
11
Absolute Generality and Singularization

11.1 Absolute generality

Is it possible to assert something of absolutely everything there is? It certainly
seems so; consider for instance the following assertions:

(11.1) Everything is physical.

(11.2) The empty set has no elements.

The truth of these assertions, it seems, rules out the existence of absolutely
any ghost or element of the empty set. Any ghost or element of the empty
set, no matter how remote or unfamiliar, is incompatible with what has been
asserted. Let absolute generality be the view that it is possible to quantify over
absolutely everything there is.

Plausible though it appears, absolute generality faces some challenges. We
begin by laying out what we take to be the most interesting and powerful
one. We do this in some detail, as it will be important to understand exactly
which options we have for responding.We then argue, followingWilliamson
(2003), that the rejection of absolute generality faces serious expressibility
problems. Next, we examine Williamson’s defense of absolute generality,
which gives up the thesis that there are universal devices of singulariza-
tion. We show how this proposal leads to an ascent to languages of ever
higher orders and argue that the resulting outlook suffers from expressibility
problems that are very similar to those that Williamson sought to avoid.1
Motivated by this, we explore an alternative approach to the challenge, which
allows a form of absolute generality but denies that the associated domain
is extensionally definite (that is, properly circumscribed), and on this basis
denies that the domain is an all-encompassing plurality of objects.

Absolute generality has emerged as one of the central themes in the
book, figuring as an essential premise in several arguments in the preceding

1 Here we draw on arguments from Linnebo 2006 and Linnebo and Rayo 2012.
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chapters. For instance, absolute generality was crucial to themore promising
attempts to refute regimentation singularism. Moreover, it was invoked
in the comparisons between alternative ways to talk about the many; for
example, it emerged as an obstacle to the elimination of pluralities in favor
of sets and to the mereological analysis of plurals. Furthermore, absolute
generality was proposed as a constraint in the choice of a model theory
for plural logic, a constraint that would rule out any form of semantic
singularism cashed out in first-order terms. In order to reach a verdict on
all these arguments, we need to resolve the question of absolute generality.

11.2 A challenge to absolute generality

Let us now formulate a challenge to absolute generality. The challenge
is based on the plural version of Cantor’s theorem that we presented in
Section 3.5.

Plural Cantor
For any plurality xxwith two or more members, the subpluralities of xx
are strictly more numerous than the members of xx.

In particular, consider the universal plurality, that is, the plurality of every
object there is. On the uncontroversial assumption that there are two ormore
objects, the corresponding instance of Plural Cantor can be formulated as
follows:

Plural Profusion
There are more pluralities than objects.

This means that there can be no injective mapping of pluralities into objects.
The problem is that this technical result clashes with a wide range of

views in metaphysics, philosophy of mathematics, and semantics. To get
the problem in focus, consider first all the stars in the universe, ss. There
appear to be many examples of injective mappings from subpluralities of
ss into objects. Consider the operator ‘the set of ’. According to its typical
usage, this operator defines an injective mapping from subpluralities of ss
to objects. If xx and yy are distinct, so are their object-level correlates, that is,
the set of xx and the set of yy. (For a detailed discussion see Linnebo 2010.)
Metaphysics provides other important examples. An interesting case is that
of propositions or facts (see McGee and Rayo 2000). It is widely assumed
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that if xx and yy are distinct, then the propositions or facts expressed by ‘xx
exist’ and ‘yy exist’ are also distinct. Thus, the functional expressions ‘the
proposition that . . . exist’ and ‘the fact that . . . exist’ define injectivemappings
from subpluralities of ss to objects. However, if these functional expressions
were applicable not just to subpluralities of ss but to all pluralities, we would
run into trouble. Suppose that, for any things xx whatsoever, there is the set
of xx (or the proposition that xx exist, or the corresponding fact). Then we
would have an injective mapping from pluralities to objects—in violation of
Plural Profusion.

Let a singularization be an injective mapping from the subpluralities
of some objects xx into objects.2 The plural version of Cantor’s theorem
constrains what singularizations are possible. For the theorem says that,
provided that xx have two or more members, there can be no injective
mapping of the subpluralities of xx into these very objects. That is, if there is a
singularization of all the subpluralities of xx, then the values of the subplural-
ities under this singularization cannot all be among xx but must “overflow”
this plurality. Of course, in some of the examples mentioned above, this is
precisely what one would expect. No one expected a set of stars to be itself
a star, and likewise for facts, properties, and propositions concerned with
stars. The problem arises when this overflowing is impossible, as in the case
of the universal plurality. This implies that there can be no singularization
of its subpluralities. Any such singularization would have to overflow the
universal plurality, which by its assumed universality is impossible.

This is a puzzling result. In our first example, it seemed completely
incidental that we considered the subpluralities of all the stars, as opposed
to the subpluralities of some other lot of objects. It is not as if stars are
more amenable to figuring as elements of sets than any other objects, or, for
that matter, to be involved in propositions, facts, or properties. One might
therefore have thought that these are universal singularizations, in the sense
that they are available for any plurality whatsoever.3 Plural Profusion seems
to show, in one fell swoop, that none of the mentioned singularizations, nor
any other, can be universal: there simply aren’t enough objects to enable a
singularization of absolutely all pluralities.

2 As before, this talk of mappings can either be taken as primitive or be understood as
shorthand for claims that officially talk merely about pluralities of ordered pairs (see Appendix
3.A). For ease of communication, we will mostly indulge in talk about mappings, which could
always be translated into talk about pluralities of pairs.

3 This is also a consequence of the liberal view of definitions canvassed in Section 4.4 and
developed in more detail below.
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A common reaction in the literature has been to take this result at face
value as a surprising limit on what singularizations there can be.⁴ This
reaction is not without problems, however. Singularization seems to play
an important role in natural language and in a wide range of theoretical
contexts, from mathematics to semantics. What are we to say about all these
apparent singularizations? Since it is not an option to reject singularizations
altogether, the most promising response is to find a way to restrict their
availability. We can allow these singularizations to be undefined on certain
pluralities or lift the requirement that the associated mappings always be
injective. However, this “compromising” response faces a threat of arbitrari-
ness. Restricting the scope of a device of singularization raises the question
of whether the restriction is adequately motivated.

We have ended up in an awkward position. Plural Cantor seems to show
that there can be no universal singularization, and as we have just seen,
this threatens to introduce some arbitrary and unmotivated restriction on
what singularizations there can be. Let us therefore reexamine the argument.
Might there be some way to reconcile Plural Cantor with the availability of
universal singularization? Given Plural Cantor, we know that any singular-
ization of the subpluralities of some things would have to overflow these
things. So a reconciliation would have to find a way to permit this kind of
overflow without exception. There have been two attempts to permit this.

