its object, for the rest
of the sentence to say something about” (1960, 177). Instead of restricting
Leibniz’s law to rigid designators, we can restrict the law to purely referential
terms. After all, the semantic contribution of such terms is exhausted by
supplying their referents. Assume that t1 = t2 is a true identity involving two
purely referential terms, and that the relevant argument place of a formula
φ occurs in an transparent context. Then of course φ(t1)↔φ(t2) is true as
well, as this merely says of the common referent of t1 and t2 that it is φ if and
only if it is φ. By restricting Leibniz’s law to purely referential terms rather
than to rigid designators, our problem dissipates. The only terms involved
in our argument are variables. And a variable is purely referential because
its semantic contribution is nothing but its value. Thus, our argument for
metaphysical rigidity goes through.

There is a more general lesson here as well. The problem of disentan-
gling metaphysical rigidity from semantic rigidity points to an unfortunate
feature of the notion of a rigid designator: it runs together two kinds of
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considerations that are best kept apart. First, there is the semantic question of
whether a term is purely referential.Then, there is themetaphysical question
of how its referent is to be tracked from one possible world to another.
It is true that every purely referential term is a rigid designator. But our
discussion shows that we get a cleaner separation of the metaphysical and
semantic questions by focusing on the notion of pure reference rather than
rigid designation.2⁰ Thus, in what follows, the default notion of rigidity will
once again be the metaphysical one.

Let us sum up. As observed, Leibniz’s law entails the necessity of identity.
We have examined whether an analogous argument can be given for the
rigidity of sets. Given (Set-Ext), we found that Leibniz’s law entails (Set-Cov),
which states that two coextensive sets are necessarily coextensive. This falls
short of the rigidity of sets, though it is a step in that direction. To establish
the desired rigidity claim, we argued as follows. Any reason to accept (Set-
Ext), we argued, is also a reason to accept the rigidity of sets. For (Set-Ext)
holds because sets are constituted by their members, and this insight about
the nature of sets also ensures that there is nothing other than the members
in terms of which a set can be tracked.

10.5 An argument for plural rigidity

We will now extend the argument from the previous section to the case of
pluralities. Previously, we started with Leibniz’s law. Now, we propose to
start with the principle that any coextensive pluralities are indiscernible. As
before, we use xx ≈ yy to abbreviate the claim that xx and yy are coextensive
(see Section 2.3). Thus, our proposed starting point is the principle:21

(Indisc) 2∀xx∀yy(xx ≈ yy → (φ(xx) ↔ φ(yy)))

2⁰ See Stalnaker 1997 and essays 1–3 of Fine 2005b for some closely related considerations.
21 This starting point allows us to remain neutral on the question of whether there is a notion

of identity between pluralities. Clearly, (Indisc) requires no such notion. If such a notion is
nevertheless available—denote it with the ordinary identity sign—then (Indisc) is merely the
result of contracting into a single principle the law of extensionality for pluralities
(Ext) 2∀xx∀yy(∀u(u ≺ xx ↔ u ≺ yy) ↔ xx = yy)
and the plural analogue of Leibniz’s law:
(Leibniz∗) 2∀xx∀yy(xx = yy → (φ(xx) ↔ φ(yy)))
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Two concerns arise. First, as we have seen, the ordinary singular version
of Leibniz’s law needs to be restricted. Analogous considerations apply in the
plural case. Fortunately, it is easy to see that (Indisc) is suitably restricted.
Since plural variables are purely referential just as much as singular ones
are (only in a plural way), (Indisc) is entirely legitimate. In particular, it
presupposes no prior answer to the question of the rigidity of pluralities and
can thus safely be employed in an argument for this rigidity thesis.

Second, is (Indisc) acceptable from a contingentist point of view? To
assess this issue, we need to be more explicit about what semantics we adopt.
It is natural to use an extension of the plurality-based semantics on which
‘x ≺ xx’ is true at a world w relative to an assignment ss if and only if the
objects assigned to ‘xx’ by ss exist at w and the object assigned to ‘x’ is one
of them. This semantics makes it natural to adopt a negative free logic.22
The inference rules for the quantifiers must then be formulated so as to
make existential assumptions explicit; for instance, from∀x φ(x)we can infer
Et → φ(t), and likewise for the plural universal quantifier. (We will shortly
havemore to say about the plural existence predicate.) Given these choices, it
is easy to verify that (Indisc) remains a valid principle even in a contingentist
setting.

We are ready to develop our argument for the rigidity of pluralities. The
next step is to derive from (Indisc), an analogue of the necessity of identity.
As in the set-theoretic case, we call this analogue covariation:

(Cov) 2∀xx∀yy(xx ≈ yy → 2(xx ≈ yy))

It asserts that, as matter of necessity, two coextensive pluralities are necessar-
ily coextensive. Given the Brouwerian axiom B, we can derive the necessity
of non-coextensiveness as well.

We now come to the heart of the argument. Recall the case of sets, where
Leibniz’s law and (Set-Ext) entail (Set-Cov). While (Set-Cov) is formally
compatible with the non-rigidity of sets, it is far more plausible with rigidity.
In particular, any reason to accept (Set-Ext) is also a reason to accept the
rigidity of sets. Precisely the same goes for pluralities. That is, (Indisc)
entails (Cov). While (Cov) is formally compatible with the non-rigidity of
pluralities, it is far more plausible with rigidity.23 In particular, any reason to

22 Notice that this enables us to drop the existential assumptions Ex and Eyy from (Rgd−) on
p. 205.

23 If a notion of plural identity is available (see footnote 21), the case of pluralities is perfectly
parallel to that of sets. For the plural analogue of Leibniz’s law and (Ext) entail (Cov).
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accept (Cov) is also a reason to accept the rigidity of plural membership. For
(Cov) holds because a plurality is nothing over and above its members, and
this insight about the nature of pluralities also ensures that there is nothing
other than the members in terms of which a plurality can be tracked.

We therefore face a dilemma, as in the case of sets. Either we have to
give up (Indisc), which implies (Cov), or else we have to accept plural
rigidity. In other words, either we need to give up the ordinary principle
of extensionality encapsulated in (Indisc), or else we have to accept the full
transworld extensionality associated with plural rigidity. Just as in the case of
sets, the former horn is deeply unattractive, as it comes close to just changing
the subject. So we conclude that plural rigidity holds.

