
6
Plurals and Second-Order Logic

We have encountered three ways to talk about the many, using primitive
plurals, set theory, or mereology. Let us now examine a fourth and final
way, namely using second-order logic. We begin with a brief introduction
to second-order logic. We will then examine whether this system can be
eliminated in favor of plural logic or vice versa.

6.1 Second-order logic

Consider the statement that Socrates thinks, which we formalize as:

(6.1) T(s)

Classical first-order logic allows us to generalize into the noun position
occupied by ‘Socrates’ to conclude that there is an object x that thinks:

(6.2) ∃x T(x)

By allowing additional forms of generalization, we can obtain more expres-
sive logics. Second-order logic (SOL) studies another form of generalization:
it allows us to generalize into the predicate position occupied by T in (6.2)
to conclude:

(6.3) ∃F F(s)

Following Frege,we describe the values ofmonadic second-order variables as
concepts. So we gloss (6.3) as follows: there is a concept, F, such that Socrates
falls under F.1

1 Different glosses are found in literature, e.g. that a concept “applies to” an individual, that
an individual is “in the extension of ” a concept, or that an individual “instantiates” a concept.
We will make use of these glosses when stylistically convenient.
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Variables taking predicate position—called second-order variables—
belong to special sorts and are written as upper-case letters. There is one
sort for each type of predicate. First, we have a sort for variables taking the
position of monadic predicates. Variables of this sort are marked by the
superscript ‘1’ (X1,Y1, . . . ). Then, we have another sort for variables taking
the position of binary predicates. Variables of this sort are marked by the
superscript ‘2’ (X2,Y2, . . . ). And so on. When no confusion arises, we omit
the superscripts.

Second-order logic is thus amulti-sorted system,with a sort for individual
variables and multiple sorts for second-order variables. As mentioned in
Section 2.6,monadic second-order logic (MSOL) is the subsystemof second-
order logic that adds to first-order logic only monadic variables. We can
expand MSOL with predicates taking monadic variables as argument. We
refer to the resulting system as MSOL+.

The key observation in this context is that a monadic second-order term
allows us to talk about many things simultaneously. For a concept can be
used to represent all the things that fall under it. For example, the concept F
represents precisely the φs if and only if ∀x(Fx ↔ φ(x)).

Monadic second-order logic must nevertheless be carefully distinguished
from plural logic. While the former allows us to generalize into predicate
position, the latter allows us to generalize plurally into noun position. Plural
logic thus allows us to infer from (6.1) that there are one or more objects xx
that think:

(6.4) ∃xx∀y (y ≺ xx → T(y))

As is apparent, plural andmonadic second-order logic permit different kinds
of generalization.

This difference distinguishes MSOL from the three other approaches
to representing many objects simultaneously that we considered above.
While all four approaches enable us to talk about “collections” of some
given objects, MSOL is unique among these approaches in representing
the “collections” by means of the semantic values of predicates. So, on the
second-order approach, there will be interactions between ordinary first-
order predication and the representation of “collections” that are not found
in any of the other approaches.

Let us describe the second-order logic that we will adopt. The rules asso-
ciated with the singular vocabulary—logical connectives and quantifiers—
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are the usual ones, for example introduction and elimination rules for each
logical expression. Second-order quantifiers (that is, the quantifiers binding
second-order variables) have introduction and elimination rules analogous
to those of the singular quantifiers. In addition, there is the second-order
comprehension scheme:

(SO-Comp) ∃F∀x(Fx ↔ φ(x))

where F does not occur free in φ, as well as the polyadic analogues of this
scheme.2

Is there a natural language counterpart of second-order quantification?
In other words, does quantification into predicate position occur in natural
language? Some authors have defended an affirmative answer. For example,
Higginbotham (1998, 3) points to the following sentence.3

(6.5) John is everything we wanted him to be.

A natural regimentation of (6.5) involves bound variables in predicate posi-
tions. If this analysis is correct, MSOL is not only an available language but
it is actually in use.⁴

Even if there isn’t always a good natural language counterpart, we need not
give up on second-order languages. For the lack of correspondence might be
due to an expressive limitation of natural language. Still, if we are to use a
second-order language in theorizing, we need to learn it. Is it possible for us
to do that? Williamson suggests that we use “the direct method”:

We may have to learn second-order languages by the direct method, not
by translating them into a language with which we are already familiar.
After all, that may well be how we come to understand other symbols in
contemporary logic, such as⊃ and3: we can approximate them by ‘if ’ and
‘possibly’, but for familiar reasons they may fall short of perfect synonymy
[ . . . ]. At some point we learn to understand the symbols directly; why not

2 For ease of readability, we will often omit parentheses around argument positions that
immediately follow second-order variables.