The better known strategy is generality relativism, which denies that abso-
lute generality is possible.This view entails that no plurality is universal in an
absolute sense. The most we can ever have is a relative kind of universality,
which can always be surpassed. Although a plurality xx may be univer-
sal with respect to our current interpretation of the quantifiers—that is,
∀x(x ≺ xx)—it is possible to find an extended interpretation with respect
to which xx is no longer universal—that is, ∃+x¬(x ≺ xx) (where the ∃+
indicates that the quantifier is taken in this extended sense). This yields an
operation that extends any given interpretation I to a strictly more inclusive
interpretation I+. On the resulting view, any plurality—including one that is
universal with respect to our current interpretation of the quantifiers—can
be surpassed once we adopt a more inclusive interpretation of the quanti-
fiers. Clearly, this view makes the world safe for singularization. Since no

⁴ See, e.g.,McGee andRayo 2000, Rayo 2002, andUzquiano 2015a.Note also that this attitude
towards singularization is implicit in much of the philosophical literature on plural logic. An
analogous point is true with respect to the parallel case of nominalization and higher-order
logic.
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plurality is universal in an absolute sense, there is no obstacle to unrestricted
singularization. Provided that singularization leads to an expansion of the
interpretation of the quantifiers, we can safely accept its effect of always
surpassing any plurality with which we begin.

11.3 A trilemma

There is another strategy for blocking the argument against universal singu-
larizations, namely to restrict the axiom scheme of plural comprehension.
This strategy has no truck with generality relativism and accepts that an
absolute interpretation of the quantifiers is possible. Nor does the strategy
have any quarrel with Plural Cantor: it is perfectly true, for any plurality xx
with two or more members, that the subpluralities of xx are strictly more
numerous than the members of xx. Rather, unlike the generality relativist,
who seeks to retain traditional plural logic, the strategy in question chal-
lenges our naive assumptions concerning what pluralities there are. After all,
in the argument above, trouble arose only when we assumed that there is a
universal plurality, which enabled us to derive the problematic instance of
Plural Cantor, namely Plural Profusion. (Of course, we would get the same
effect from any other plurality that is too large to allow of singularization,
as its correspondingly small complement cannot accommodate the overflow
that would result.)

Needless to say, the big challenge for this strategy is to explain why there
are no pluralities that are so large that they cannot be singularized. The
existence of such pluralities is underwritten by the unrestricted plural com-
prehension scheme of traditional plural logic. Any rejection of the currently
accepted version of plural logic will of course have to be well motivated.
Attempts to provide such a motivation have in fact been made, targeting
the unrestricted plural comprehension scheme in particular. A promising
idea derives from the thought that domains of quantifications might be
extensionally indefinite, or not properly circumscribed, while every plurality
is extensionally definite. The idea is nicely summarized in the following
passage by Stephen Yablo:

The condition ϕ(u) that (I say) fails to define a plurality can be a perfectly
determinate one; for any object x, it is a determinate question whether x
satisfiesϕ(u) or not.How then can it fail to be a determinatematterwhat are
all the things that satisfy ϕ(u)? I see only one answer to this. Determinacy
of the ϕ’s follows from
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(i) determinacy of ϕ(u) in connection with particular candidates,
(ii) determinacy of the pool of candidates.

If the difficulty is not with (i), it must be with (ii). (Yablo 2006: 151–2; some
notation and terminology has been modified)

Perhaps the price of absolute generality is that the range of our quantifiers
becomes extensionally indefinite (or “indeterminate”, as Yablo might put it).
Since pluralities are extensionally definite, however, this would give us a
reason to restrict plural comprehension so as to reject the universal plurality.
Of course, the main challenge for this approach will be to articulate the
notion of extensional definiteness and show that it has the right properties.
This task was begun in the previous chapter and will be completed in next.

Let us take stock. Assume that absolute generality is possible and there
is a plurality that is universal in this absolute sense. Then Plural Profusion
entails that there cannot be a universal singularization. For if therewere, such
a singularization would yield an injective mapping from subpluralities of
the universal plurality to objects, contradicting Plural Profusion. Moreover,
since this argument can be given with the quantifiers interpreted absolutely,
which is assumed to be possible, it is not an option to object that the
argument equivocates by expanding the interpretation of the quantifiers
somewhere along the way. So we have a trilemma. We must accept one of
the following three horns.

First horn
Universal singularizations are impossible.

Second horn
It is impossible to quantify over absolutely everything.

Third horn
There is no plurality that is universal or all-encompassing.

The trilemma confronts us with a difficult theoretical choice.⁵ As we have
seen, there are several examples of devices of singularization in natural

⁵ Might a fourth option be possible, namely to challenge Plural Cantor? Since this is a
mathematical theorem, it can be no more controversial than the assumptions on which it rests.
The only point of attack seems to be the impredicative plural comprehension axiom that is
involved in some versions of the theorem. We don’t find this challenge at all promising, for
two reasons. First, some versions of the theorem require only predicative comprehension, as we
saw in Appendix 3.A. Second, even for the versions that require impredicative comprehension
the requisite impredicative plural comprehension was defended in Appendix 10.A.
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language and some of them appear to be fully general. Next, there is a
wealth of examples of assertions that seem to be about absolutely everything.
Finally, the existence of a universal plurality is underpinned by the principle
of plural comprehension enshrined in the traditional version of plural logic
and thus appears to stand on solid ground. How should the trilemma be
resolved? In what follows, we shall assess each of its three horns.

11.4 Relativism and inexpressibility

It turns out that the rejection of absolute generality is fraughtwith difficulties.
Let us mention three problems. One is simply that absolute generality very
much appears to be possible, for instance whenwe truly assert that the empty
set has absolutely no elements. It would take a very good reason to go against
such a robust appearance. A second problem is that absolute generality is
needed in order to express various general views that we find interesting,
such as the physicalist claim that absolutely everything is physical. To dis-
allow the expression of these views would be to disallow a lot of potentially
fruitful theorizing. As Williamson remarks, “[i]f the unexamined life is not
worth living, the credentials of a life without absolutely general thought are
shaky” (2003, 452). We take this to be a very serious complaint.

The most intriguing argument against generality relativism, however, is
that the view cannot coherently be expressed. David Lewis states the point
with characteristic verve:

Maybe the singularist replies that some mystical censor stops us from
quantifying over absolutely everything without restriction. Lo, he violates
his own stricture in the very act of proclaiming it! (Lewis 1991, 68)

Someunpackingmayhelp. Consider the claim thatmy current language does
not quantify over absolutely everything. This entails that there is something
over which my quantifiers do not range. But this is incoherent, as I am now
using a quantifier to assert the existence of something not in the range of my
quantifiers.

