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Plurals and SetTheory

What is the relation between some things and their set? This is a hard ques-
tion which has confounded many brilliant minds. We recall, for example,
that Russell wrestled with the question:

Is a class which hasmany terms to be regarded as itself one ormany? Taking
the class as equivalent simply to the numerical conjunction “A and B and
C and etc.,” it seems plain that it is many; yet it is quite necessary that we
should be able to count classes as one each, and we do habitually speak of a
class. Thus classes would seem to be one in one sense and many in another.

(Russell 1903, Section 74)

We begin with a formal comparison between plural logic and set theory,
which clarifies an important technical aspect of the question. After that, we
address some philosophical issues concerning the relation between some
things and their set. Our discussion yields an argument for primitive plurals,
which we believe has more force than any of the arguments discussed in the
previous chapter. More specifically, we argue that the expressive resources of
plurals are needed to account for sets.

4.1 A simple two-sorted set theory

Assume we start with a singular first-order language whose quantifiers range
over certain objects. Let us refer to these objects as individuals. We are
interested in ways to talk simultaneously about many individuals.

The most familiar option, at least to anyone with some training in math-
ematics, is to use set theory. A set is a single object that has zero or more
elements. Talking about a single set thus provides a way to talk about all
of its elements simultaneously. For example, we can convey information
about two individuals, say Russell and Whitehead, by talking about their
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set {Russell,Whitehead}. The information that they are philosophers can be
conveyed by saying that every element of the set is a philosopher. Similarly,
we can convey information about the natural numbers by talking about
their set. The information that they are infinitely many can be conveyed by
saying that their set is infinite. Suppose, more generally, that we want to talk
about some objects. According to the present strategy, we can achieve this
by talking about an associated set.

It is not obvious, however, that such a set exists. After all, the lesson
of the set-theoretic paradoxes is that not every formula defines a set. The
most famous example is Russell’s paradox of the set of all sets that are not
elements of themselves. Consider the formula that serves as a condition for
membership in this would-be set: x ∉ x. Suppose this formula defines a
set R. Now ask: is R an element of itself? The answer is affirmative if and only
if R satisfies the membership condition. In other words: R ∈ R if and only if
R ∉ R. But this is a contradiction!

Thankfully, the problem posed by the set-theoretic paradoxes can be put
off, at least for a while. The paradoxes do not arise when we consider only
sets of individuals drawn from a fixed first-order domain. And for present
purposes, this is all we need. So let us consider a very simple set theory, which
satisfies our present needs but does not give rise to paradoxes.

We distinguish between individuals and sets of individuals. To do so, it is
convenient to use a two-sorted language. Such languages are easily explained
because they are implicit in various mathematical practices. For example,
in geometry we often use one set of variables to range over points (say,
p1, p2, . . . ) and another set of variables to range over lines (say, l1, l2, . . . ).
We adopt a similar approach in our simple set theory, letting lower-case
variables range over individuals (x, y, . . . ) and upper-case variables (X,Y, . . . )
range over sets of individuals. We refer to these as individual variables and
set variables, respectively. If desired, we can of course add constants of either
sort. There are sortal restrictions on the formation rules. For instance, the
language has a membership predicate ‘∈’ whose first argument can only be
an individual term and whose second argument can only be a set term.Thus,
‘a ∈ X’ means that the individual a is an element of the set X. In addition to
the ordinary identity predicate, which can be flanked by any two individual
terms, our extended language contains a set identity predicate, which can
be flanked only by set terms. For convenience, we use the standard identity
sign for both identity predicates. Given the restrictions just mentioned, it is
impermissible to make identity claims involving both an individual and a set
term (such as ‘a = X’).
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This two-sorted language, which we call ℒSST, will be the language of our
simple set theory, SST. Letℒ+

SST be the extended language obtained by adding
predicates that take set terms as arguments.This is an optional extra to which
we will return.

We now formulate SST based on the axioms and rules of two-sorted
classical logic. First, we adopt the axiom of extensionality for sets:

(S-Ext) ∀x(x ∈ X ↔ x ∈ Y) → X = Y

Then, we adopt an axiom scheme of set comprehension:

(S-Comp) ∃X∀x(x ∈ X ↔ φ(x))

whereX does not occur free inφ(x).The theory SST+ is obtained by adapting
the rules and axioms of SST to the richer language ℒ+

SST.
Notice how Russell’s paradox is blocked by the use of separate sorts for

individuals and their sets. In our two-sorted language, the membership
condition for the offending set, namely x ∉ x is not even well formed.

4.2 Plural logic and the simple set theory compared

Let us compare how plural logic and the simple set theory talk about
the many. Consider a domain of individuals to which both systems are
applicable. (We will later address the important question of what, exactly,
the conditions are under which each system is applicable.) Suppose we wish
to talk about many individuals simultaneously. As we will now show, these
two ways to talk about the many share a common structure.