3 See also Rayo and Yablo 2001.
⁴ A fan of plurals might attempt a further generalization as well, namely to pluralize not

only first-order variables but also higher-order ones. For example, one might try to regiment
“You are several things that I am not”, using a plural version of second-order logic, as
∃FF ∀G(G ≺ FF → G(you) ∧ ¬G(I)). See Fine 1977 for a system with a very general form
of pluralization.
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use the same method for ∀F? We must learn to use second-order languages
as our home language. (Williamson 2003, 459)

If successful, this method establishes the legitimacy of second-order
resources.

6.2 Plural logic and second-order logic compared

What is the relation between second-order and plural logic? Let us compare
the languages of MSOL+ and PFO+. We can suppose that the singular
first-order fragments of these languages coincide. Each language adds to
this shared base a new stock of variables, as well as new predicates whose
argument places admit such variables. Although the new variables of each
language function in very different ways, there is (as we will now explain) a
natural correspondence between their values.

The new variables of MSOL+ are supposed to range over monadic con-
cepts, which (as Frege pointed out) we may think of as functions from
individuals to truth values.⁵ For example, one of these variables can replace
the predicative expression ‘ . . . is a boy’ and have as its value the function β
defined as follows:

β(x) = {the true, if x is a boy;
the false, if not.

By contrast, each of the new variables of PFO+ is allowed to have one ormore
individuals as its values. For example, one of these variables can replace the
plural noun phrase ‘the boys’ and have as its many values all and only the
boys in the domain, say bb.

We can now explain the promised natural correspondence between the
values of the new kinds of variable. The correspondence is nicely illustrated
by the function β and the plurality bb. Suppose we start with β. Then bb can
be defined as all and only the objects that βmaps to the true. Suppose instead
we start with the plurality bb.Then β can be defined as the function thatmaps
these objects, and only these, to the true. As mathematicians like to put it, β
is the characteristic function of bb. This allows us to define either β or bb in
terms of the other.

⁵ Although our target is a syntactic translation between MSOL+ and PFO+, it is convenient
to refer to semantic concepts such as values and ranges of variables. This is done for ease of
exposition. We turn to semantic matters in Chapter 7.
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Although this single example captures the essence of the comparison we
want tomake betweenMSOL+ andPFO+, it is useful to state things in proper
generality. This requires some notation for talking about the various types of
expression. As customary, let e be the type of ordinary singular terms and
t be the type of truth values. Moreover, for any two types θ1 and θ2, we let
⟨θ1, θ2⟩ be the type of functions from entities of type θ1 to entities of type
θ2. Thus, ⟨e, t⟩ is the type of one-place predicates, which (as we have seen)
stand for functions from individuals to truth values. But we make a single
important addition to this customary setup: we add another basic type, ee,
as the type of plural terms.

Using this notation, we can rehearse the above explanation—only now
stated in proper generality.WhileMSOL+ adds variables of type ⟨e, t⟩, PFO+
adds variables of type ee. But there is a natural correspondence between the
two types ee and ⟨e, t⟩. Given any objects aa, there is an associated function
α that sends an object x to the true just in case x ≺ aa. We may think of α as
the semantic value of the predicative expression ‘ . . . is one of aa’. Conversely,
given any function α of type ⟨e, t⟩, there is—at least according to traditional
plural logic—a plurality aa of all and only those objects that α sends to the
true. Finally, each of MSOL+ and PFO+ adds predicates applying to any
number of arguments of type e and of the one additional type available in
that language, namely ⟨e, t⟩ or ee.

With these explanations on board, it is easy to describe translations
between the two languages. The basic idea is simply to map each variable
xxi to Xi and vice versa, and to map a predicate with an argument place of
type ee to a predicate with a corresponding argument place of type ⟨e, t⟩ and
vice versa. For example, ‘cooperate(xx)’ is mapped to ‘cooperate(X)’.