A relativist might attempt to do better by expressing her view as a claim
about interpretations, namely that for every interpretation of our quantifiers,
there is a more expansive interpretation. We use subscripts to indicate the
interpretation given to the quantifiers. Let I ⊂ J abbreviate ∃Jx∀Iy(x ≠ y).
One may then attempt to express relativism as follows:
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(11.3) ∀I∃J(I ⊂ J)

Promising though it may be, the attempt fails, as shown by the following
dilemma. Assume first that the quantifiers ‘∀I’ and ‘∃J’ in (11.3) range over
absolutely all interpretations. Then (11.3) expresses what it is meant to
express. But in so expressing it, one is violating the view expressed. For just as
there are arguments that it is impossible to quantify over all ordinal numbers
or all sets (see Florio 2014b, Section 3.1), there are analogous arguments
concerning quantification over interpretations. Alternatively, assume that
the quantifiers in (11.3) do not range over absolutely all interpretations.⁶
Thus understood, (11.3) is compatible with the view it is meant to express.
The problem is now that (11.3) fails to express the view properly. All that is
expressed is that every interpretation in some limited range of interpretations
can be extended. But this is compatible with there being a maximal interpre-
tation outside of this limited range.

The standard response by generality relativists, advocated for instance in
Glanzberg 2004 and Parsons 2006, is to invoke schematic generality.This idea
traces back to Russell’s use of free variables to achieve a form of generality
that goes beyond that afforded by the quantifiers.i

For our purposes [the distinction between ‘all’ and ‘any’] has a different
utility, which is very great. In the case of such variables as propositions or
properties, ‘any value’ is legitimate, though ‘all values’ is not. Thus we may
say: ‘p is true or false, where p is any proposition’, though we can not say ‘all
propositions are true or false’. (Russell 1908, 229–30)

In effect, we use free variables to achieve a version of absolutely general
universal quantification. Consider an operation which, when applied to
any interpretation I yields an extended interpretation I+; an example is the
operation described in Section 11.2. Using free variables, relativism can now
be expressed schematically as follows:

(11.4) I ⊂ I+

The use of schematic generality is severely limited, however. Schematic
statements cannot be negated and cannot be freely combined in other
truth-functional ways. Consider for instance the negation of (11.4) and

⁶ See, for instance, the relativist argument developed (as a foil) in Williamson 2003,
Section IV.
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read this schematically. The formula would express a universally generalized
negation, not the desired negated universal generalization. More generally,
schematic generality enables us to express absolutely general Π1-sentences,
but not Σ1-sentences or beyond.⁷ We find this expressive limitation hard to
accept. Anything that can be expressed can also be denied.

Can we do better by exploiting alternative expressive resources? An inter-
esting option is to formalize reasoning about expansions of quantifier inter-
pretations by means of modalities.⁸ So (11.3) receives a modal reading:

(11.5) Necessarily, for any interpretation I, there could be an extended
one J

or in symbols:

(11.6) 2∀I3∃J (I ⊂ J)

How should the modal operators be interpreted? The ordinary metaphysical
interpretation is problematic. For the existence of the relevant objects, such
as pure sets, is often assumed to bemetaphysically necessary, which rules out
any variation of the domain of such objects across metaphysical possibilities.
Some writers favor an interpretational understanding of the modality, where
the modal operators enable us to theorize about the result of certain changes
to the interpretation of the language.⁹

Suppose this understanding of themodality can bemade out.What would
have been achieved? A desire for greater expressive adequacy led to the
adoption of resources that allow us to retrieve, or at least to simulate, full
absolute generality. For the strings ‘2∀’ and ‘3∃’ can now be used as devices
of generalization: not just over everything in the range of the quantifiers
as currently interpreted, but over everything in their range on any possible
interpretation. Indeed, the “mirroring theorem” of Linnebo 2010 shows that,
under plausible assumptions, the “modalized quantifiers” ‘2∀’ and ‘3∃’
behave precisely like ordinary quantifiers as far as logic is concerned. So these
can be seen as ways to recover a form of absolute generality from within a
theoretical standpoint that shares many of the motivations of relativism.

Where does this leave us? We set out to develop a form of relativism. We
ended up defending a form of absolute generality—albeit with an uncon-

⁷ We can, however, use operators or function symbols to make some existence claims even in
the scope of schematic generalization. An example is (11.4) where ‘+’ represents an operation
we can apply to any given interpretation I so as to form an extended interpretation I+.

⁸ See Fine 2006, Linnebo 2010, and Studd 2013.
⁹ See Fine 2006; Linnebo 2018, Sections 3.5–3.6; Studd 2019, Sections 4.4 and 6.1.
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ventional understanding of absolute generality. This unconventional feature
emerges particularly clearly in connection with the following modalized
analogue of the ordinary plural comprehension scheme:

3∃xx2∀y(y ≺ xx ↔ φ(y))

Recall from Chapter 10 that every plurality is rigid: it has the same members
at every world at which it exists.This entails that the above scheme is invalid.
For example, letφ(y) be the condition ‘y = y’. Since the domain can vary from
possible world to possible world, so can the extension of this condition. By
contrast, a plurality cannot vary in membership. It is therefore impossible
for there to be a plurality that is necessarily coextensive with this condition.
The upshot is that, when the strings ‘2∀’ and ‘3∃’ are used to recover
absolute generality, the plural comprehension scheme, couched in terms of
this form of generality, needs to be restricted. In short, an attempt to defend
the first horn of our trilemma has morphed into a view that is more usefully
regarded as a defense of the third horn. Specifically, we have used pluralities,
which are tracked rigidly across possible worlds, to explicate the notion of
an extensionally definite collection, or Yablo’s corresponding notion of a
“determinate pool of objects”.

For the purposes of this book, we prefer a more direct approach. Instead
of adding modal operators to shore up a version of the first horn, we would
like to develop the third horn directly—which we do in the next chapter.

11.5 Traditional absolutism and ascent

In the remainder of this chapter, we will explore the second horn of our
trilemma. This horn concedes that there cannot be any universal singular-
izations, while retaining absolute generality over an extensionally definite
domain, represented by a universal plurality. Throughout this discussion,
traditional plural logic will therefore be assumed. We call the resulting view
traditional generality absolutism.

One of the main challenges confronting this view is to develop a model
theory for a language whose quantifiers are interpreted absolutely. The usual
set-based model theory is obviously unavailable, since the domain now con-
sists of absolutely everything there is and there is no universal set according
to standard set theory (see Section 7.7). How, then, should advocates of
absolute generality represent the domain of their absolute quantifiers and
the semantic values of the predicates defined on this all-inclusive domain?
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An answer that has recently gained a lot of support is that the model
theory for a first-order language with absolute generality can and must be
given in a plural or higher-order metalanguage.1⁰ In this metalanguage,
we let domains be pluralities or concepts. The domain of a language with
absolute generality will then correspond to the universal plurality or a
universal concept. This way to talk and reason about domains requires
no singularization whatsoever. Although we talk informally about “the
domain”, using a singular definite description, we officially have in mind the
many objects, or the many instances of a concept, over which the quantifiers
range. A similar strategy allows us to ascribe semantic values to predicates.
Although we informally talk about “the semantic value” of a predicate,
officially there are many objects or a concept representing the predicate’s
semantic contribution. In short, in order to develop the model theory for a
first-order language with absolute generality, we must ascend to a language
with plural or second-order resources.