It is worth noting that (Cov) is logically weaker than (Indisc). The
covariation principle gives us precisely what its name suggests, namely that
two overlapping pluralities necessarily covary. By contrast, (Indisc) states
that all properties of pluralities supervene on membership. To see that
the latter principle goes beyond the former, consider a department whose
statutes decree that all and only tenured faculty are to be members of the
Hiring Committee and of the Graduate Admissions Committee.2⁴ Then the
two committees necessarily covary in membership. Nevertheless, the two
committees have different powers, namely to hire new faculty and to admit
graduate students, respectively.

To be even more specific about the relation between (Indisc) and (Cov),
one can observe that the former “factorizes” into the latter and the claim
that the properties of a plurality supervene on what we may call its modal
membership profile:

(Sup) 2∀xx∀yy(2(xx ≈ yy) → (φ(xx) ↔ φ(yy)))

We see this as follows. Clearly, (Cov) and (Sup) entail (Indisc), which in
turn entails each of the former two principles.Moreover, (Cov) and (Sup) are
logically independent and encapsulate different philosophical ideas, namely
covariation inmembership and supervenience of properties onmodalmem-
bership profile, respectively. Amore comprehensive factorization of a cluster
of ideas associated with the extensionality of pluralities will be offered in
Section 10.10.

2⁴ We assume that the statutes are partially constitutive of the committees, in the sense that,
were one to change the statutes, the original committees would cease to exist and be replaced
by new ones. If necessary, this persistence condition for the committees can be written into the
statutes.
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We wish to end this section by briefly commenting on another argument
for plural rigidity based on the covariation principle (Cov). This argument,
due to Williamson (2013, 245–51), begins by unpacking the two bicondi-
tionals in (Cov) to obtain:

2∀xx∀yy(xx ≼ yy ∧ yy ≼ xx → 2xx ≼ yy ∧2yy ≼ xx)

Williamson then makes the following, interesting observation: xx ≼ yy gives
no support to yy ≼ xx, and yy ≼ xx gives no support to 2xx ≼ yy. Thus,
he contends, yy ≼ xx should imply 2yy ≼ xx, and xx ≼ yy should imply
2xx ≼ yy. Williamson therefore concludes that (Cov) “stands or falls” with
the following, inferentially stronger principle:

2∀xx∀yy(xx ≼ yy → 2xx ≼ yy)

It is hard not to agree.
We are now only a small step away from (Rgd+). All it takes to make this

step is a principle asserting the existence of singleton pluralities, namely:

(Single≺) 2∀x∃xx2∀y(y ≺ xx ↔ x = y)

As Williamson shows, this natural principle, combined with (10.5), entails
(Rgd+).

We find this argument rather convincing. However, we believe the argu-
ment developed above is more explanatory. This argument, we recall, is an
explication of the basic thought that a plurality is nothing over and above
its members. Since a plurality is nothing over and above its members, the
only basis for tracking it across different possible worlds is in terms of
these members. We thus obtain an explanation of why pluralities are tracked
rigidly, with the result that the rigidity principles are true.

10.6 Towards formal arguments for plural rigidity

We have developed an argument for plural rigidity. But, as it stands, the
argument is not formally valid. Starting from (Indisc), our best formal
result so far is (Cov), which states that coextensive pluralities are necessarily
coextensive. Rigidity, our target, states that a plurality has the samemembers
at any world at which it exists. We now investigate some ways to formally
bridge this gap.
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Since we are now aiming for formal rigor, the time has come to be entirely
precise about the existential assumptions involved in our arguments. This
requires a plural existence predicate that we can use to say of some things
xx that they exist. As we have seen, the existence of a single object x can be
expressed simply as x = x (sometimes written Ex). But what about the plural
existence predicate?

One may try to define plural existence distributively in terms of singular
existence; that is, to define Exx as ∀x(x ≺ xx → x = x). But this is unsuc-
cessful. For a contingentist, the initial quantifier ranges only over objects that
exist at the relevant world, which renders the quantified claim trivially true
for any plurality xx whatsoever. Another natural but unsuccessful idea is to
define Exx as xx ≈ xx in an attempt to imitate the definition of its singular
analogue Ex as x = x. This too is easily seen to trivialize, for exactly the same
reason as the previous attempt.

One safe option is simply to adopt a primitive collective plural existence
predicateExx, whichwe stipulate to be satisfied by some things at aworld just
in case all these things exist at the world. Another option is available as well,
given the axiom that every plurality is non-empty: ∀xx∃y(y ≺ xx). We can
then define Exx as ∃y(y ≺ xx). To confirm that this works, suppose that xx
don’t exist at some world w. The semantics we are assuming (p. 217) ensures
that Exx is false at w. Suppose instead that xx do exist at w. Then the axiom
ensures that Exx is true at w. We adopt this option, rather than the first, as it
is more economical.

Recall that we have assumed a negative free logic as our background for
contingentist reasoning. As we already noted, this requires some restrictions
on the axioms for the quantifiers.2⁵

Next, we adopt the following “being constraint”:

(BC) 2∀x∀yy2(x ≺ yy → Ex)

That is, necessarily, if x is one of yy, then x exists. Clearly, this is valid on our
semantics. Notice also that, given our definitions of the singular and plural
existence predicates, (BC) entails:

(10.6) 2(x ≺ yy → Ex ∧ Eyy)

2⁵ See Hughes and Cresswell 1996, Chapter 16, for a system of free logic in the context of
modal logic.
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Finally, we adopt an axiom stating that any plurality is ontologically
dependent on each of its members:

(Dep) 2∀x∀yy(x ≺ yy → 2(Eyy → Ex))

We contend that this axiom is plausible and observe that it is compatible
with x being one of yy at some worlds but not at others.2⁶ The axiom is
useful because it enables us to formulate (Rgd+) as we have done, rather
than adopt the following, more cautious formulation with an additional
existential presupposition Ex:

2∀x∀yy(x ≺ yy → 2(Ex ∧ Eyy → x ≺ yy))

Moreover, by means of (Dep) and (BC), we are able to formulate (Rgd−) as
we have done, rather than adopt the following, more guarded formulation:2⁷

2∀x∀yy(x ⊀ yy → 2(Ex ∧ Eyy → x ⊀ yy))

In the necessitist setting, of course, no existential presuppositions are needed.
With these preliminary questions clarified, we will now consider some

formal arguments for plural rigidity. Each argument will first be developed
from a necessitist point of view, as this is simpler. We will then use our
plural existence predicate to reformulate the argument so as to work in a
contingentist setting.