The two languages share a common stock of variables xi that take as their
values one individual at a time. And each language has an additional stock
of variables that are used to convey information about (loosely speaking)
collections of individuals: plural variables xxi, which take as their values
many individuals simultaneously, or set variables Xi, which take as their
values a single set of individuals. In addition, each language has a predicate
for membership in a collection: xi ≺ xxj for “xi is one of xxj” or xi ∈ Xj for
“xi is an element of Xj”.

This suggests that it should be straightforward to translate back and forth
between the two languages. One can simply replace ≺ with ∈ and xxj with



58 plurals and set theory

Xj, and vice versa. In fact, things are nearly that simple. There are just two
wrinkles to be ironed out:

• ℒSST has an identity predicate that can be flanked by set terms, whereas
ℒPFO has no identity predicate that can be flanked by plural terms.

• SST postulates an empty set, whereas PFO has an axiom stating that
every plurality is non-empty.

Fortunately, both problems are easily overcome. In Appendix 4.A, we show
how to define a translation from each language to the other such that each
sentence and its translation convey the same information, at least as far as the
individuals are concerned, only that one sentence does so by utilizing plural
resources, while the other uses set-theoretic resources.

As we explain in Appendices 4.A and 4.B, the translations satisfy the
following important conditions:

(i) each translation is recursive, that is, there is an effective algorithm
for carrying out the translation;

(ii) each translation commutes with the logical connectives (for exam-
ple, the translation of a negation¬φ is the negation of the translation
of φ);

(iii) every theorem of each of the two theories is translated as a theorem
of the other theory (for example, every theorem of PFO is translated
as a theorem of SST).

More generally, let τ be a translation from the language of one theory T1
to that of another theory T2 such that these three conditions are satisfied.
Then, τ is said to be an interpretation of T1 in T2. Thus, what we show in the
appendices is that each of our two theories PFO and SST can be interpreted
in the other, and likewise with PFO+ and SST+.

It is important to be absolutely clear aboutwhat themutual interpretability
of two theories does and does not establish. Interpretability is a purely formal
notion, which also allows us to recursively turn a model of one theory into
a model of another. Thus, two mutually interpretable theories are equivalent
for the purposes of formal logic. However, there is no guarantee that the
equivalence will extend beyond those purposes.

To see this, suppose the two languages are meaningful. Then, there is no
guarantee that the translation preserves the kinds of extra-logical properties
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that philosophers commonly discuss. For example, the translation need not
preserve features of sentences such as:

• truth value;
• meaning (perhaps understood as the set of possible worlds at which a

sentence is true);
• epistemic status (for example, a priori or a posteriori);
• ontological commitments.

It is often controversial whether a translation preserves these features. The
translations presented in this chapter are no exception. Consider a nom-
inalist who accepts a certain plural sentence but rejects its set-theoretic
translation. This provides a perspective from which the translation does not
preserve truth value and hence meaning.

4.3 Plural logic vs. set theory: classifying the options

What is the significance of the shared structure (or mutual interpretability)
that we just observed? Is thismerely a technical result? Or does the technical
result have some broader philosophical significance?

When the structure of one theory can be recovered within that of another,
this raises the question of whether one of the theories can be eliminated in
favor of the other. In the present context, there are three options. First, one
may eliminate pluralities in favor of sets. Second, one may proceed in the
opposite direction and eliminate sets in favor of pluralities. Finally, one may
refrain from any elimination and retain both pluralities and sets. All three
options have their defenders.

First, some philosophers hold that the plural locutions found in English
and many other natural languages should be eliminated in favor of talk
about sets. We mentioned in Chapter 2 that Quine is an advocate of this
view; see also Resnik 1988. For Quine at least, this is at root a claim about
regimentation into our scientific language. It is indisputable that many
natural languages contain plural locutions. But our best scientific theory of
the world has no need for such locutions. This theory is to be formulated
in a singular language—that is, a language lacking plural resources—whose
quantifiers also range over sets.When regimenting natural language into this
scientific language, the plural locutions of the former should be analyzed by
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means of the set talk of the latter. In short, for scientific purposes, we should
eschew plural resources and instead rely on set-theoretic resources. These
resources also suffice to interpret “the vulgar” (as Quine once put it), that
is, to regiment the plural resources indisputably found in English and other
natural languages.

Second, other philosophers insist that sets should be eliminated in favor
of pluralities. That is, we can and should interpret ordinary set talk without
relying on set-theoretic resources ourselves. A classic paper by Black (1971)
can be read as advocating this view.1 More recently, Oliver and Smiley have
expressed considerable sympathy for the view, claiming to have at least
shifted the burden of proof onto its opponents (2016, 316–17).

Lastly, one may hold that neither system should be eliminated in favor
of the other, because both plural logic and set theory are legitimate and
earn their keep in our best scientific theory. Following Cantor and Gödel,
this is the view that we will defend. Suppose we are right that both systems
should be retained. Then a host of questions arise concerning their relation.
We will be particularly concerned with two such questions.