Our discussion in Section 7.5 showed another instance of this phe-
nomenon. A model theory for PFO+ with absolutely unrestricted quantifi-
cation can only be given in a language with another layer of quantification,
such as superplural quantification or quantification over plural concepts.
In fact, this ascent phenomenon can be shown to continue further, as we
will now explain in detail. We will focus on the plural hierarchy, although
it is not difficult to adapt our discussion to the corresponding conceptual
hierarchy. For the two hierarchies have a common type-theoretic structure.
So to emphasize the parallel between them, we will often speak of a type-
theoretic hierarchy. Recall our terminology when the types receive a plural
interpretation: a language of order 1 is just a regular first-order language,
while order 2 adds plural quantification, order 3 adds superplural quantifi-
cation, and so on. Thus, a language of order n + 1 quantifies over what we
call pluralities of level n.

A more detailed argument for the ascent can now be set out as follows.

Premise 1
Traditional plural logic is valid.

Premise 2
Absolute generality is possible at every order of the hierarchy; that is,
for every order, it is possible to quantify over absolutely all entities at
that order.

1⁰ See, e.g., Rayo and Uzquiano 1999, Rayo and Williamson 2003, and Williamson 2003.
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To formulate the third and final premise, let a generalized semantics be a
theory of all possible interpretations that a language might take, without any
artificial restrictions on the domains, interpretations, and variable assign-
ments. A generalized semantics is thus an instance of model theory, in our
liberal sense of that term. The premise can now be stated as follows.

Premise 3 (semantic optimism)
Given any legitimate language, it should be possible to develop a gen-
eralized semantics for that language.

Finally, we have the following theorem.

Ascent theorem (basic form)
Assume traditional plural logic and the possibility of absolute general-
ity. Then a generalized semantics for a first-order language cannot be
given in another first-order language but can be given in a language
with plural quantification.

The result of the three premises and the theorem is that we are pushed from
a first-order to a plural language.

The question now arises: what about the semantics of a language with
absolutely general plural quantification? It turns out that the considerations
that require the initial ascent from a language of order 1 to a language of
order 2 require further ascents as well. For we have the following:

Ascent theorem (arbitrary finite form)
Assume traditional plural logic and the possibility of absolute generality
at every finite order n ≥ 1. Then a generalized semantics for a language
of order n cannot be given in another language of order n but can be
given in a language of order n + 1.

So at every finite order, the desire for a generalized semantics pushes us one
step up. This results in an ascent up through all the finite orders.11

11 More fine-grained results are possible as well. The Ascent Theorem applies to languages
that are sometimes called full (or plenary) in the sense that they contain predicates whose
arguments can be variables of order n, where n is the order of the language. If a language of
order n is not full, the formulation of a generalized semantics for it requires only that we ascend
to a full language of order n. This is why, for example, the plurality-based model theory for PFO
was carried out in PFO+. For a summary of these results and references to the literature, see
Florio 2014b, Section 4.1.
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In fact, as shown by Linnebo and Rayo (2012), an additional principle,
broadly in the spirit of those behind the theorems, extends the hierarchy of
higher-order languages into the transfinite. The additional principle states,
roughly, that for any collection of languages in the hiearchy, we can form
a “union” language that encompasses all the languages in the collection.12
Linnebo and Rayo (2012) prove a generalization of the ascent theorem into
the transfinite.

Ascent theorem (transfinite form)
Assume traditional plural logic and the possibility of absolute generality
at every order. Then we cannot develop a generalized semantics for
a language of order α in another language of order α. But for every
successor ordinal α, we can develop a generalized semantics for a
language of order α in a language of order α + 1.13

In fact, there is reason to think that Tarski knew all of this (and more):

[T]he setting up of a correct definition of truth for languages of infinite
order would in principle be possible provided we had at our disposal in the
metalanguage expressions of higher order than all variables of the language
investigated. (Tarski 1935, 72)

The end result is that defenders of the new orthodoxy, seeking to secure the
possibility of absolute generality while holding on to semantic optimism, are
pushed by the ascent theorems higher and higher up through the orders of
the hierarchy.

The only way to stop this ascent would be to give up on semantic opti-
mism, which insists on a generalized semantics. Why insist on this? As
remarked, a generalized semantics is just a higher-order version of ordinary
set-based model theory. It is therefore natural to think that a generalized
semantics is required in order to give an appropriate definition of logical

12 To avoid inconsistency, we must restrict the collections to which the principle applies.
If languages are indexed by ordinals, a plausible restriction is to any bounded collection of
languages: for a limit ordinal λ, if one is prepared to countenance languages of order β for every
β < λ, then one should also countenance a language of order λ. Without this restriction, we
would be able to prove an inconsistency. See Florio and Shapiro 2014 and Linnebo and Rayo
2014 for further discussion.

13 What about a language whose order is an infinite limit ordinal λ? Since this language is
contained in the language of order λ+1, the theorem ensures that its generalized semantics can
be developed in a language of order λ+ 2.
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consequence, just like Tarski’s notion of logical consequence requires model
theory.

One might try to resist this natural thought by recalling an observation
made in Section 7.4. By appealing to an appropriate set-theoretic reflection
principle, we can ensure that the standard definition of logical consequence
as truth preservation in every set-based model is extensionally equivalent to
the definition of logical consequence as truth preservation in every plurality-
based model. Does this show that a generalized semantics isn’t required after
all? We don’t think so. As indicated in Section 7.9, one response is that we
would like a theory of logical consequence that is not only extensionally
but also intensionally correct. For instance, by the downwards Löwenheim-
Skolem theorem, we know that it would be extensionally correct to define
logical consequence by quantifying solely over finite and countably infinite
models. Although extensionally correct, this definition of logical conse-
quence would be inferior to Tarski’s, because it badly fails to capture the
intended intension. An analogous argument can be made for considering
not only set-basedmodels but allmodels, as is done in generalized semantics.
Moreover, the ability to capture the intended intension, which here requires
quantification over all models, is essential when we lack independent means
of determining the correct extension. In that case, it is only against the
backdrop of an intensionally correct theory that we can check whether any
other theory is in fact extensionally adequate.

Another, more direct response is that generalized semantics is legitimate
and interesting in its own right, irrespective of its contribution to theorizing
about logical consequence. Our language has one interpretation. But there
are myriad other interpretations that it might have had. It is a legitimate
undertaking to study all these interpretations and how the truth of sentences
is affected by the choice of interpretation.

11.6 Ascent and inexpressibility

Let us therefore accept that traditional generality absolutism pushes us
up through the orders of the hierarchy and proceed to inquire about the
significance of this ascent phenomenon. It turns out that the ascent gives
rise to three complaints that mirror those we leveled against relativism in
Section 11.4.