10.7 The argument from uniform adjunction

The first formal argument relies on an operation + of adjoining one object
to a plurality. It is reasonable to assume that, necessarily, to be one of these
things and that thing is to be one of these things or to be identical with that
thing. We call this principle uniform adjunction:

2⁶ As observed by Roberts (forthcoming), (Dep) does not entail the principle that a plurality
is ontologically dependent on each of its subpluralities:

2∀xx∀yy(xx ≼ yy → 2(Eyy → Exx))
While this principle is not needed in the present context, Roberts points out that it is useful
elsewhere.

2⁷ To verify this claim, observe first that2ψ and2(φ → ψ) are equivalent schemes of modal
propositional logic when 2(¬ψ → φ). Now let φ and ψ be Ex ∧ Eyy and x ⊀ yy, respectively.
Then 2(¬ψ → φ) is just (10.6), which was established above.
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(UniAdj) 2∀xx∀y2∀x(x ≺ xx + y ↔ x ≺ xx ∨ x = y)

where ‘xx + y’ figures as a complex plural term. We now argue as follows.
Assume y ≺ xx. Then, by (UniAdj), we have xx ≈ xx + y. So by applying
(Cov) to xx and xx + y, we obtain:

(10.7) 2(xx ≈ xx + y)

Next, we observe that (UniAdj) also entails

(10.8) 2(y ≺ xx + y)

From (10.7) and (10.8), some simple modal logic ensures our desired con-
clusion that 2(y ≺ xx).

Gabriel Uzquiano has raised a legitimate concern about the argument.2⁸
Recall that (10.7) is a consequence of Leibniz’s law and must be restricted
to purely referential terms. Is it permissible to assume that ‘xx + y’ is purely
referential? This can be disputed. Fortunately, we can sidestep the problem-
atic assumption by reformulating (UniAdj). The above argument proceeds
from the assumption that uniform adjunctions exist. We can express this
assumption as the closure of the following plural comprehension principle:

(UniAdj∗) 2∀xx∀y∃zz2∀u(u ≺ zz ↔ u ≺ xx ∨ u = y)

This principle is very weak. Indeed, it is something that even an opponent of
plural rigidity should assent to, as the principle retains its plausibility even
when the plural variables are allowed to range over groups.2⁹

We now give our improved and official version of the argument from
uniform adjunction. As before, assume y≺ xx. By (UniAdj∗), let zz be
the uniform adjunction of y to xx. From this point onward the argument
proceeds exactly as before, onlywith zz in the role previously played by xx+y.
(The argument is spelled out in detail in Appendix 10.B.) Notice that this
argument makes no appeal to (Indisc) other than its single instance, (Cov).
In this respect, the argument from uniform adjunction is like the argument
from Section 10.5. This establishes (Rgd+).

2⁸ For a mereological analogue of this concern, see Uzquiano 2014, 42.
2⁹ Here, as elsewhere, it is interesting to inquire whether an analogous argument can be given

in mereology, to the effect that parthood is rigid. We believe the answer is negative, but this isn’t
the place for a proper investigation.
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What does it take to obtain (Rgd−)? It turns out that, in the system S5, a
necessitated version of (Rgd+) entails (Rgd−). We prove this useful fact in
Appendix 10.B and invoke it repeatedly in what follows.

Finally, let us adapt the argument to a contingentist setting.Then, uniform
adjunction requires the following, more guarded formulation:

(UniAdj-c) 2∀xx∀y2(Exx ∧ Ey → ∀x(x ≺ xx + y ↔ x ≺ xx ∨ x = y))

Asbefore, this principle can be formulated in away that sidestepsworries one
may have about the complex term ‘xx+ y’, namely by means of the following
comprehension principle:

(UniAdj∗-c) 2∀xx∀y∃zz2(Exx ∧ Ey → ∀u(u ≺ yy ↔ u ≺ xx ∨ u = y))

Thankfully, it can be verified that (Rgd+) follows and that, using axiom B,
so does (Rgd−). In sum, we find the argument from uniform adjunction
convincing, both in a necessitist and in a contingentist setting. None of the
arguments we will proceed to consider does any better, or so we will argue.

10.8 The argument from partial rigidification

Another formal argument is proposed in Williamson 2010 (699–700). The
argument requires that, for any objects xx, there be some objects yy that are
a partial rigidification of xx in the sense that xx ≈ yy but it is impossible
for yy to lose any of their members. To be precise, we assume the following
plural comprehension axiom:

(PartRig) 2∀xx∃yy(xx ≈ yy ∧ ∀x(x ≺ yy → 2x ≺ yy))

We can now argue as follows. Assume y≺ xx. Let yy be the partial rigidifi-
cation of xx. Thus, we have 2(y≺ yy). By (Cov), we also have 2(xx ≈ yy).
The latter two claims entail 2(y ≺ xx), as desired. Using (Rgd+), we can, as
before, obtain (Rgd−).

Let us now try to develop the argument from a contingentist point of
view. As usual, the comprehension axiom needs to be formulated with
greater care:

(PartRig-c) 2∀xx∃yy(xx ≈ yy ∧ ∀x(x ≺ yy → 2(Eyy → x ≺ yy)))
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Assume y ≺ xx, and let yy be the partial rigidification of xx. Applying the
same strategy as in the case of necessitism, we derive 2(Eyy → z ≺ yy). By
(Cov), we also have 2(xx ≈ yy). This establishes 2(Eyy → z ≺ xx). The
final step to our desired target, namely 2(Exx → z ≺ xx), follows by using
(Cov) to show that the existence of xx necessitates the existence of yy. (The
argument is spelled out in detail in Appendix 10.B.)