There is only one small bump in the road. While a monadic concept may
apply to no individuals at all, a plurality is ordinarily taken to consist of
at least one individual. This bump is easily handled by incorporating into
the translations a trick due to Boolos, which we described in Appendix 4.A.
The trick is nicely illustrated by considering the behavior of the resulting
translations on existentially quantified statements. Let σ be the translation
from the plural to the second-order language. Then a plural existential
generalization is translated as the corresponding conceptual existential gen-
eralization restricted to non-empty concepts, that is:

∃xx φ σ⟼∃X(∃yXy ∧ σ(φ))

Let τ be the translation in the opposite direction. Then a conceptual existen-
tial generalization is translated as a disjunction:
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∃Xφ
τ⟼ ∃xx τ(φ) ∨ τ(φ′)

where φ′, defined as the result of substituting ‘xi ≠ xi’ everywhere for ‘Xjxi’,
is a way of simulating existential generalizations involving empty concepts.

Equipped with these translations, let us now consider the axioms of the
two theories. It can be shown that the comprehension axioms of the two
theories match via the translations. A second-order comprehension axiom

∃X∀x(Xx ↔ φ(x))

translates as a formula equivalent to the corresponding plural comprehen-
sion axiom:

∃xφ(x) → ∃xx∀x(x ≺ xx ↔ φ(x))

And clearly, a plural comprehension axiom translates as a formula equivalent
to a second-order comprehension axiom.

It remains only to consider some additional axioms of plural logic. The
axiom stating that every plurality is non-empty translates as the trivial
claim that every non-empty concept is non-empty. More interestingly, a
plural indiscernibility axiom is translated as a corresponding indiscernibility
principle in the second-order language:

∀x(Xx ↔ Yx) → (φ(X) ↔ φ(Y))

Indiscernibility principles of this kind are implausible on a conceptual inter-
pretation of the second-order language, and for that reason are not part of
MSOL+, as defined above. Two coextensive concepts might be discerned by
modal properties. Assume, for example, that being a creature with a heart and
being a creature with a kidney are coextensive. Even so, these two concepts
can be discerned by a modal property such as possibly being instantiated
by something that lacks a heart. We return shortly to the philosophical
significance of this observation.

6.3 The elimination of pluralities in favor of concepts

The formal results just presented open up the possibility of two eliminative
strategies. We might try to eliminate pluralities in favor of concepts, or we
might try to effect the opposite elimination.Michael Dummett advocates the
former option:
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[A] plural noun-phrase, even when preceded by the definite article, cannot
be functioning analogously to a singular term. [ . . . ] [I]t is only as referring
to a concept that a plural phrase can be understood [ . . . ]. To say that it
refers to a concept is to say that, under a correct analysis, the phrase is seen
to figure predicatively. (Dummett 1991, 93)

As an illustration of his eliminative strategy, he proposes to analyze (6.6) as
(6.7) and (6.8) as (6.9).⁶

(6.6) All whales are mammals.

(6.7) If anything is a whale, it is a mammal.

(6.8) The Kaiser’s carriage is drawn by four horses.

(6.9) There are four objects each of which is a horse that draws the Kaiser’s
carriage.

Here, plurals nouns (‘whales’, ‘mammals’, ‘horses’) are replaced by cor-
responding singular predicates (‘is a whale’, ‘is a mammal’, ‘is a horse’);
moreover, the plural ‘four objects’ is eliminated in the usual way in favor
of first-order quantifiers and identity statements.

To see how Dummett’s proposal could be generalized, it is useful to start
from a basic example of collective predication:

(6.10) Russell and Whitehead wrote Principia Mathematica.

How should this use of plurals be eliminated?One option is to useDummett’s
analysis of (6.8) as a model and to regiment (6.10) as (6.11):

(6.11) Russell is a co-writer of PrincipiaMathematica,Whitehead is as well,
and no one else is.

However, the formal translation given in Section 6.2 suggests a more sys-
tematic approach. First, we regiment (6.10) in PFO+. Then, we apply the
formal translation to eliminate pluralities in favor of concepts. The steps are
as follows.

⁶ For discussion, see for example Rumfitt 2005 and Oliver and Smiley 2016, Chapter 4.
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(6.10) Russell and Whitehead wrote Principia Mathematica.