First, type-unrestricted generality appears possible. For example, it
appears meaningful to ask whether the law of extensionality holds at every
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order of the type-theoretic hierarchy. It would take a very good reason to
go against such a robust appearance. Yet no such generalization is available
on the type-theoretic view. While quantification of any specific order is
available, there is no such thing as quantification across all orders at once.

Second, type-unrestricted generality is needed to engage in many inter-
esting and potentially valuable forms of theorizing. We already mentioned
the question of extensionality, which figures in some theoretically important
claims, for example, that extensionality holds at every order of the plural
hierarchy but not of the conceptual hierarchy. Likewise, it is an important
insight, which deserves to be properly expressed, that a version of Cantor’s
theorem holds at every order of the type-theoretic hierarchy. Coupled with
widely held assumptions about plural comprehension, this means that there
are more pluralities than objects, more superpluralities than pluralities, and
so on up through all the possible levels. For a final example, consider the
claim that the principle of compositionality holds at every order, that is, that
at every order, the semantic value of a complex expression is determined as
a function of the semantic values of the expression’s simpler constituents.1⁴
None of these questions can be properly expressed and discussed in the type-
theoretic setting.We thus seem to be confronted with examples of expressive
limitations that curtail certain forms of systematic and valuable theorizing.

In fact, the view that type theory suffers from expressive limitations has a
long history. Wittgenstein alludes to it in the Tractatus (Proposition 4.1241)
and formulates it explicitly in his pre-Tractarian period:

Types can never be distinguished form each other by saying (as is often
done) that one has these but the other has those properties, for this
presupposes that there is ameaning in asserting all these properties of both
types. (Wittgenstein 1979, 106)

For essentially these reasons, he concludes twopages later that “aTHEORYof
types is impossible”. Very similar considerations are echoed by Gödel twenty
years later:

The theory of simple types [. . .] has the consequence that the objects
are divided into mutually exclusive ranges of significance, [. . .] and that
therefore each concept is significant only for arguments belonging to one
of these ranges, i.e., for an infinitely small portion of all objects.Whatmakes

1⁴ See Linnebo 2006 for some further examples.
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the above principle particularly suspect, however, is that its very assump-
tion makes its formulation as a meaningful proposition impossible [. . .].
Another consequence is that the fact that an object x is (or is not) of a given
type also cannot be expressed by a meaningful proposition. (1944, 466)

It might be objected that our examples of expressive limitations are
biased.1⁵ From our point of view, there are indeed important generalizations
that the type theorist cannot express. But from the type theorist’s point of
view, the alleged examples of inexpressible insights can be dismissed as
ungrammatical gibberish. This is a perceptive and interesting complaint,
which leaves us in a difficult dialectical situation. From one point of view,
there is evidence against the opposing view. From the opposing point of view,
this alleged evidence isn’t even meaningful!

How can we get beyond this apparent impasse? It is true that the type
theorists can stubbornly reject the attempted examples of expressive limi-
tations without any fear of thereby contradicting themselves. But we claim
it would be bad methodology to do so. Greater expressive power appears
possible; there are consistent ways to develop this greater expressibility; and
the greater expressibility promises to be theoretically useful.1⁶ In such cases,
we contend, it is good methodology to press ahead, despite the protestations
of the coherent naysayers—though obviously with the epistemic caution that
behooves every exploration of an unconventional hypothesis.

Third, an objection to the semantic ascent through the type-theoretic
hierarchy is that we are precluded from properly stating the type theorists’
view that there is a hierarchy strictly divided into levels and without a
top level. This is analogous to the case of relativism. Recall the relativist’s
predicament: to state that every quantifier interpretation can be extended,
we need to avail ourselves of absolute quantification over interpretations.
Likewise, to state that quantification of every order can be extended by
quantification of some even higher order, we need to generalize across all
the orders simultaneously. The hierarchy has no maximal level, yet we are
precluded from properly expressing that.

Might the expressive limitations be overcome by appealing to schematic
generality, as discussed in Section 11.4? In this case, the schematic generality
would reside in the type indices. Where τ is a type, a claim φ(xτ) would be

1⁵ A version of this objection is discussed in Krämer 2014.
1⁶ For the second point, see Section 11.7.
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understood as conveying that the claim holds for any type τ.1⁷ However, as
noted in our discussion of generality relativism, the logical complexity of
the generalizations that can be captured by schematic generality is extremely
limited.

In sum, generality relativism and traditional generality absolutism have
far more in common than has been acknowledged in the existing literature:
both suffer from expressibility problems. We have discussed three such
problems: the apparent meaningfulness of certain absolute generalizations,
their potential theoretical utility, and the inability to properly express one’s
own view without access to such absolute generalizations. Our discussion
motivates taking a closer look at the third alternative, namely absolute
generality over a domain that is extensionally indefinite, or not properly
circumscribed. This is the task of the next and final chapter.

Before turning to this task, however, we would like examine a strategy
that might allow the traditional absolutist to restore full expressibility. We
will find that, while promising, this strategy ends up transforming traditional
absolutism into a view that has much in common with the third alternative.

11.7 Lifting the veil of type distinctions

As we have seen, semantic considerations push the traditional absolutist
higher and higher up through the type-theoretic hierarchy. But this ascent
phenomenon leads to expressibility problems. We now explore another
perspective on the debate. Consider the entire plural hierarchy to which
the traditional absolutist ends up committed. At the bottom, there is an
extensionally definite domain of individuals, which make up level 0. Then
there is level 1, which adds pluralities; level 2, which adds superpluralities;
and so on. Let the traditional absolutist make her choice about how high to
go. Our only assumption is that there is no maximal level of the hierarchy.
That is, for every level α in the plural hierarchy, there is also level α+1.These
levels are reflected in the type distinctions of our language: variables of each
type take their values exclusively from the corresponding level.

What happens if we abandon these type distinctions and bring all the
different sorts together? Doing so would be a radical change in perspective.
We would, as it were, lift the veil of type distinctions and thus gain a
new perspective on reality. We will now defend the coherence of this new

1⁷ Russell famously exploits this kind of “typical ambiguity”; see Russell 1908, 251.
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perspective. We will also show that, from the new perspective, traditional
plural logic is no longer valid.1⁸

As a warm-up case, imagine a community of extreme Cartesian dualists
whose language involves a strict type distinction between mental and physi-
cal vocabulary.Members of this community regard the application ofmental
predicates to physical terms as meaningless rather than false. Likewise, they
regard the application of physical predicates to mental terms as meaningless
rather than false. This prevents them from being able to generalize at once
over both the mental and the physical domain. For example, these dualists
cannot express claims such as:

(11.7) Everything is either mental or physical.

(11.8) Nothing is both mental and physical.