How does Williamson’s argument compare with the argument from uni-
form adjunction? Let us begin by addressing the question in the necessitist
setting. Both arguments rely on a single instance of (Indisc), namely (Cov).
The arguments differ only with respect to the plural comprehension axioms
that they invoke. We are thus left with the task of comparing the two
comprehension axioms, namely (UniAdj∗) and (PartRig). A careful formal
investigation reveals that, against the background of (Cov) and S5, the two
axioms are equivalent with each other and also with the rigidity claim. An
analogous claim holds in the contingentist setting.3⁰ Thus, at least in the
context of S5, the choice between the argument from partial rigidification
and uniform adjunction is merely a matter of taste and which heuristics one
prefers.31

10.9 The argument from uniform traversability

The last formal argument for plural rigidity that we will consider is inspired
by an observation made by Ian Rumfitt (2005, 117–18). Like above, we first
give a simple version of the argument that is acceptable from a necessitist
point of view, and then consider how the argument can be adapted to suit
the contingentist.

A finite plurality can be traversed, in the sense that its members can
be exhaustively listed. Assume for instance that aa is the plurality whose
members are a, b, and c, and that these members have names ̄a, ̄b and ̄c,
respectively. Then aa can be traversed:

3⁰ Does this three-way equivalence mean that the arguments for rigidity are begging the
question? To think so would be to conflate deductive validity with begging the question. It is
particularly important to notice that any one member of the pairs of assumptions sufficient to
prove rigidity (i.e. (Cov) plus a comprehension axiom) is compatible with the failure of rigidity.

31 Linnebo 2016 claims that, in the contingentist setting, (PartRig-c) is less plausible than
(UniAdj∗-c). While this may be true when the axioms are considered in isolation, our present
point is that the axioms are equivalent modulo the mentioned assumptions. In the context of
weaker modal logics, the argument from uniform adjunction can be shown to require weaker
modal assumptions than the argument from partial rigidification.
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∀x(x ≺ aa ↔ x = ̄a ∨ x = ̄b ∨ x = ̄c)

In fact, this traversability is uniform, in the sense that it holds by necessity:32

2∀x(x ≺ aa ↔ x = ̄a ∨ x = ̄b ∨ x = ̄c)

What about infinite pluralities? A straightforward generalization is available
if we allow infinitary disjunctions and assume that every object a has a name
̄a:33

(UniTrav) 2∀x(x ≺ aa ↔ ⋁
a≺aa

x = ̄a)

Wenow argue as follows. Assume y ≺ aa.Thenwe can find a such that y = ̄a.
By the necessity of identity, we have 2(y = ̄a). This entails the necessitation
of⋁a≺aa y = ̄a. Some simple modal logic ensures our target 2(y ≺ aa). See
Appendix 10.B for details.

Let us now consider matters from a contingentist point of view. Equation
(UniTrav) must be reformulated so as to make all existential presupposi-
tions explicit. Given any objects aa, we can name all of its members and use
this to state that, provided aa still exist, to be one of aa is just to be identical
with one of the aforementioned members. In symbols:

(UniTrav-c) 2(Eaa → ∀x(x ≺ aa ↔ ⋁
a≺aa

x = ̄a))

As far as we can see, this modified principle is just as plausible, given
contingentism, as the original principle is, given necessitism. It is therefore
satisfying to be able to verify that the original argument for rigidity goes
through much as before.

We find the argument from uniform traversability less explanatory than
the previous two formal arguments for plural rigidity. One problem is the
lack of “conceptual distance” between the premise and the conclusion.
Uniform traversability is little more than an infinitary restatement of our

32 In fact, as Jeremy Goodman observed, if a singleton plurality is uniformly traversed by its
sole member, then Uniform Adjunction allows us to prove that any finite plurality is uniformly
traversed by its members.

33 Of course, the choice of names depends on the particular plurality aa. This means that
‘aa’, in the subscript to the disjunction sign, can only be understood as a plural constant, not a
variable.
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target claim that a plurality is fixed in its membership as we shift attention
from one possible world to another (see Hewitt 2012b, 860–2, for a similar
objection).3⁴ Moreover, this premise is needlessly strong—concerning both
what it says and how it says it.

The clearest way to appreciate the strength of uniform traversability is
by observing that it entails all the premises of the previous two arguments.
One of these premises is (Cov). This is entailed by uniform traversability,
as can be seen by a simple transitivity argument available in S5. Indeed,
uniform traversability entails plural rigidity, which in turn entails (Cov), as
observed at the end of Section 10.5. Moreover, it can be verified that uniform
traversability entails the comprehension axioms employed in the arguments
from uniform adjunction and partial rigidification.

Next, the infinitary resources employed by the argument from uniform
traversability are very strong. To see this, it is useful to separate these
resources from themodal claim that they are used to express.We can do so by
considering what we may call traversability, which is (UniTrav) without the
initial necessity operator. In fact, even this non-modal version of traversabil-
ity has some strong consequences. As we explain in Appendix 10.A, this
principle legitimizes what Paul Bernays (1935) calls “quasi-combinatorial”
reasoning, that is, reasoning about infinite totalities as if they were finite.

10.10 Pluralities as extensionally definite

We have surveyed various formal and informal arguments for plural rigidity.
It may be useful to summarize the most important principle that we have
discussed and their inferential relations to one another.

For a necessitist, the picture looks as follows:

(Indisc)
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��:
::

::
::

::
::

::
::

::

&&

(UniTrav)

wwnnn
nnn

nnn
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��
(Sup) Rigidity

		

Traversability

(Cov)
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3⁴ By contrast, as observed in footnote 30, the previous two argument both relied on two
assumptions—(Cov) and a comprehension principle—each one of which is compatible with
the failure of plural rigidity.
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Solid arrows represent one-way implications. Dotted arrows represent
non-deductive support, but can be transformed into implications by
adding suitable comprehension axioms, as discussed in Sections 10.7 and
10.8. Formal theses are in parentheses, as usual. Rigidity abbreviates
the conjunction of the rigidity claims (Rgd+) and (Rgd−), and, in a
contingentist setting, also the dependence claim (Dep).