(a) Every non-empty set obviously corresponds to a plurality, namely
the elements of the set. What about the other direction? Does every
plurality correspond to a set? If not, under what conditions do some
things form a set?2

(b) Suppose that some objects form a set. Can these objects be used to
shed light on, or give an account of, the set that they form?

Before addressing these two questions, let us explain why we reject both the
elimination of pluralities in favor of sets and that of sets in favor of pluralities.

4.4 Against the elimination of pluralities in favor of sets

One reason against the elimination of pluralities in favor of sets is the
paradox of plurality, discussed in Section 3.4. The paradox arises in untyped
approaches to sets, where sets are regarded as objects alongside others. Ordi-
nary set theory is such an approach, unlike our system SST. The argument

1 Rafal Urbaniak (2013) has argued that Leśniewski can be read in the sameway.This reading
is disputed by Oliver and Smiley who take Leśniewski to be “an orthodox singularist” about
plurals (2016, 15).

2 See Hewitt 2015 for a useful overview of this issue.
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begins, we recall, by observing that the following sentence seems trivially
true:

(4.1) There are some objects such that any object is one of them if and only
if that object is not an element of itself.

Suppose that plural resources are to be eliminated in favor of set-theoretic
ones. Then it is natural to regiment (4.1) as follows:

(4.2) There is a set of which any object is an element if and only if that
object is not an element of itself.

In symbols:

(4.3) ∃x(set(x) ∧ ∀y(y ∈ x ↔ y ∉ y))

This, of course, is an instance of the familiar Russell sentence, which is
inconsistent.

While this is a powerful argument, we saw that several responses are
possible. Quine might try to dismiss the plural talk about sets in (4.1) as just
confused talk about sets in two different guises and as having no place in the
ideal language of science. This is a logically coherent view for him to take.
However, this blunt dismissal of “the vulgar” is ultimately hard to sustain.We
find it difficult to deny that English speakers do understand plural talk about
sets. A charitable interpretation of “the vulgar” should not deny this fact.

A more promising option is to deny the possibility of absolutely general
quantification. If absolute generality is unattainable, then the door is open
to claiming that (4.2) is true but that the witness to the existence claim
lies beyond the range of the embedded universal quantifier (‘∀y’ in the
formalization), with the result that paradox is averted.3

Yet another option is to deny that (4.1) is true. Of course, (4.1) is just
an instance of plural comprehension. But perhaps plural comprehension
isn’t always permissible! Any plurality must presumably be properly cir-
cumscribed. So when we are reasoning about a domain that cannot be
circumscribed—such as the domain of absolutely everything—not every
condition can be used to define a plurality.

3 See discussion in Section 3.4.



62 plurals and set theory

We won’t attempt to resolve the matter here. The last two responses to
the paradox of plurality raise big questions that we discuss in the final
two chapters. Instead, we wish to lay out another—and, we believe, more
compelling—reasonwhy pluralities should not be eliminated in favor of sets.
The reason is simply that pluralities are needed to give an account of sets.⁴
So if pluralities were eliminated in favor of sets, we could not use plural
reasoning to give such an account. In sum, to retain an attractive account
of sets in terms of pluralities, we cannot eliminate plurals.

What is the promised account of sets in terms of pluralities? It is useful
to recall how Cantor, the father of modern set theory, sought to explain the
concept of set.

By a ‘manifold’ or ‘set’ I understand in general every many which can
be thought of as one, i.e. every totality of determinate elements which
can be bound together into a whole through a law [ . . . ].

(Cantor 1883, 43; our translation)⁵

That is, a set is a “many thought of as one”. Of course, it is far from clear how
this is to be understood. (An explication will be proposed shortly.) But there
can be no doubt that Cantor sought to understand a set in terms of the many
objects that are its elements and that are somehow “thought of as one”.

By a ‘set’ we understand every collection into a whole M of determinate,
well-distinguished objectsm of our intuition or our thought (which will be
called the ‘elements’ of M). We write this as: M = {m}.

(Cantor 1895, 481; our translation)⁶

It is tempting to read Cantor’s variable ‘m’ as a plural variable (see also
Oliver and Smiley 2016, 4–5). So, in line with our notation, let us replace

⁴ One might attempt to deny the need for such an account by adopting a more structuralist
conception of set, where a set is characterized in terms of its structural relations to all other
sets rather than in terms of some particularly intimate relation to its elements. See Parsons
2008, Chapter 4, for useful discussion. However, we insist that there is also a more ontological
conception of set, especially in the case of hereditarily finite sets, which regards a set as
“constituted” by its elements. In fact, such a conception is suggested by a liberal view of
definitions, to be described shortly.

⁵ The original reads: ‘Unter einer Mannichfaltigkeit oder Menge verstehe ich nämlich allge-
mein jedes Viele, welches sich als Eines denken lässt, d.h. jeden Inbegriff bestimmter Elemente,
welcher durch ein Gesetz zu einem Ganzen verbunden werden kann [ . . . ].’