(6.12) ∃xx(∀y(y ≺ xx ↔ (y = r ∨ y = w)) ∧ wrote(xx, p))

(6.13) ∃X(∀y(Xy ↔ (y = r ∨ y = w)) ∧ wrote(X, p))

We refer to this eliminative approach as the predicative analysis.
This analysis has received much criticism.⁷ Before going into details, a

general observation is in order. A precondition for eliminating plurals in
favor of second-order resources is that plural logic can be interpreted in
second-order logic.⁸ The objections we will now consider purport to show
that the former theory cannot even be interpreted in the latter.

One objection concerns flexible predicates, which can combine felicitously
with both singular and plural terms. We observed in Section 2.3 that ‘own
a house’ and ‘lifted a boat’ appear to be flexible. However, the translation
defined in Section 6.2 implicitly assumes that there are no flexible predicates.
Thus, if such predicates are added to the language, the interpretability result
from that section is no longer available.⁹

Oliver and Smiley (2016, 59) discuss the problem, calling attention to the
following sentence:

(6.14) Wittgenstein wrote the Tractatus, not Russell and Whitehead.

The predicate ‘wrote’ appears to be flexible, and a natural formalization of
this sentence in plural logic would employ a single predicate applying to both
Wittgenstein and the duo Russell and Whitehead:

(6.15) wrote(w1, t) ∧ ∃xx(∀y(y≺ xx ↔ (y= r ∨ y=w2)) ∧ ¬wrote(xx, t))

Applying the predicative analysis to (6.15) yields:

(6.16) wrote(w1, t) ∧ ∃X(∀y(Xy ↔ (y = r ∨ y = w2)) ∧ ¬wrote(X, t))

⁷ See especially Yi 1999, Yi 2005, and Oliver and Smiley 2016, Chapter 4.
⁸ At least, all theoretically useful parts of our plural logic must be so interpretable. If some

aspects of this theory were found to be of no scientific use, they might perhaps be abandoned
and therefore ignored for the purposes of the elimination.

⁹ The need for flexible predicates disappears if one adopts a one-sorted plural logic. In this
system, individuals become singleton pluralities. By raising the type of individuals to that of
pluralities, one restores uniformity among the argument places of predicates.
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However, this sentence is not even well-formed in MSOL+. According to
the standard formulation of second-order logic, predicates are strictly typed:
each of their argument places can be occupied by expressions belonging to a
unique sort. So the first argument of ‘wrote’ cannot be an individual variable
in one conjunct and a second-order variable in the other.

In response, the proponent of the predicative analysis could relax the
requirement that predicates be strictly typed and allow certain predicates
to apply to objects and concepts alike. In the context of higher-order logic,
this flexibility is known as cumulativity. It is not assumed in standard
presentations of second-order logic but there is no formal obstacle to adopt-
ing it. A cumulative version of higher-order logic is perfectly consistent.
Indeed, Gödel once referred to strict typing as a “superfluous restriction” of
higher-order logic (Gödel 1933, 46). In sum, if we allow flexible predicates
in plural logic, we can allow flexible predicates in second-order logic too. If
second-order logic is modified in this way, we can at least simulate predicates
of the former kind using predicates of the latter kind.

In linguistics, a variant of the predicative analysis has been proposed by
Higginbotham and Schein (1989). It centers around an event-based account
of predication and resembles closely the combination of events and mere-
ology discussed in Section 5.6. There we mentioned two ways of analyzing
plural predications in terms of events. According to the first, a mereological
sum can serve as the agent of the event described by the predicate. According
to the second, a mereological sum can serve to represent the atoms that
function as co-agents of the event, that is, participate in the event as agents.
It is easy to see that the role played by mereological sums in each account
could be played by concepts. A concept can serve as the agent of an event or,
perhaps more plausibly, it can serve to represent the individuals (namely its
instances) that function as co-agents of the event.

Higginbotham and Schein (1989) develop the second approach and ana-
lyze (6.17) as (6.18):

(6.17) Some apostles lifted the piano.

(6.18) ∃X(∃yXy ∧ ∀y(Xy → apostle(y)) ∧ ∃e(lift-the-piano(e) ∧
∀y(Xy ↔ y is a co-agent of e)))

This approach avoids the objection from flexible predicates. To see why, let
us return to the example that illustrated the need for such predicates:
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(6.14) Wittgenstein wrote the Tractatus, not Russell and Whitehead.