A contingentist can use the same diagram, with two exceptions. First,
(UniTrav)must be replacedwith (UniTrav-c), whose left diagonal implica-
tion then only yields the two rigidity claims, not (Dep).3⁵ Second, Rigidity
entails only a restricted version of (Cov) (see p. 235).

Where does this leave us? We raised the question of whether plural
rigidity, just like the rigidity of identity, can be established from purely
logical premises. We have given at least a conditional answer. If (Indisc) and
the “suitable comprehension axioms” identified in Sections 10.7 and 10.8
count as purely logical, then so does plurality rigidity. But is the antecedent
true? As it stands, we find the notion of pure logic insufficiently clear to give
a definitive answer.

We find it more productive to recall the basic thought that has animated
much of our discussion in this chapter, namely that a plurality is nothing over
and above some circumscribed lot of objects. Every plurality thus exhibits
extensionality in its purest form. All we have are some objects, properly cir-
cumscribed. Pluralities are, as we will put it, extensionally definite. This basic
thought motivates some of our central principles, especially (Indisc) and
(UniTrav), which explicate different aspects of the extensional definiteness
of pluralities. The picture that emerges is thus that plural rigidity figures at
the heart of a tightly interwoven network of principles that all have to do
with the extensional definiteness of pluralities. These principles mutually
support each other. In particular, it would be difficult and unmotivated to
excise plural rigidity from this network. Plural rigidity is an integral part of
our analysis of pluralities as extensionally definite.

It is particularly interesting to examine the “second floor” of the above
diagram. For the principles that figure on this floor provide a factorization
of all the aspects of the extensional definiteness of pluralities that are repre-
sented in the diagram. To explain what we mean, let us begin by observing
that each principle on this floor represents a simple and natural idea.

3⁵ If desired, one can tweak (UniTrav-c) so as to ensure that (Dep) too follows, namely by
adding the following as a third (and perfectly sensible) conjunct: (Eaa ↔⋀a≺aa E ̄a).
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(a) The properties of any plurality supervene on its modal membership
profile, as expressed by (Sup).

(b) A plurality has a rigid membership profile: it has the very same
members at any possible world at which it exists.

(c) A plurality is traversable, thus ensuring the permissibility of quasi-
combinatorial reasoning applied to the plurality.

Next, we observe that the three factors entail each of the aspects of the
extensional definiteness of pluralities. It suffices to verify that the items on
the top floor of the diagram are entailed by those on the second. As observed
on p. 218, (Indisc) can be factorized into (Sup) and (Cov). And it can be
verified that (UniTrav) (or its contingentist cousin) factorizes into Rigidity
and Traversability.

What remains is to verify that the three factors are logically independent of
one another. To see that property supervenience, (Sup), does not follow from
the other two aspects of extensional definiteness, consider again the case of
committees. Imagine an oligarchic departmentwhere three senior academics
a, b, and c havewritten into the department statutes that they, and they alone,
are to be on theHiringCommittee and theGraduateAdmissionsCommittee.
Both committees have a rigidmembership profile and are clearly traversable.
Yet the two committees are not subject to property supervenience as different
powers of decision are vested in them.

Next, to show that a rigid membership profile does not follow from the
other two aspects, consider the case of properties, understood as objects that
are individuated by the necessary coextensionality of their defining concept
or condition, and tracked across possible worlds in terms of this concept or
condition. Thus understood, properties exemplify the second aspect of
extensional definiteness: all the characteristics of any given property are
shared by any necessarily coextensive property. However, a property can be
subject to contingent membership (or, perhaps better, contingent applica-
tion), including when its instances are traversable. And as we have seen, the
traversability of a domain ensures the traversability of any property on this
domain.

Finally, we observe that traversability is not a formal consequence of the
other two aspects of extensional definiteness. The principles that explicate
these other two aspects do not ensure the availability of the infinitary
resources needed for traversability. As Bernays observed, traversability
is based on an extrapolation from the finite into the infinite. How far
are we willing to extrapolate? The first two aspects of the extensional
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definiteness of pluralities do not, by themselves, provide any answer to
this question.

10.11 The status of plural comprehension

We wish to end the chapter with some remarks about the status of the plural
comprehension axioms. Many philosophers regard such axioms as utterly
trivial and insubstantial.3⁶ Provided that a condition is well defined and has
at least one instance, of course the condition can be used to define a plurality
of all and only its instances.

This view seems to us misguided. Indeed, we suspect the view is the
result of an excessive focus on ontology at the expense of other important
concerns. Because plural logic is thought to incur no ontological commit-
ments over and above those already incurred by the singular quantifiers,
the plural comprehension axioms are assumed to be ontologically innocent.
And because of the intense focus on ontology, one therefore concludes that
these axioms are trivial and insubstantial. One of the main upshots of this
chapter is that, irrespective of the question of ontological commitment,
plurals are governed by strong extensionality principles whose satisfaction
is a non-trivial matter. Since the plural comprehension axioms make claims
about possible assignments to the plural variables, which would accordingly
be governed by the non-trivial extensionality principles, these axioms too
should be regarded as non-trivial (see also Williamson 2016).

To elaborate, let us consider the three factors of the extensional definite-
ness of pluralities. First, it is not hard to see that traversability is a non-trivial
assumption. To say that plural comprehension is permissible on a condition
φ is to say that we may reason quasi-combinatorially about all the φs. A
number of disputes in the foundations of mathematics testify to the non-
triviality of this assumption.3⁷

Second, property supervenience too is a non-trivial matter. Consider the
following:

(10.9) TheHiringCommitteemet yesterday.They decided tomake an offer
to Sophia.

3⁶ In Section 2.5, we mentioned the claims that plural comprehension axioms as “genuine
logical truths” found in Boolos 1985b (342) and Hossack 2000 (422).