⁶ The original reads: ‘Unter einer Menge verstehen wir jede Zusammenfassung M von bes-
timmten wohlunterschiedenen Objektenm unsrer Anschauung oder unseres Denkens (welche
die Elemente von M genannt werden) zu einem Ganzen. In Zeichen drücken wir dies so aus:
M = {m}.’
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this variable with ‘mm’. A set M is then said to be a collection into one of
some well-distinguished objects mm, namely the elements of M. And we
write M = {mm}.

What about the empty set? Here there is a threat of a mismatch. While
standard set theory accepts an empty set, traditional plural logic does not
accept an empty plurality. But we are confident that this threat can be
addressed. One option is to break with traditional plural logic and accept
an empty plurality, perhaps on the grounds that, although this isn’t how
plurals work in English andmany other natural languages, there are coherent
languages where plurals do behave in this way (see Burgess and Rosen 1997,
154–5). Another option is to break with standard set theory and abandon the
empty set. However, we would prefer not to deviate from successful scientific
practice, in this case set theory, unless there are compelling reasons to do so.
Finally, an elegant option proposed (in a different context) by Oliver and
Smiley (2016, 88) is to allow “co-partial functions”, that is, functions that
can have a value even where the argument is undefined. Suppose the ‘set
of ’ operation xx ↦ {xx} is such a function. Then, applied to an undefined
argument, this function can have the empty set as its value.

What is it for many objects to be “thought of as one” or collected “into a
whole”? Let us attempt to shed some light on this idea. Many philosophers
and mathematicians believe that the elements of a set are somehow “prior
to” the set itself and that the set is somehow “constituted” by its elements.⁷
Assume xx form a set {xx}.Then the objects xx can be used to give an account
of {xx}. That is, properties and relations involving the set are explained in
terms of properties and relations involving the plurality of its elements. Why
is a an element of {xx}? An answer immediately suggests itself: because a is
one of xx. Why is {xx} identical with {yy}? Again, the answer seems obvious:
because xx are the very same objects as yy.⁸

Of course, in their current form, these remarks are highly programmatic.
The promised account needs to be spelled out. We do this in Section 12.3
by defending a liberal view of definitions. Here is the rough idea behind
the view: it suffices for a mathematical object to exist that an adequate
definition of it can be provided. The adequacy in question is understood
as follows. Suppose we begin with a “properly circumscribed” domain of

⁷ See, e.g., Parsons 1977a and Fine 1991.
⁸ This account contrasts with some earlier contributions to themetaphysics of sets, e.g. Lewis

1991 and Oliver and Smiley 2016 (Chapter 14). We believe our account coheres better with the
remarks by Cantor (discussed above) and by Gödel (discussed in Section 4.6).
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objects standing in certain relations.⁹ We would like to define one or more
additional objects. Suppose our definition determines the truth of any atomic
statement concerned with the desired “new” objects by means of some
statement concerned solely with the “old” objects with which we began.
Then, according to the liberal view, the definition is permissible.

To illustrate the point, let us apply the view to the case of sets. Suppose
we begin with some properly circumscribed domain of objects. For every
plurality of objects xx from this domain, we postulate their set {xx}, with the
understanding that atomic statements concerned with any new sets should
be assessed in the following way.

(i) {xx} = {yy} if and only if xx ≈ yy.
(ii) a ∈ {xx} if and only if a ≺ xx.

Notice how this account determines the truth of any atomic statement
concerned with the “new” sets solely in terms of the “old” objects with which
we began, as required by the liberal view.1⁰

We also observe that this account distinguishes a set from its singleton, as
is customary in comtemporary set theory. By (i), we have {xx} = {{xx}} just
in case xx is coextensive with {xx}. We contend that this coextensionality
claim is false. Suppose xx are two or more in number. Then cardinality
considerations alone ensure its falsity. Alternatively, suppose xx consist of
a single object a. Then the coextensionality claim is equivalent to a = {a},
which is false because a is an element of its own singleton but not, we may
suppose, of itself.

To sum up, we argue that pluralities should be retained alongside sets, so
that the former can be used to shed light on the latter. This account of sets
draws essentially on our liberal view of definitions.

4.5 Against the elimination of sets in favor of pluralities

The view discussed in the preceding section retains sets but gives an account
of them in terms of pluralities. One may wonder whether a more radical
approach is possible. Why not simply eliminate sets in favor of pluralities?

⁹ In Part IV of the book, the notion of being properly circumscribed will play an important
role and will be analyzed under the label of extensional definiteness.
1⁰ Mereological sums provide another example of this liberal view of definitions; see

Section 5.8.
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Black’s (1971) classic discussion suggests a view of this sort.11 He observes
that ordinary language often talks about sets: expressions such as ‘my set
of chessmen’ or ‘that set of books’ feel fairly natural to English speakers. By
reflecting on ordinary uses of the word ‘set’, he argues, we can come to see the
intimate connection between talk about a set and about its elements. More
specifically, we can come to realize that basic uses of the word ‘set’ are simply
substitutes for plural expressions such as plural descriptions or lists of terms.
In his example, the sentence ‘a certain set of men is running for office’ is what
he calls an “indefinite surrogate” for the statement that, say, Tom, Dick, and
Harry are running for office (Black 1971, 631).