On Higginbotham and Schein’s analysis, the predicate ‘wrote’ applies to
events, not to objects or concepts. This means that the predicate’s arguments
are uniform. Applying their analysis to (6.14) yields someting along the
following lines:

(6.19) ∃e(writing-the-Tractatus(e) ∧ w1 is an agent of e) ∧
¬∃e∃X(writing-the-Tractatus(e) ∧ ∀y(Xy ↔ (y = r ∨ y = w2)) ∧

∀y(Xy ↔ y is a co-agent of e))

So the objection from flexible predicates does not get off the ground.
A second objection to the predicative analysis concerns extensionality.

The thought is that, because pluralities and concepts differ with respect to
extensionality, the former cannot be eliminated in favor of the latter. A clear
manifestation of this problem has already emerged. At the end of Section
6.2, we remarked that the main difficulty for interpreting PFO+ in MSOL+
has to do with the indiscernibility principle, which states that coextensive
pluralities satisfy the same formulas. The principle strikes most logicians
and philosophers as highly plausible and is included in our axiomatization
of plural logic. Its second-order translation states that coextensive concepts
satisfy the same formulas:

∀x(Xx ↔ Yx) → (φ(X) ↔ φ(Y))

However, this second-order indiscernibility principle is not plausible (see the
example on p. 109), let alone a good candidate for a logical truth. Still, the
principle is required if our translation is to yield an interpretation of PFO+
in MSOL+.

Let us illustrate this objection with an example discussed by Yi (1999,
2005). Consider the following inference, which is intuitively valid:

(6.20)

Russell and Whitehead cooperate.
Russell and Whitehead are philosophers who wrote Principia
Mathematica.

Some philosophers who wrote Principia Mathematica
cooperate.
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The inference can be formalized in PFO+ as:

(6.21)

∃xx(∀y(y ≺ xx ↔ (y = r ∨ y = w)) ∧ cooperate(xx))
∃xx(∀y(y ≺ xx ↔ (y = r ∨ y = w)) ∧

∀y(y ≺ xx → philosopher(y)) ∧ wrote(xx, p))

∃xx(∀y(y ≺ xx → philosopher(y)) ∧ wrote(xx, p) ∧ cooperate(xx))

We obtain a formalization of the inference in MSOL+ by applying to (6.21)
the translation procedure described in Section 6.2. The result is as follows:

(6.22)

∃X(∀y(Xy ↔ (y = r ∨ y = w)) ∧ cooperate(X))
∃X(∀y(Xy ↔ (y = r ∨ y = w)) ∧

∀y(Xy → philosopher(y)) ∧ wrote(X, p))

∃X(∀y(Xy → philosopher(y)) ∧ wrote(X, p) ∧ cooperate(X))

As is easy to verify, the conclusion of each formal argument can be derived
from its premises with the help of instances of the appropriate indiscernibil-
ity principle. Without them, the validity of the initial inference would be left
unexplained.

Since (6.20) is logically valid and does not appear to be enthymematic,
the indiscernibility principles must be assumed to be logical. In particular,
it must be assumed that as a matter of logic a predicate like ‘cooperate’ is
extensional in the sense that it does not distinguish between coextensive
concepts. Yi concludes:

it is one thing to hold the extensional conception, quite another to hold,
more implausibly, that the truth of the conception rests on logic alone.
[ . . . ] One cannot meet the objections [ . . . ] under the assumption that the
property indicated by “COOPERATE” is one that Russell calls extensional
(that is, a second-order property instantiated by any first-order property
coextensive with one that instantiates it). This does not help unless the
assumption holds by logic [ . . . ]. (Yi 2005, 475; see also Yi 1999, 173)

Is this objection fatal to the eliminative project under consideration? We
think not. Let a first-level concept be a concept of objects, and a second-level
concept be a concept of first-level concepts.1⁰Then the key observation is that

1⁰ Thus, a first-level concept can be the value of a second-order variable, and more generally,
a concept of level n can be the value of a variable of order n+ 1.
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the following fact is provable in a basic extension of MSOL+: every second-
level concept has a counterpart that doesn’t discern between coextensive
first-level concepts.That is, for every second-level conceptP, there is another
second-level concept P∗ applying to all and only the first-level concepts
coextensive with those to which P applies:

P∗(X) ↔ ∃Y(P(Y) ∧ ∀x(Xx ↔ Yx))

Let us call P∗ the undiscerning counterpart of P. The proponent of the
eliminative strategy can use these undiscerning counterparts to capture the
extensional behavior of plural predicates.11 This move does not require that
the second-order indiscernibility principle be logical and is indeed consis-
tent with some failures of the principle. In sum, we can admit undiscerning
second-level concepts alongside “discerning” ones. We just need to ensure
that all plural predicates are translated by means of undiscerning second-
level concepts. This shows that plural logic can be simulated using concepts.