3⁷ See Feferman 2005 for a survey of debates concerning the legitimacy of impredicative
reasoning in mathematics.
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Is it permissible to apply the rule of plural existential generalization to ‘they’?
The answer must be ‘no’. Generalizing in this way would ascribe the property
of making a job offer to the members of the committee considered as a mere
plurality, where in reality the property can only be ascribed to the committee
as such. It is only the committee, not the plurality of its members, that has
the power to make job offers. Indeed, the property ascribed in the second
sentence of (10.9) fails to supervene on the modal membership profile.
As our earlier examples show, two committees can share the same modal
membership profile while differing in the powers that are vested in them.3⁸

The final factor of the extensionality of pluralities is their rigid mem-
bership profile. This rules out, for example, the existence of a plurality
of all actual and merely possible objects, that is, a plurality aa such that
2∀x(x ≺ aa ↔ x = x). For such a plurality would vary in membership
from world to world. (See Linnebo 2010.)

Summing up, we have argued that pluralities are rigid and that this is
in fact just one of several extensionality principles that govern pluralities.
These principles explicate our basic thought that pluralities are extensionally
definite. Although the principles can be split into three independent factors
(of which plural rigidity is one), they go naturally together as a package. Since
the extensionality principles are non-trivial, so are the plural comprehension
axioms, which assert the existence of pluralities governed by these principles.
This non-triviality plays an essential role in our development of a critical
plural logic in Chapter 12, which restricts the plural comprehension scheme.

3⁸ Our example from p. 218 of the Hiring Committee and the Graduate Admissions Com-
mittee will do.
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Appendices

10.A Traversability and quasi-combinatorial reasoning

We claimed in Section 10.9 that the non-modal traversability principle
(UniTrav) licences what Bernays (1935) calls “quasi-combinatorial” reason-
ing, that is, reasoning with infinite totalities as if they were finite. Let us now
spell out and defend this claim.

First, we claim that (UniTrav) ensures the permissibility of impredicative
plural separation axioms of the following form:

(10.10) ∃x(φ(x) ∧ x ≺ xx) → ∃yy∀u(u ≺ yy ↔ φ(u) ∧ u ≺ xx)

That is, given any xx that include a φ, there are some objects that are all of
the φs among xx. We show this as follows. We begin by finding a bunch
of names ̄a that provide a traversal of xx. We would like another bunch of
names ̄b that provide a traversal of just those members of xx that satisfy φ.
This is easily achieved by going through the former bunch, deleting every
item that names a non-φ. The resulting sub-traversal yields a quantifier
free—and thus fully predicative—definition of the desired sub-plurality of
xx.The upshot is that traversability functions like an axiom of reducibility, in
Russell and Whitehead’s famous sense, that is, as an axiom stating that every
higher-order entity has a predicative definition. The reducibility afforded by
(UniTrav) becomes particularly far-reaching if there is an all-encompassing
or universal plurality, as is standardly assumed. We would then obtain a
justification for the full impredicative comprehension scheme.

Second, when we work in the context of an intuitionistic theory,
traversability ensures that quantification restricted to any plurality behaves
classically. Assume that a formula ψ(x)—which may have further free
variables—is decidable on any given argument:

∀x(ψ(x) ∨ ¬ψ(x))

In effect, this means that the property defined by ψ(x) behaves classically
on any given argument. Then tranversability ensures that quantification
restricted to xx behaves classically as well, in the precise sense that we have
the following decidability property:

(∀x ≺ xx)ψ(x) ∨ (∃x ≺ xx)¬ψ(x)
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To see this, observe that by traversability this restricted quantification
reduces to a conjunction of its instances, each of which has been assumed to
behave classically.

10.B Proofs

We now provide proof sketches of various arguments referred to in
Chapter 10. We work within modal extensions of first-order logic (FOL) and
of PFO. Sentential and quantificational reasoning will apply to expressions
in the extended language. When dealing with arguments in a contingentist
setting, we rely on a standard negative free logic.Thismeans that the rules for
singular and plural quantifiers are restricted so as to ensure that quantifiers
range over existing objects or pluralities. For instance, from ∀xφ(x) we can
infer Ey → φ(y). Similarly, we can infer ∃xφ(x) from Ey∧φ(y), but not from
φ(y) alone. Moreover, there are rules guaranteeing that atomic predications
are false if at least one of the terms involved is empty.

Thenecessity of identity and distinctness. Both arguments rely on Lebniz’s
law. We develop them in a necessitist setting.

(1) x = x FOL
(2) 2(x = x) 1, Necessitation
(3) 2∀x2(x = x) 2, FOL, Necessitation
(4) 2∀x∀y(x = y → (2(x = x) ↔ 2(x = y))) Leibniz
(5) 2∀x∀y(x = y → 2(x = y)) 3, 4, K, FOL

The argument for the necessity of distinctness appeals to the Brouwerian
axiom:

φ → 23φ
The argument goes as follows:

(0) 2∀x∀y(x = y → 2(x = y)) as shown in the previous proof
(1) x = y → 2(x = y) 0, T, FOL
(2) ¬2(x = y) → x ≠ y 1, FOL
(3) 2(¬2(x = y) → x ≠ y) 2, Necessitation
(4) 2¬2(x = y) → 2(x ≠ y) 3, K
(5) 23(x ≠ y) → 2(x ≠ y) 4, Definition of 3
(6) x ≠ y → 2(x ≠ y) 5, B
(7) 2∀x∀y(x ≠ y → 2(x ≠ y)) 6, FOL, Necessitation
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The proofs of the necessity of identity and distinctness in the contingentist
setting are simple adaptations of the proofs just given. ⊣

Necessary set covariation. We observed in Section 10.4 that the set-
theoretic principle of extensionality (Set-Ext) implies that two coextensive
sets are necessarily coextensive:

(Set-Cov) ∀x∀y(∀u(u ∈ x ↔ u ∈ y) → 2∀u(u ∈ x ↔ u ∈ y))

The proof is similar to that of the necessity of identity:

(1) ∀x∀y(∀u(u ∈ x ↔ u ∈ y) ↔ x = y) (Set-Ext)
(2) ∀x∀y(x = y → (2∀u(u ∈ x ↔ u ∈ x) ↔

2∀u(u ∈ x ↔ u ∈ y)))
Leibniz

(3) ∀u(u ∈ x ↔ u ∈ x) FOL
(4) 2∀u(u ∈ x ↔ u ∈ x) 3, Necessitation
(5) ∀x∀y(∀u(u ∈ x ↔ u ∈ y) → 2∀u(u ∈ x ↔ u ∈ y)) 1, 2, 4, FOL

Note that this reasoning is available to necessitists and contingentists alike.
The necessitation of (Set-Cov) can be easily obtained from the necessitation
of (Set-Ext). ⊣

The remaining proofs concern modal properties of pluralities. Thus we
work in a modal extension of PFO. Because of the complexity of the rea-
soning involved, a fully formal presentation of some arguments will not be
particularly illuminating. In those cases, we prefer to reason informally about
the system rather than formally within the system. All the argumentative
strategies employed are meant to be essentially available, mutatis mutandis,
to both necessitists and contingentists.