Black recognizes that there is a gap between ordinary uses of the word
‘set’ and its uses in mathematics. For instance, ordinary speakers untrained
in abstract mathematics often havemisgivings about the empty set. If sets are
collections of things, how can there be a collection of nothing whatsoever?
Despite such misgivings, Black contends that we can rely on our ordinary
understanding of plurals to make sense of “idealized” uses of the word ‘set’
as it occurs in mathematics.

There is an obvious difficulty for Black’s contention. Talk of sets of sets
is ubiquitous in mathematics and, as we will see shortly, such “nested” sets
are essential to the now-dominant iterative conception of set. How can we
account for these uses of the word ‘set’? If talk about sets is shorthand for
talk about pluralities, then sets of sets would seem to correspond to higher-
level pluralities, that is, “pluralities of pluralities”.12

It is controversial whether such higher-level pluralities make sense, but a
putative example is given in following sentence.

(4.4) My children, your children, and her children competed against each
other.

The subject of this sentence appears to be a “nested” plural, that is, a plural
expression formed by combining three other plural expressions. Arguably,
this nesting of the subject is semantically significant. The claim is not merely
that all the children in question compete against each other but that they do
so in teams, each team comprising the children of each parent. We return to
the question of whether there are higher-level pluralities in Chapter 9.

11 We should note that this is not the only way to read Black. It is not entirely clear whether
he proposes an eliminative reduction or favors some form of non-eliminative reductionism.
An eliminative proposal is developed by Hossack (2000), who appeals to plurals and plural
properties to eliminate sets.

12 For proposals along these lines, see Simons 2016 andOliver and Smiley 2016, Section 15.1.
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While the availability of higher-level pluralities is a necessary condition
for the envisaged elimination of sets, it is not sufficient. As observed, the
language of mathematics talks extensively about sets and appears to treat
these as objects. If possible, it would be good to take this language at face
value. The account of sets in terms of pluralities outlined in the previous
section allows us to do just that. This provides a reason to retain sets even if
higher-level pluralities are available. The reason is even stronger for those
who accept other mathematical objects such as numbers. If numbers are
accepted, why not also accept sets?

4.6 The iterative conception of set

Suppose we retain both pluralities and sets, giving up on any attempt to
eliminate one in favor of the other. How, then, to account for nested sets?
This means going beyond the simple set theory discussed in Section 4.1 to
form a stronger set theory, where the threat of paradox re-emerges. The
standard response to this threat is the so-called iterative conception of set.
One of the first clear expressions of this conception is given in a famous
passage by Gödel.13

Theconcept of set, however, according to which a set is anything obtainable
from the integers (or some other well-defined objects) by iterated appli-
cation of the operation “set of ”, and not something obtained by dividing
the totality of all existing things into two categories, has never led to any
antinomy whatsoever; that is, the perfectly “naive” and uncritical working
with this concept of set has so far proved completely self-consistent.

(Gödel 1964, 180)

The passage calls for some explanation. First, Gödel distinguishes the
iterative conception of set from a problematic conception based on the idea
of “dividing the totality of all existing things into two categories.” Consider
a condition that any object may or may not satisfy. One might then attempt
to use this condition to divide the totality of all objects into two sets: the
set of objects that satisfy the condition and the set of those that don’t.
But this approach to sets is problematic: as we have seen, it gives rise to
Russell’s paradox.

13 The passage contains some footnotes, which we elide.



4.6 the iterative conception of set 67

By contrast, the iterative conception starts with the integers or “some other
well-defined objects”. We are then told to consider iterated applications of
the operation “set of ”. An example will help. Suppose we start, at what we
may call stage 0, with two objects, say a and b. The “set of ” operation can
be applied to any plurality of objects available at stage 0 to form their set.
Thus, at stage 1, which results from the application of this operation to the
objects available at stage 0, we have the following sets:∅, {a}, {b}, and {a, b}.
So, at stage 1, we have six objects, namely a and b together with four sets
that were not available at stage 0. Now we can apply the “set of ” operation
again, this time to the objects available at stage 1. This yields sets such as
{∅, a}, {{a}, {b}}, and many others. Note that, by this procedure, the objects
available at any given stage form a set at the next stage.

There is a more systematic way to describe what takes us from one stage
α to the next stage α+ 1. For any set S, let its powerset,℘(S), be the set of all
subsets of S, that is:

℘(S) = {x ∶ x ⊆ S}

Suppose the objects available at stage α are the elements of Vα. Then at stage
α + 1 we form all the subsets of Vα. So, at stage α + 1, we have the elements
of Vα as well as those of℘(Vα). In symbols: Vα+1 = Vα ∪℘(Vα). Again, we
have by this procedure that all the sets available at stage α, taken together,
form a set at stage α + 1.