In fact, there is another reason to think that the objection from extension-
ality is not fatal. We have seen that the problem posed by flexible predicates
can be avoided if we combine plurals and events along the lines indicated
by Higginbotham and Schein. Remarkably, their framework also manages
to avoid the objection from extensionality. Consider again the potentially
problematic inference (6.20):

(6.20)

Russell and Whitehead cooperate.
Russell and Whitehead are philosophers who wrote Principia
Mathematica.

Some philosophers who wrote Principia Mathematica
cooperate.

Its validity can easily be explained in Higginbotham and Schein’s frame-
work. Roughly put, the premises are understood as stating that Russell
and Whitehead are co-agents of events of three kinds: cooperating, being
a philosopher, and writing Principia Mathematica. It follows from second-
order comprehension that there is a conceptXwhose instances are co-agents
of events of those three kinds. But, on Higginbotham and Schein’s analysis,
this is precisely what the conclusion states.

11 See Florio 2014a, 12.
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A third and final objection is a modal analogue of the objection from
extensionality. Membership in a plurality is typically taken to be modally
rigid. That is, if a is one of bb, then necessarily so, at least on the assumption
that the objects in question exist; and likewise with non-membership. (See
Chapter 10 for a defense of this view.) By contrast, falling under a concept is
almost universally taken to be modally non-rigid. Although Socrates in fact
falls under the concept philosopher, he might not have done so. Thus, when
modalities are added, we obtain an extension of PFO+ that may no longer
be interpreted in the corresponding extension of MSOL+.

Onemight try to counter this objection by imitating the response given to
the extensionality problem. We saw that it is possible to model the behavior
of plural predicates using undiscerning second-level concepts, even though
many such concepts are discerning. Something similar might work here. It
might be possible to model the rigid behavior of pluralities using rigid con-
cepts, even though many such concepts are non-rigid. The crucial question,
though, is what assurance we have that the requisite rigid concepts exist.
In the presence of plural logic, a compelling argument for their existence
is available. For every plurality aa, we can use second-order comprehension
to define a corresponding concept:

∃F2∀x(Fx ↔ x ≺ aa)

The rigidity of the plurality ensures the rigidity of the concept defined in
terms of it. In the absence of plural logic, however, it is unclear that the
existence of rigid concepts can be motivated without invoking highly con-
troversial forms ofmodalized second-order comprehension (seeWilliamson
2013, Chapter 6). We conclude that the most compelling reason against the
elimination of pluralities in favor of concepts has to do with their modal
behavior. The modal rigidity of pluralities isn’t easily secured in second-
order logic without relying on plurals.

6.4 The elimination of concepts in favor of pluralities

Let us now consider the attempt to eliminate in the opposite direction, that
is, to eliminate concepts in favor of pluralities. As we will see, this project is
more challenging and therefore more likely to fail.12

12 See Williamson 2003, Section IX, with whom we are in broad agreement.
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Some difficulties have to do with the fact that there are some natural
ways to generalize MSOL+ that have no obvious analogues in the case of
plurals. One example is third-order quantification, that is, quantification
over second-level concepts. This raises the question of whether there is any
plural analogue of quantification of third and higher orders. A monadic
second-level concept would correspond to a plurality of pluralities. We are
thus led to the question of superplurals, which has surfaced in our discussion
from time to time. We defer a proper discussion of the matter to Chapter 9.

Another example concerns polyadic concepts.There are not onlymonadic
concepts but also polyadic ones. If it is permissible to quantify over monadic
concepts, it should be equally permissible to quantify over polyadic ones.
By contrast, there is no obvious polyadic analogue of plural quantification.13
So it is unclear whether polyadic second-order logic can be interpreted in
some form of plural logic.