Necessary plural covariation. First, we show that (Indisc) entails that two
coextensive pluralities are necessarily coextensive:

(Cov) 2∀xx∀yy(xx ≈ yy → 2(xx ≈ yy))

(1) 2∀xx∀yy(xx ≈ yy → (2(xx ≈ xx) ↔
2(xx ≈ yy))

(Indisc)

(2) xx ≈ xx PFO
(3) 2(xx ≈ xx) 2, Necessitation
(4) 2∀xx2(xx ≈ xx) 3, PFO, Necessitation
(5) 2∀xx∀yy(xx ≈ yy → 2(xx ≈ yy)) 1, 3, PFO



234 plurals and modals

There is a perfect analogy with the case of identity. In the presence of axiom
B, (Indisc) also entails that two distinct pluralities are necessarily distinct:

(Cov−) 2∀xx∀yy(xx ≉ yy → 2(xx ≉ yy))
⊣

The Barcan formula for bounded quantifiers. In the context of S5, a
restricted version of the Barcan formula is derivable:

(BFR) ∀xx(∀x(x ≺ xx → 2φ(x)) → 2∀x(x ≺ xx → φ(x))

Here is the contingentist argument for it (the necessitist argument can
be easily read off from it). Let xx be an existing plurality. Assume
∀x(x≺ xx→2φ(x)). We conjoin Exx and apply B to the resulting
conjunction to obtain a claim that will be used shortly:

(∗) 23(Exx ∧ ∀x(x ≺ xx → 2φ(x)))

Assume for reductio that the consequent of (BFR) is false, that is,
3∃x(x≺ xx∧¬φ(x)). By the necessitation of (Rgd+) and S4, we can add a
conjunct to this formula so as to obtain:

3∃x(x ≺ xx ∧ ¬φ(x) ∧2(Exx → x ≺ xx))

We now use (∗) to add a conjunct, namely the result of removing the
outermost 2 from (∗). This yields:

3∃x(x ≺ xx ∧ ¬φ(x) ∧2(Exx → x ≺ xx) ∧3(Exx ∧ ∀x(x ≺ xx → 2φ(x)))

A bit of modal logic on the last two conjuncts of this formula yields:

3∃x(x ≺ xx ∧ ¬φ(x) ∧32φ(x))

Reasoning in S5, we can derive the possible existence of some xwhich is both
φ and ¬φ. We turn this possible contradiction into an actual contradiction.
So we deny that there could be something among xx that is ¬φ and conclude
2∀x(x ≺ xx → φ(x)), which completes our proof. Since the proof relies on
no extra-logical assumption, (BFR) may be necessitated. ⊣
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Plural rigidity entails a restricted version of (Cov). The proof appeals
to (BFR). Let xx and yy be two pluralities and suppose that rigidity holds.
Assume xx ≈ yy. We want to show2(xx ≈ yy). By the assumption, if x ≺ xx,
then x ≺ yy. It follows from (Rgd+) that 2(Eyy → x ≺ yy); in the case of
necessitism, the antecedent can be dropped. Thus, in the case of necessitism,
we have:

∀x(x ≺ xx → 2(x ≺ yy))
By (BFR), we obtain:

2∀x(x ≺ xx → x ≺ yy)
By symmetrical reasoning, we obtain:

2∀x(x ≺ yy → x ≺ xx)

The last two displayed formulas entail our target claim: 2(xx ≈ yy). In
the case of contingentism, parallel reasoning can be carried out, though
contingent on the continued existence of the pluralities in question, thus
yielding a restricted version of the target claim:2(Exx ∧ Eyy → xx ≈ yy). ⊣

(Rgd−) from (Rgd+). In the presence of axiom B, a necessitated version of
(Rgd+) entails (Rgd−). Assume

(2Rgd+) 22∀x∀yy(x ≺ yy → 2(x ≺ yy))

Suppose for reductio that (Rgd−) is false, that is:

3∃x∃yy(x ⊀ yy ∧ 3(x ≺ yy))

The two displayed formulas entail:

3∃x∃yy(x ⊀ yy ∧ 3(x ≺ yy ∧ 2(x ≺ yy)))

By B, we can add a third conjunct:

3∃x∃yy(x ⊀ yy ∧ 3(x ≺ yy ∧ 2(x ≺ yy)) ∧ 23(x ⊀ yy))

A bit of modal reasoning yields:

3∃x∃yy33(x ≺ yy ∧ x ⊀ yy)
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That is,

¬2∀x∀yy22¬(x ≺ yy ∧ x ⊀ yy)

But this is inconsistent in K. From this reductio, we conclude that (Rgd−)
holds. Note that, since axiom 4 enables us to necessitate (Rgd+), we have
also shown that (Rgd−) follows from (Rgd+) in S5. ⊣

A central concern in Chapter 10 was to provide formal arguments in
support of plural rigidity. We focused on three principles that can yield
such arguments: uniform adjunction, partial rigidification, and uniform
traversability.

2∀xx∀z∃yy2∀u(u ≺ yy ↔ u ≺ xx ∨ u = z)(UniAdj∗)
2∀xx∃yy(xx ≈ yy ∧ ∀x(x ≺ yy → 2x ≺ yy))(PartRig)

2∀x(x ≺ xx ↔ ⋁
a≺xx

x = ̄a)(UniTrav)

We now prove the various claims made in the main text.