In fact, we want to consider really long iterations of the “set of ” operation.
The first step is to define Vω as the result of continuing in this way as many
times as there are natural numbers. We do this by letting Vω be the union
of all of the collections Vn generated at a finite stage: Vω = ⋃n<ω Vn. More
generally, for any limit ordinal λ, we let Vλ be the union of all the collections
of sets we have generated: Vλ = ⋃γ<λ Vγ.

The cumulative hierarchy of sets, V, is the union of all of the Vα. As Gödel
observes (in a footnote to the passage quoted above),V isn’t a set.There is no
stage at which all sets are available to form a universal set. For any stage, there
is a later stage containing even more sets. As a result, we ban the universal
set and any other set that would lead to paradox.

Of course, this raises the question of the status of the cumulative hierarchy
itself, including the question of whether “it” even exists as an object. We will
encounter one appealing response to this question in Section 4.8: perhaps we
can invoke plurals and simply regard the cumulative hierarchy as all the sets
that are formed in the construction described above.
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4.7 Zermelo-Fraenkel set theory

The iterative conception motivates much of today’s standard set theory,
Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC), which is
adequate for nearly all of ordinary mathematics. This is a theory of pure sets,
formulated in a one-sorted language with only one non-logical predicate, ‘∈’
for membership. All other set-theoretic notions are defined in terms of this
single predicate. The axioms are as follows.

Extensionality: Coextensive sets are identical. That is:

∀u(u ∈ x ↔ u ∈ y) → x = y

Empty set: There is an empty set. That is:

∃x∀y y ∉ x

Pairing: Every two objects have a pair set. That is:

∀x∀y∃z∀u(u ∈ z ↔ u = x ∨ u = y)

Union: For every set x, there is a set y whose elements are precisely those
objects that are an element of some element of x. That is:

∀x∃y∀u[u ∈ y ↔ ∃z(u ∈ z ∧ z ∈ x)]

Powerset: Every set has a powerset. That is:

∀x∃y∀u(u ∈ y ↔ u ⊆ x)

Infinity:There is an infinite set, that is, a set with∅ as an element and such
that, whenever y is an element, so too is y ∪ {y}. That is:

∃x[∅ ∈ x ∧ ∀y(y ∈ x → y ∪ {y} ∈ x)]

Separation: For any set x and any condition φ, there is a set of precisely
those elements of x that satisfy φ. That is:

∀x∃y∀u(u ∈ y ↔ u ∈ x ∧ φ)1⁴

1⁴ This is an axiom scheme, which yields an axiom for each φ.The same goes for Replacement,
stated below.
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Foundation: Every non-empty set x has an element that is disjoint from x.
That is:

∀x(x ≠ ∅ → ∃y(y ∈ x ∧ x ∩ y = ∅))

Replacement: For every set x and functional condition ψ, there is a set of
precisely those objects that are borne ψ by some element of x.1⁵ That is:

Func(ψ) → ∀x∃y∀u[u ∈ y ↔ ∃z(z ∈ x ∧ ψ(z, u))]

This axiom is based on a simple and intuitive idea. Consider any set. For
each of its elements, choose either to keep this element or to replace it
with some other object. Then the resulting collection is also a set.

Choice: Every set x of non-empty disjoint sets has a choice set, that is, a set
containing precisely one element of each element of x. An example due
to Russell might be useful to understand the Axiom of Choice. Suppose
you have infinitely many pairs of shoes. Then it is easy to define a set
containing precisely onemember of each pair, namely the set of left shoes.
What if you have infinitely many pairs of socks where the two members
of each pair are indistinguishable? Then we are unable to define a set
containing precisely one member of each pair. The Axiom of Choice tells
us that such a set exists, irrespective of our ability to define it.

As observed, ZFC is a theory of pure sets. It is easy, however, to modify the
theory tomake room for urelements, that is, objects that aren’t sets. To do so,
we first add to the language a predicate S for being a set. Using this predicate,
we then formalize the axioms so as to match precisely their informal
statements provided above. For example, the axiom of Extensionality is
rewritten as:

∀x∀y[S(x) ∧ S(y) → (∀u(u ∈ x ↔ u ∈ y) → x = y)]

The modified system is often known as ZFCU.
The iterative conception motivates many of the axioms of ZFC or ZFCU.

The Powerset axiom provides a nice example. Suppose x is available at some
stage s. Then the elements of x were available before s. Hence each subset of
x is also available at s. Thus, the set of all these subsets is available at the stage
immediately after s.We need not here take a stand on precisely which axioms

1⁵ The condition ψ is functional just in case, for every x there is a unique y such that ψ(x, y).
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of set theory aremotivated by the iterative conception. Gödel appears to have
taken the answer to be “all of them”; others disagree.1⁶

4.8 Proper classes as pluralities

Let us use the word ‘collection’ in an informal way for anything that has a
membership structure, such as a set, class, plurality, or indeed even a Fregean
concept (where the relation between instance and concept is regarded as a
membership structure). We often wish to talk about collections that are too
large to form sets, such as the entire cumulative hierarchy of sets or all the
ordinals. We will now explain the apparent need for such collections, why
these are sometimes regarded as problematic, and finally a brilliant proposal
due to Boolos, namely that plural logic provides a way tomake sense of these
collections.