One might respond that the desired polyadic analogues can be defined
provided that ordered pairs are available. Suppose that for all individuals a
and b, there is an ordered pair ⟨a, b⟩ such that:

⟨a, b⟩ = ⟨a′, b′⟩ ↔ a = a′ ∧ b = b′

Using ordered pairs, it is easy to define a plural analogue of any relation. For
example, a plurality of ordered pairs can be used to represent the extension
of a dyadic relation, provided that the relation is non-empty. This plural
analogue of a relation might perhaps be criticized for being too indirect and
unnatural. Just as a monadic concept of ordered pairs can represent a dyadic
relation but isn’t really one, a plurality of ordered pairs too can represent a
dyadic relation but isn’t really one.

Although we find talk about what relations “really are” somewhat neb-
ulous, a clear objection can be extracted from the fog. Consider again the
mismatch between the modal profile of pluralities and that of concepts. We
observed in the previous section that it is possible to model the behavior of
pluralities using rigid concepts, even though concepts are in general non-
rigid. But the reverse direction is problematic. With only modally rigid
material at our disposal we are unable to model any non-rigid phenomenon.
For example, while a plurality of ordered pairs can model the extension of a
dyadic relation, it cannot in general represent all of its intensional features.

13 See Hewitt 2012a for an attempt to develop a non-obvious analogue.
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Yet another reason against the elimination of concepts in favor of plural-
ities emerges in the final chapter, where we argue that the comprehension
scheme found in traditional plural logic must be restricted. In particular, we
deny that there is a plurality of absolutely every object, which renders our
system unable to represent the universal concept.

6.5 Conclusion

We have compared plural and second-order logic. As part of this under-
taking, we have investigated to what extent one of these systems can be
interpreted in the other.

We found that second-order logic in its entirety cannot be interpreted
in plural logic. It is unclear how to handle polyadic concepts or concepts
of higher levels, and, most seriously, there is no way to handle the inten-
sionality of second-order logic, using only modally rigid pluralities. Since
interpretability is a precondition for elimination, we conclude that second-
order logic cannot be eliminated in favor of plural logic.

What about the other direction? We found that plural logic can be inter-
preted in terms of second-order logic, at least in the absence of modality.
This raises the question of whether plural logic should be eliminated in favor
of a subsystem of second-order logic. We regard the proposed elimination as
problematic, for several reasons.The identification is prima facie implausible
because of the deep and pervasive differences in how plurals and predication
are represented in English and other natural languages. Being a member of
a plurality and falling under a concept are, it seems, simply different things.

Our detailed analysis identifies a further, more robust, reason against the
proposed elimination. As already stressed, a precondition for this elimina-
tion is the interpretability of plural logic in second-order logic. We have
isolated various assumptions that are needed for this interpretability result to
obtain. First, we found that plural predicates are extensional, while predicates
of concepts are not.We showed how to circumvent this problem by invoking
undiscerning second-level concepts. Second, we observed that plural mem-
bership and predication have different modal profiles. While the former is
a matter of necessity (at least conditional on the continued existence of all
the objects in question), the latter is not. This difference was neutralized, in
our interpretability result, only by the assumptions that plural terms stand
for rigid concepts. But the most natural and compelling argument for the
existence of such concepts seems to rely on plurals.
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The conclusion of this chapter echoes those of the preceding ones. There
are several ways to represent many objects simultaneously, at least in
ordinary circumstances where our domain is a set. In addition to taking
plurals at face value, we may use sets, mereological sums in the individual
sense, ormonadic concepts. Although these systems share a common formal
structure, at least in ordinary circumstances, the notions that they represent
are different and must be kept apart.

What if ordinary circumstances do not obtain? In Chapter 12, we provide
an account of domains that do not forma set and argue that, in such domains,
another deep difference between plurals and predicates emerges: while the
former are subject to a form of limitation of size, the latter are not. If correct,
this account provides yet another reason not to attempt to eliminate second-
order logic in favor of plural logic.

Let us briefly summarize all of Part II. We have examined four different
ways to talk about many objects simultaneously. By identifying various
philosophical and formal differences, we have argued that none of these
ways should be eliminated in favor of any other. Thus, the detailed, pairwise
comparisons of Part II yield an argument for primitive plurals that Chapter 3
failed to produce.
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