(UniAdj∗) entails (Rgd). The proof relies on axiom B. We first derive
(Rgd+). Assume that z ≺ xx. It follows from (UniAdj∗) and axiom T that
are yy such that:

∀u(u ≺ yy ↔ u ≺ xx ∨ u = z) ∧ 2∀u(u ≺ yy ↔ u ≺ xx ∨ u = z)

An obvious consequence of this fact is that 2(z ≺ yy). Since z ≺ xx, so we
also have that xx ≈ yy. By (Cov),2(xx ≈ yy). But2(z ≺ yy) and2(xx ≈ yy)
entail that 2(z ≺ xx). Thus:

z ≺ xx → 2(z ≺ xx)

The variables are arbitrary and the reasoning relies only on a necessary non-
logical premise, so we conclude:

2∀z∀xx(z ≺ xx → 2(z ≺ xx))

The other component of the rigidity claim, (Rgd−), can be proved similarly
by appealing to (Cov−), which was proved to follow from (Indisc) and B.
Alternatively, we can obtain (Rgd−) from (Rgd+) in S5, as shown above. ⊣
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(PartRig) entails (Rgd). The axioms of S5 are used. Assume that z ≺ xx.
By (PartRig) and T, there are yy such that:

xx ≈ yy ∧ ∀x(x ≺ yy → 2x ≺ yy)

So 2(z ≺ yy). By (Cov), 2(xx ≈ yy). Therefore, 2(z ≺ xx). So we have
shown that:

∀z∀xx(z ≺ xx → 2(z ≺ xx))

The modal status of (PartRig) guarantees that this holds of necessity. We
can then derive (Rgd−) from (Rgd+) in S5. ⊣

So far we have two arguments for plural rigidity. The first relies on
(UniAdj∗) and makes use of axiom B. The second relies on (PartRig) and
can be carried out in S5. We claimed that, against the background of (Cov)
and S5, the following three statements are equivalent: (UniAdj∗), (PartRig),
and (Rgd). An analogous claim holds in the contingentist setting. We have
already proved that each of the former statements entails the third. So it
suffices to establish the two converse entailments.

(Rgd) entails (UniAdj∗). Let xx and z be arbitrary. By plural comprehen-
sion, there are yy such that:

(†) ∀u(u ≺ yy ↔ u ≺ xx ∨ u = z)

Wewant to show that this generalization holds by necessity. Let us first prove
that the left-to-right direction of (†) holds by necessity. Suppose that u ≺ yy.
Then either u ≺ xx or u = z. If u ≺ xx, then (Rgd) implies 2(u ≺ xx) and
thus2(u ≺ xx∨u = z). If u = z, then2(u = z) and thus2(u ≺ xx∨u = z).
So, in either case,2(u ≺ xx∨u = z). Since u is arbitrary, we have established
that:

∀u(u ≺ yy → 2(u ≺ xx ∨ u = z))

By (BFR), we obtain:

(∗) 2∀u(u ≺ yy → u ≺ xx ∨ u = z)

Now we prove the necessity of the other direction. We proceed by reductio
and suppose the opposite, which can be written as:
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3∃u((u ≺ xx ∨ u = z) ∧ u ⊀ yy)

A bit of logical manipulation yields the following disjunction:

3∃u(u ≺ xx ∧ u ⊀ yy) ∨ 3∃u(u = z ∧ u ⊀ yy)

But each disjunct leads to contradiction. Consider the first disjunct. By the
converse of (BFR), that is:

3∃u(u ≺ xx ∧ φ(u)) → ∃u(u ≺ xx ∧3φ(u))

we obtain:

∃u(u ≺ xx ∧ 3(u ⊀ yy))

But given how yy were introduced, if u ≺ xx, then u ≺ yy. By (Rgd),
2(u ≺ yy), which contradicts3(u ⊀ yy). Now consider the second disjunct.
It entails that3(z ⊀ yy). But this contradicts2(z ≺ yy), which follows from
z ≺ yy by (Rgd). We conclude from the reductio that:

(∗∗) 2∀u(u ≺ xx ∨ u = z → u ≺ yy)

Our target claim, (UniAdj∗), is an immediate consequence of the conjunc-
tion of (∗) and (∗∗). ⊣

(Rgd) entails (PartRig). This is straightforward and requires no special
modal assumption.

(1) 2∀xx∀x(x ≺ xx → 2(x ≺ xx)) (Rgd)
(2) 2∀xx(xx ≈ xx ∧ ∀x(x ≺ xx → 2(x ≺ xx))) 1, PFO, K
(3) 2∀xx∃yy(xx ≈ yy ∧ ∀x(x ≺ yy → 2(x ≺ yy))) 2, PFO, K ⊣

The last formal argument for plural rigidity considered inChapter 10 relies
on the principle of uniform traversability:

2∀x(x ≺ xx ↔ ⋁
a≺xx

x = ̄a)(UniTrav)

The formulation of this principle (and of the resulting argument) requires an
infinitary extension of PFO.
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(UniTrav) entails each instance of (Rgd). Let xx be any plurality. By
(UniTrav), we can find a traversal:

(∗) 2∀x(x ≺ xx ↔ ⋁
a≺xx

x = ̄a)

By T and Universal Instantiation, we obtain z ≺ xx ↔ ⋁a≺xx z = ̄a. Now,
the necessity of identity entails ⋁a≺xx z = ̄a → ⋁a≺xx 2(z = ̄a). And basic
modal logic ensures ⋁a≺xx 2(z = ̄a) → 2⋁a≺xx z = ̄a. Combining the
three preceding formulas, we obtain:

z ≺ xx → 2⋁
a≺xx

z = ̄a

From this and (∗) we derive:

z ≺ xx → 2(z ≺ xx)

Since z is arbitrary, we can universally generalize to establish our desired
conclusion:3⁹

∀x(x ≺ xx → 2(x ≺ xx))

The modal profile of (∗) ensures that this conclusion holds of necessity. ⊣

3⁹ Can we proceed to universally generalize on ‘xx’ as well? In fact, this move is unavailable
because (UniTrav) is a axiom scheme, which for each xx states that there is a traversal, but which
provides no uniform way of specifying such a traversal.
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