The situation is analogous to the one described in the previous section.
Like the type theorist we encountered there, the dualists can dismiss these
alleged examples of inexpressible claims as ungrammatical gibberish. How
can we convince them to abandon their type distinction and adopt a per-
spective that permits the expression of the above claims? From our point
of view, the dualists’ type distinction is dogmatic and parochial. But this
charge is supported by evidence which, from their point of view, isn’t
even meaningful! We face an impasse, which again can only be overcome
by showing to the dualists the methodological flaws of their dogmatism.
Greater expressive power appears possible, there are consistent ways to
develop this greater expressibility, and the greater expressibility promises to
be theoretically useful. As before, we contend that it is good methodology in
such cases to explore the expressively richer perspective. So let us describe a
suitable language in which that can be done.

The language of the community of extreme Cartesian dualists, we recall,
has distinct sorts for mental and physical vocabulary. We translate this
language into a one-sorted language in which all syntactic restrictions based
on the two sorts have been removed. We add two new predicates ‘M’ and
‘P’ for being mental and being physical, respectively. Using these predi-
cates together with the “all-purpose” variables of the one-sorted language,

1⁸ Simons (2016) and Oliver and Smiley (2016, Chapter 15) share our aim of developing a
logic of higher-level pluralities in an untyped language and discusses some axioms that might
be appropriate for this logic. Unlike them, however, we pursue this aim indirectly by first
formulating a typed logic of higher plurals and then translating it into an untyped system.
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we can track the dualists’ sortal distinction and interpret it as a form of
quantificational restriction.When they assert, relative to themental sort, that
everything is F, we interpret them as asserting that every M is F. Likewise,
when they assert, relative to the physical sort, that something is G, we
interpret them as asserting that some P is G. By means of this translation,
we regain full expressibility. For example, we can now state the claims that
the dualists were unable to express:

(11.9) ∀x(Mx ∨ Px)
(11.10) ¬∃x(Mx ∧ Px)

Let us return to the typed language that is our real concern, namely the
language of the plural hierarchy—call it ℒ1. Proceeding as in our warm-up
case, let us bring its many sorts together by translating this language into a
standard one-sorted languageℒ2. We want to capture the sortal distinctions
of ℒ1 in the one-sorted setting of ℒ2. To this end, we let ℒ2 contain a
new two-place predicate ‘L’ for the level of a plurality. Intuitively, ‘L(x, 0)’
means that x is an individual; ‘L(x, 1)’, that x is a plurality; ‘L(x, 2)’, that x is a
superplurality; and so on. (We are assuming the language can quantify over
enough ordinal numbers to index all the levels of the plural hierarchy.)

Let us describe a translation τ from ℒ1 to ℒ2. Every atomic formula
containing no plural vocabulary is translated as itself. An atomic formula
containing plural vocabulary is translated by replacing each plural expres-
sion with a singular counterpart. We avoid clashes of terminology by ensur-
ing that the translation of singular and plural vocabulary does not overlap.
Moreover, we reserve the special symbol ‘η’ for a membership relation that
translates plural membership. Here are some examples:

Fa
τ⟼ Fa

Gxxi
τ⟼ Gxi

R(xxi, yj)
τ⟼ R(xi, yj)

yj ≺ xxi
τ⟼ yj η xi

The translation commutes with the logical connectives:

¬φ τ⟼ ¬τ(φ)
φ ∧ ψ

τ⟼ τ(φ) ∧ τ(ψ)
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Finally, we come to the action of τ on the quantifiers. Singular quantifiers
retain their sort, since this is the only sort available in ℒ2, but we restrict
them by means of the formula ‘L(x, 0)’. Plural quantifiers are translated as
singular quantifiers restricted by means of the formula ‘L(x, 1)’; superplural
quantifiers, by means of ‘L(x, 2)’; and so on. So we have:

∀yj φ
τ⟼ ∀yj(L(yj, 0) → τ(φ))

∀xxi φ
τ⟼ ∀xi(L(xi, 1) → τ(φ))

∀xxxi φ
τ⟼ ∀xi(L(xi, 2) → τ(φ))

In a nutshell, a speaker of ℒ1 is interpreted as a speaker of an untyped
language whose sortal distinction is merely the syntactic expression of a
quantificational restriction.

The kind of translation we are proposing is not entirely unprecedented.
(See also Quine 1956.) Suppose ℒ1 is the language of PFO+, which has
only two types: singular and plural. Then ℒ2 is essentially the kind of one-
sorted version of plural logic that we discussed in Section 5.3.1⁹ Returning
to the general case, we may think ofℒ2 as a generalization of this one-sorted
plural language. The single sort of variables of ℒ2 permits different forms of
reference: singular, plural, superplurals, and so on. That is, we have a single
sort of “all-purpose” variables whose possible assignments include those of
all the different types of variable that are available in ℒ1.

Is this one-sorted languageℒ2, and the translation into it, permissible? Let
us begin by examining whether we run a risk of inconsistency by translating
in this way.We need to examine how theories formulated inℒ1 relate to their
translations. LetT be anℒ1-theory and letT∗ be anℒ2-theory whose axioms
are the translations of the axioms ofT.Then, we have the following key fact.2⁰

Fact 11.1 T is consistent if and only if T∗ is consistent.

Thus, formal consistency is not a concern when we lift the veil of type
distinctions.

We therefore turn to more philosophical issues concerning the language
ℒ2. Should its single sort of terms be taken to refer to sets? If so, the
traditional absolutist might protest that the translation involves a change of

1⁹ The only difference is the unimportant one that ℒ2 has a predicate ‘η’ for membership,
whereas the other language has a predicate ‘≼’ for being among. As we have seen, however,
these two predicates are interdefinable.

2⁰ See Enderton 2001, 300, Theorem 44A.
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subject. The plural variables of ℒ1 are used to refer plurally, not to effect
singular reference to sets; so to be adequate, a translation needs to respect
that fact. But in fact, it is neither obligatory nor particularly natural to take
the single sort of terms of ℒ2 to effect singular reference to sets. Many
theorists take sets to lack spatiotemporal location, and almost all take them
to lack causal powers. But pluralities of every level can have location, time,
and causal powers; for example, some children may be located in the garden,
break a window, and so on.