Let us begin with the need for a novel type of collection, in addition to
sets. There are several reasons for this need. Boolos mentions two. First,
collections are needed to make sense of the cumulative hierarchy V, which
is the domain of set theory. For example, we would like to say that V is the
subject matter of set theory and that V is well founded.

Second, collections are needed to understand and justify two axiom
schemes that are part of ZFC, namely Replacement and Separation.1⁷ Both
of these take the form of an infinite family of axioms. Consider Separation.
ZFC contains an axiom

(Sep) ∀z∃y∀x(x ∈ y ↔ x ∈ z ∧ φ)

for each of the infinitelymany formulas φ of its language. Behind this infinite
lot of axioms lies a single, unified idea that can be expressed by reference to
collections.1⁸ For every collectionC and every set x, there is a set y of all those
elements of x that belong to C. Suppose we can quantify over collections.
Then the infinitely many Separation axioms could be unified as the single
axiom:

(C-Sep) ∀C∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ z belongs to C)

1⁶ On this topic, see e.g. Boolos 1971 and Paseau 2006.
1⁷ Analogous considerations apply to the arithmetical principle of induction.
1⁸ See also Kreisel 1967.
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In the literature, the desired collections are often known as classes, some of
which can be shown to be “too big” to be sets. These are called proper classes.
But what would these proper classes be? Just like sets, they are collections of
many objects into one. But why, then, are proper classes not sets? As Boolos
(1984b, 442) nicely observes, “[s]et theory is supposed to be a theory about
all set-like objects”.

Adding proper classes to a theory of sets is just like adding yet another
layer of sets on top of the sets already recognized. In light of this, why
shouldn’t the proper classes count as just more sets? William Reinhardt puts
the point well:

[O]ur idea of set comes from the cumulative hierarchy, so if you are going
to add a layer at the top it looks like you forgot to finish the hierarchy.1⁹

Plural logic seems to provide precisely what we need. A proper class does
not have to be a single object that somehow collects together many things
into one. Instead of referring in a singular way to a proper class, construed
as an object, why not simply refer plurally to its many members? In this way,
we eliminate singular talk about proper classes in favor of plural talk about
their members. For example, the cumulative hierarchy does not have to be
an object. It suffices to talk plurally about all the sets.

Consider now the axiom scheme of Separation. This can be turned into a
single axiom using a plural formulation. Given any objects pp and any set x,
there is a set y of precisely those elements of x that are also among pp:

(P-Sep) ∀pp∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ z ≺ pp)

Let us make two final observations. To represent all of the classes that
we might be interested in, we would need an unrestricted form of plural
comprehension, namely:

(P-Comp) ∃xφ(x) → ∃xx∀x(x ≺ xx ↔ φ(x))

Moreover, we need plural logic to be ontologically innocent. If plural vari-
ables commit us to new objects, using plurals in the formulation of Separa-
tion or Replacement is not essentially different from using proper classes.

1⁹ Reinhardt 1974, 32. For a useful elaboration of the point, see Maddy 1983, 122.
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4.9 Are two applications of plural logic compatible?

We have described two very attractive applications of plural logic: as a
way of giving an account of sets, and as a way of obtaining proper classes
“for free”. Regrettably, it looks like the two applications are incompatible.
The first application suggests that any plurality forms a set. Consider any
objects xx. Presumably, these are what Gödel calls “well-defined objects”.
If so, it is permissible to apply the “set of ” operation to xx, which yields
the corresponding set {xx}. The second application, however, requires that
there be pluralities corresponding to proper classes, which by definition are
collections too big to form sets. For example, there must be a plurality of
all sets whatsoever to serve as the proper class V. But, when the “set of ”
operation is applied to this plurality, we obtain a universal set, which is
unacceptable.

Is there any way to retain both of the attractive applications of plural
logic? To do so, we would have to restrict the domain of application of
the “set of ” operation so that the operation is undefined on the very large
pluralities that correspond to proper classes, while it remains defined on
smaller pluralities. The obvious concern is that this restriction would be
ad hoc. The operation does apply to vast infinite pluralities, thus forming
large sets in the cumulative hierarchy. But once we allow that these infinite
pluralities form sets, why are other infinite pluralities suddenly too large to
do so?