If not to sets, to what do the variables of ℒ2 refer? As mentioned, our
proposal is that each of these variables is capable of a variety of different
forms of reference: singular, plural, superplural, and so on. The assignment
to each such variable will be made in some metalanguage by means of
another variable with the same capabilities concerning its forms of reference.
This view isn’t objectionable to traditional absolutists in the way it would be
objectionable to interpret the terms of ℒ2 as referring to sets. True, ℒ2 lifts
the veil of the syntactic type distinctions found in ℒ1. But after lifting the
veil, each term retains precisely the form of reference it had before.21

So far, we have acquitted ℒ2 of the charges of risking inconsistency and
of changing the subject by translating terms that refer plurally as terms
that refer to sets. What positive reason might we have to accept ℒ2? Our
answer is that in ℒ2 we can express everything we wanted to, but couldn’t,
express in ℒ1. Here are some examples. First, we can raise the question of
cumulativity: can a plurality of level n + 1 have members only of level n or
also of any level lower than n + 1? For example, does ‘my children, your
children, and Bob’ refer to such a mixed-level plurality? Second, what is
the relation between a singleton plurality and its single member? Should
these be identified or not? For example, do ‘the objects identical to Bob’ and
‘Bob’ co-refer? Third, do extensionality principles hold at every level of the
plural hierarchy? For example, should we accept an indiscernibility principle
(Sections 2.4 and 10.5) governing each level? Based on these considerations,
we contend that traditional absolutists have good reason to accept the
translation of their plural logic, generalized to pluralities of all levels, into
the one-sorted language of higher pluralities, ℒ2.

We now face a crucial question: can the all-purpose variables of the
one-sorted language ℒ2 be “pluralized”? In other words, can we introduce

21 The view that all-purpose variables can effect generalized forms of plural references is
embraced by some theorists who develop higher-level plural logic directly rather than indirectly
by lifting the veil. See footnote 18.



11.7 lifting the veil of type distinctions 261

variables that relate to the all-purpose variables the way ordinary plural vari-
ables relate to ordinary singular variables? Consider the question from the
point of view of our opponent, the traditional absolutist. We are supposing,
recall, that her plural languageℒ1 contains all the forms of pluralization that
are available. Moreover, pluralization is a relationship that holds between
an expression of order α + 1 and expressions of order α (or, in the case of
cumulativity, orders ≤ α). Every form of pluralization corresponds to some
level of the plural hierarchy associatedwithℒ1. Transposed to the one-sorted
setting ofℒ2, this means that every pluralization of its single sort of variable
would have to have values at some level α (or, in the case of cumulativity,
at levels ≤ α). If we are to pluralize the all-purpose variables of the language
ℒ2, it follows that each of the resulting pluralities would be bounded by some
level.22 In particular, there can be no universal plurality with respect to the
single sort of variable of ℒ2—precisely as in the alternative version of plural
logic that we will defend in the next chapter.

In short, we have shown how full expressibility can be restored to the
traditional absolutist’s language while retaining plural reference, superplural
reference, and so on.Moreover, we have argued that the traditional absolutist
should accept this move. Full expressibility is restored by means of a one-
sorted language ℒ2 that lifts the veil of type distinctions. Crucially, we
have found that traditional plural logic is not valid in this new one-sorted
setting. When we attempt to pluralize the all-purpose variables of ℒ2, the
interpretation must be confined to some level, and hence some instance of
plural comprehension fails—this is the case, for example, for any instance
yielding the universal plurality. So, even by her own lights, the traditional
absolutist has a reason to countenance an alternative plural logic where plu-
ral quantification is bounded by some level. The most plausible development
of traditional absolutism thus ends up transforming it into a view that has
much in common with our third alternative of developing a critical version
of plural logic. In the final chapter, we take a more direct approach to this
third alternative.

22 Oliver and Smiley (2016, Chapter 15) reach the same conclusion via somewhat different
reasoning. For us, the boundedness requirement has its root in the typed system and is revealed
when the veil is lifted; for them, it is proposed as a natural response to a version of Russell’s
paradox that would afflict the untyped plural logic if (axioms equivalent to) unrestricted plural
comprehension were accepted.
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Appendix

11.A The AscentTheorem

Recall that traditional plural logic assumes unrestricted plural compre-
hension at every order of the type-theoretic hierarchy. (This gives us, in
particular, a universal plurality.) Then, as we saw above, we have the follow-
ing theorem.

Ascent theorem (arbitrary finite form)
Assume traditional plural logic and the possibility of absolute generality
at every finite order n ≥ 1. Then a generalized semantics for a language
of order n cannot be given in another language of order n but can be
given in a language of order n + 1.

Let us begin by reminding ourselves of the proof of the basic form of the
theorem, which states that a generalized semantics for a first-order language
cannot be given in another first-order language but can be given in a language
with plural quantification, such as ℒPFO+. First, there is the positive part of
the theorem: this was shown in Section 7.3, where we provided a generalized
semantics for PFO, and hence for its first-order fragment, in PFO+.

Then, there is the negative part of the theorem. This result relies heavily
on the following thesis:

Plural Profusion
There are more pluralities than objects.

As we saw in Section 11.2, this thesis follows from Plural Cantor together
with the assumption that there is a universal plurality and two or more
objects. The negative part of the Ascent Theorem now has a straightforward
proof.

Proof. Under the assumption of absolute generality, an ordinary singular
predicate can be interpreted by means of any plurality. But by Plural Profu-
sion, there are more pluralities than objects. It follows that interpretations of
a first-order language cannot be objects but must be represented by means
of higher-order resources. ⊣

We now turn to the proof of the Ascent Theorem in its arbitrary finite
form. This proof is somewhat involved but can be broken down into three
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components. First, we need a way of coding ordered pairs of pluralities of
arbitrary finite level. Second, we extend the plurality-based model theory to
higher level. This is a version of the recursive characterization of truth in a
model familiar from Tarski (1935). Finally, taking a cue from Frege (1879)
and Dedekind (1888), we show how we can convert a recursive definition to
an explicit one by ascending one level in the hierarchy.

Coding of n-tuples of higher-level pluralities

We have shown in Section 7.5 that interpretations and variable assignments
can be taken to consist of pluralities of ordered pairs carrying the appropriate
semantic information. For instance, an interpretation includes a domain,
which is represented by a plurality of pairs of the form ⟨∃, x⟩.

Having defined interpretations and variable assignments, we can talk
about the semantic value of an expression E according to an interpretation ii
or a variable assignment ss, indicated by [[E]]ii,ss. So, for a plural constant tt,
we have:

∀x(x ≺ [[tt]]ii,ss ↔ ⟨tt, x⟩ ≺ ii)

Now we want to generalize these definitions to higher orders. We need
some notation for expressions of each finite order. For convenience, we use
single lowercase variables for terms and upper case variables for predicates.
As usual, the superscript indicates the order of a term. The hierarchy has
a plural interpretation but could also be given a conceptual interpretation.
We count objects as pluralities of level 0. The following examples illustrate
the relation between this notation and the one we have used throughout the
book:

x0 ≺ x1 ↦ x ≺ xx
P (x2) ↦ P (xxx)

We leave the predicates’ arity unmarked. We also suppress the superscript
of the symbol ‘≺’ for membership between any two successive levels of the
hierarchy. So we write ‘x0 ≺ x1’, ‘x1 ≺ x2’, and so on.

It is essential to have a device for handling higher-level analogues of n-
tuples, that is, n-tuples of pluralities of arbitrary (and possibly different)
orders. If this can be done, the characterization of an interpretation for a
higher-order language will be routine. Thankfully, we have the following
theorem:
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Theorem (n-tuples) Assume that for any two objects there is another object
that serves as their ordered pair. Given any pluralities xk11 , . . . , x

kn
n whose

levels are indicated by the superscripts, we can then code for the ordered
n-tuple of these pluralities by means of a single plurality xk, where k is the
maximum level among the ki.

We will designate this plurality xk as ⟨xk11 , . . . , x
kn
n ⟩.

As an initial exercise, consider the case of superplurals. Assume we want
to pair an object a with xxx to form ⟨a, xxx⟩. As we have seen, xxx is usefully
represented in terms of its articulation, for example:

•
x1

•
x2

•
y1

•
y2

•xx • yy

•
xxx

Now, to code the desired ordered pair, all we need to do is add a as a first
coordinate to every object that occurs at the base level while retaining the
superplural articulation:

•
⟨a, x1⟩

•
⟨a, x2⟩

•
⟨a, y1⟩

•
⟨a, y2⟩

•⟨a, xx⟩ • ⟨a, yy⟩

•
⟨a, xxx⟩
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This idea, which we have illustrated visually, can now be developed formally
and with appropriate generality.

Proof idea.23 The key step is to define the ordered pair of x0 and an n-th
level plurality xn. We proceed by induction on n. Assume we have defined
⟨x0, xn⟩. Then we let ⟨x0, xn+1⟩ be the unique plurality yn+1 described by the
following equivalence:

(11.11) ∀un(un ≺ yn+1 ↔ ∃xn(un = ⟨x0, xn⟩ ∧ xn ≺ xn+1))

This key step enables us to attach a “tag” x0 to any higher plurality xn. And
this tagging, in turn, enables us to represent the n-tuple ⟨xk11 , . . ., x

kn
n ⟩, which

can be seen as follows. First, we attach the unique tag i to each xkii . Then, we
wish to form the union of all of the tagged higher pluralities. Assume for the
moment that ki = k for each i. Then the desired union can be defined as the
higher plurality yk whose members are any zk−1 that figures as a member of
one of the tagged higher pluralities xkii .

We claim that this union yk represents the desired n-tuple. To establish
this claim, we must show how each entry can be retrieved from the union.
Suppose we want to retrieve the i-th entry. First, we delete each object at
the base level of the union whose tag is distinct from i, while retaining
the articulation of the remaining base-level objects. Second, we delete all
occurrences of the tag i, again retaining the articulation. This yields xkii .

Let us now lift the simplifying assumption that ki = k for each i and let one
of the ki be less than k. We wish to handle this by raising the level of xkii up
to k. We achieve this raising by considering the singleton plurality of xkii , and
its singleton plurality in turn, and so on until we obtain a higher plurality of
level k. We record the number of singleton operations applied by means of a
supplementary tag. We now proceed as before but use the resulting plurality
instead of xkii . When the time comes for retrieving the i-th entry from the
union of all the k-th level pluralities, we apply the two steps described in
the preceding paragraph and then finish by undoing the j topmost singleton
operations, where j is the number recorded by means of the supplementary
tag. This yields xkii . ⊣

23 See Linnebo and Rayo 2012, Appendix B, for a detailed proof of their closely related
Theorem 1.
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Tarski on satisfaction and model theory

We now want to characterize the notion of truth in an interpretation (satis-
faction) for a language of order n. As done in Chapter 7, we proceed by first
defining the notion of interpretation (as a combination of a domain and an
interpretation function) and the notion of variable assignment (and a variant
thereof).Thenwe obtain the definition of truth in an interpretation from the
more general relation of truth in an interpretation with respect to a variable
assignment, which we characterize recursively. Thus we have generalized the
model theory encountered above (Sections 7.3 and 7.5).

Definition (truth in an interpretation) Assume that we have defined an
interpretation in+1 =⟨dn+1, f n+1⟩ and a variable assignment sn. Then we
define truth in in+1 with respect to sn by means of the following clauses.

1. If φ is a formula of the form P(t1, . . . , tm) where P is an m-place
predicate and the ti are of appropriate order (that is, are of order at
most n), then:

in+1 ⊨φ [sn] if and only if ⟨[[t1]]in+1,sn , . . . , [[tm]]in+1,sn⟩ ≺ [[P]]in+1,sn
2. If φ is a formula of the form t0 = u0, then:

in+1 ⊨ φ [sn] if and only if [[t0]]in+1,sn = [[u0]]in+1,sn
3. If φ is a formula of the form t1 ≺ t2, where t1 and t2 are of the

appropriate order (that is, the order of t1 is strictly below that of t2),
then:

in+1 ⊨ φ [sn] if and only if [[t1]]in+1,sn ≺ [[t2]]in+1,sn
4. If φ is a formula of the form ¬ψ, then:

in+1 ⊨ φ [sn] if and only if it is not the case that in+1 ⊨ ψ [sn]
5. If φ is a formula of the form ψ1 ∧ ψ2, then:

in+1 ⊨ φ [sn] if and only if in+1 ⊨ ψ1 [sn] and in+1 ⊨ ψ2 [sn]
6. If φ is a formula of the form ∃vm ψ, where m ≤ n, then:

in+1 ⊨φ[sn] if and only if there is xm in dm+1 such that in+1 ⊨
ψ[sn(vm/xm)]
where dm+1 is the domain of pluralities of levelm encoded in dn+1 and
sn(vm/xm) is a variant of sn, namely an assignment just like sn, with the
possible exception that sn(vm/xm) assigns xm to vm.
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Frege and Dedekind on recursive definitions

Frege (1879) and Dedekind (1888) discovered that recursive definitions
can be turned into explicit ones by generalization over “collections” of the
entities related by the recursive definition. Consider the case of addition in
arithmetic. Using the prime symbol for the successor operation, Add(x, y, z)
(“z is a sum of x and y”) can be defined recursively as follows:

(i) Add(x, 0, x)
(ii) Add(x, y, z) → Add(x, y + 1, z + 1)

Then Add(x, y, z) can be defined explicitly as follows:

Add(x, y, z) ↔def ∀R(∀uR(u, 0, u) ∧ ∀u, v,w(R(u, v,w)
→ R(u, v′,w′)) → R(x, y, z))

Tarski (1935) realized that his own recursive definition of satisfaction
could be turned into an explicit one in this way. The same obviously goes
for his later definition of truth in a model. (See Appendix B.1 of Linnebo
and Rayo 2012 for details.) This completes our proof sketch for the positive
part of the Ascent Theorem.

As for the negative part, we already described how to prove this in the
basic case, utilizing Plural Profusion.Assumingunrestricted comprehension
for higher pluralities as well, it is easy to establish higher-level analogues of
Plural Profusion, namely that there are more pluralities of level n + 1 than
pluralities of level n. Equipped with this result, the observation we used to
prove the basic case is easily extended to prove the arbitrary finite case.
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