To respond to this challenge, we might seek inspiration from Gödel, who
points to a restriction when he requires that the “set of ” operation be applied
to “well-defined objects”. How should this restriction be understood? One
option is to understand Gödel as requiring that the objects in question be
properly circumscribed. Perhaps a collection corresponding to a proper class
fails to satisfy this requirement. We explore this idea in Chapter 12 and find
that there are indeed “collections” that fail to be properly circumscribed.
However, we also argue that every plurality is (in the appropriate sense)
properly circumscribed and can thus figure as an argument of the “set of ”
operation. Thus, if our argument succeeds, the two applications of plurals
remain incompatible, and we must choose between them. We recommend
retaining the first application of using plurals to give an account of sets, while
looking elsewhere for an interpretation of talk about proper classes that aren’t
properly circumscribed and therefore cannot figure as arguments of the “set
of ” operation. A natural option is to look to second-order logic. We discuss
this in Section 12.8.
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Appendices

4.A Defining the translations

We wish to define a translation τ from the language of our simple set theory
SST to that of plural logic.The central idea is obvious: let us replace talk about
a set with talk about the objects that are elements of the set. Thus, instead of
saying that xi is an element of the set Xj, we say that xi is one of xxj. So we
adopt:

τ(xi ∈ Xj) = xi ≺ xxj

Identity statements involving set terms are translated as the corresponding
plural coextensionality statements. For example, ‘Xi = Xj’ is translated as:

∀x0(x0 ≺ xxi ↔ x0 ≺ xxj)

Atomic predications concerning individuals are left unchanged by the trans-
lation. Next, the translation commutes with the logical connectives. For
example, the translation of a negated formula is the negation of the trans-
lation of the formula:

τ(¬φ) = ¬τ(φ)

Finally, we need to translate existentially quantified formulas. (For simplic-
ity, we may treat universal quantifiers as abbreviations in the usual way.)
The individual existential quantifier poses no problem: here too we let the
translation commute with the logical operator.

The set existential quantifier is slightly harder. Suppose we let the transla-
tion commute, setting ‘τ(∃Xj φ)’ to be ‘∃xxj τ(φ)’. This does not quite work.
For wewant to have an empty set but no empty plurality. Boolos (1984b, 444)
proposes a trick to iron out this wrinkle. Let τ translate ‘∃Xjφ’ as

(4.5) ∃xxjτ(φ) ∨ τ(φ′)

where φ′ is the result of substituting ‘xi ≠ xi’ everywhere for ‘xi ∈ Xj’. The
second disjunct simulates an expansion of the range of quantification, thus
accommodating the possibility that a set is empty. (To see how this works,
suppose Xj is empty. Then ‘xi ∈ Xj’ always has the same truth value as
‘xi ≠ xi’, namely false.) By induction on formal derivations, one can easily
prove that each theorem of SST is mapped to some theorem of PFO.
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It is easy to define a “reverse” translation that maps formulas of the
language of plural logic to formulas of our two-sorted set-theoretic language.
As expected, one can prove that this translationmaps theorems of the former
to theorems of the latter. So we can translate in both directions between PFO
and SST while preserving theoremhood. Analogous results can be obtained
for PFO+ and SST+.

4.B Defining the interpretation

Thetwo translationswe have just encountered illustrate an important general
notion, which will provide a useful conceptual tool in subsequent discus-
sions. So let us make explicit the relevant properties of the translations.

Suppose we are comparing two theories, T1 and T2, which are formulated
in two multi-sorted languages ℒ1 and ℒ2, respectively. (Note that all the
formal languages we consider in this book can be viewed as languages of this
kind.) And suppose we have specified a translation τ fromℒ1 toℒ2 such that

(i) τ is recursive, that is, there is an effective algorithm that specifies how
to translate any given formula of ℒ1;

(ii) τ commuteswith the logical connectives (for instance, τ(¬ϕ) =¬τ(ϕ));
(iii) τ maps every theorem of T1 to a theorem of T2.

We wish tomake some remarks about the translation of quantified formulas.
First, the translation should permit a change in the type of variables. In
particular, we sometimes want to map plural variables to set variables and
vice versa. Second, a quantified formula is usually translated as a restricted
quantification:

∃v ϕ τ⟼∃u(θ(u) ∧ τ(ϕ))
But this requirement is unnecessary. In fact, to accommodate Boolos’s trick,
which simulates an expansion of the range of a quantifier, we must refrain
from requiring that every quantified formula be translated in this way.

A translation that satisfies these three properties is said to provide an inter-
pretation of T1 in T2.When there are such translations in both directions—as
in the examplesmentioned in the previous section—the two theories are said
to be mutually interpretable.
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As just defined, the notion of interpretability is entirely proof-theoretic: it
is concerned with syntax, not semantics. However, by the soundness of the
proof systems we use for our logic, the notion has a semantic upshot as well.
Suppose τ is an interpretation of T1 in T2. Then any model of T2 allows us
to define, in a recursive manner, a model of T1. The basic idea is simply to
interpret each predicate of ℒ1 in accordance with its τ-translation into ℒ2
and to let the domain(s) of ℒ1 be interpreted in accordance with how its
quantifiers are translated into ℒ2.
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