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The Semantics of Plurals

Plural logic has emerged as an appealing framework for the regimentation
of natural language plurals and for the development of various philosophical
projects. As we will now see, however, the choice of a regimenting language
leaves wide open the semantic question of how such a language should be
interpreted. Since plural logic is characterized by a precise axiomatic theory,
one may wonder why we should be interested in its semantics.

The semantic question is important, for at least two reasons. First, a
semantics is needed for a complete account of plural logic. It is by means
of a semantics that we define a relation of logical consequence, which can be
used to identify valid as well as invalid arguments. The axioms of plural logic
help us reason correctly but, by themselves, do not tell us which arguments
are invalid. This limitation can be overcome by studying not only which
meanings the expressions of the language have but also which meanings
such expressions might have. The part of semantics concerned with possible
meanings ismodel theory. Inmodel theory, logical consequence is defined as
truth preservation under every interpretation (model) of the language,where
an interpretation is simply an assignment of possible meanings. Starting
from the notion of interpretation, we thus obtain a fully general way of
characterizing whether or not a conclusion is a logical consequence of
some premises. Second, the alleged features of plural logic that underlie the
philosophical applications discussed in Section 2.6—ontological innocence,
expressive power, and absolute generality—are really semantic features and
hence can only be assessed in light of a worked-out semantics.

In this chapter, we are primarily concerned with traditional plural logic.
In particular, the various semantic accounts we consider validate the unre-
stricted axiom scheme of plural comprehension. These accounts have to be
adjusted if, as we suggest in Chapter 12, an alternative logic is adopted.
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7.1 Regimentation vs. semantics

The regimentation of plurals was discussed in Chapter 3, where we focused
on the following two views.

Regimentation Singularism
A singular language suffices to regiment a fragment of natural language
containing plurals, where a language is said to be “singular” if it has no
plural resources, unlike, say, ℒPFO+.
Regimentation Pluralism
Plural terms, variables, and predicates are required to regiment the
relevant fragment of natural language.

We asked whether singularism can provide a satisfactory regimentation
of plurals and found that, though often benign, this approach has some
shortcomings as a general strategy. Especially if we assume that absolute
generality is possible and that traditional plural logic is valid, there are good
reasons to favor regimentation pluralism. In light of this, we examined the
relation between plural logic and other systems.

While regimentation is relevant to semantics, it does not determine how
semantic interpretations should be specified, at least not in any obvious way.
So it is important to distinguish two questions that are often conflated:

(Q1) How should a given fragment of natural language be regimented?
(Q2) Once a regimenting language has been chosen, how should we

specify the semantic interpretations of that language?

While the first question is entirely about the object language, the second is
also about the metalanguage.

The importance of the distinction between regimentation and semantics
becomes clear whenwe look at other cases of semantic analysis. Consider, for
example, modalities. The first question concerns the proper regimentation
of modal notions. Should they be regimented as predicates of sentences?
Or should they rather be regimented as operators? As is well known,
considerations related to paradox strongly recommend the second approach.
Once a particular regimentation has been chosen, a second question arises
as to how semantic interpretations for the regimented language should be
specified. The most popular option, embodied in standard possible world
semantics, is simply to characterize models as set-theoretic constructions.
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Modalities are therefore absent from the semantics. An alternative approach
would take modal notions as primitive in the metalanguage and use them
to define the interpretations of the regimented language. But, as the set-
theoretic approach shows, the metalanguage need not embrace the notions
being analyzed. This means that the semantics cannot be directly read off
the regimented language. The transition from regimentation to semantics is
a delicate one.

The case of plurals is no different: here too we have options. In perfect
analogy with the case of modalities, we could provide a set-theoretic speci-
fication of the interpretations of the language, or we could take plural talk as
primitive in the metalanguage and use it to formulate the semantics. For our
purposes, it is useful to characterize two broad methodological approaches
to the semantic question.

Semantic Singularism
Once the regimenting language has been chosen, semantic interpreta-
tions can be specified within a theory formulated in a singular metalan-
guage.
Semantic Pluralism
Once the regimenting language has been chosen, semantic interpreta-
tions must be specified within a theory formulated in a plural metalan-
guage.

The second approach was Boolos’s great innovation and marks a clean break
with broadlyQuinean approaches, whichmight acknowledge the availability
of plural resources but would not permit their use in rigorous theorizing.

Combining the two semantic approaches with the approaches to regimen-
tation discussed earlier, we end up with four alternatives, shown in the table
below together with some of their supporters.

regimantation singularism regimentation pluralism

semantic singularism Quine (some linguists)
semantic pluralism — McKay, Oliver & Smiley,

Simons, Rayo, Yi

The bottom left-hand quadrant is empty because regimentation singularism
makes semantic singularism almost inevitable. If plurals are just singular
expressions in disguise, why should we appeal to plurals in the semantics?
But as emphasized above, regimentation pluralism does not make semantic
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pluralism inevitable. If plurals are not just singular expressions in disguise,
however, why avoid plurals in the semantics? Possible reasons have to do
not onlywith simplicity and ideological economy, but alsowith expressibility
problems that arise when one embraces type-theoretic hierarchies, as we will
see in Chapter 11.

7.2 Set-based model theory

Model theory provides the standard setting for the characterization of logical
properties. Given an object languageℒ, one first defines the notions of inter-
pretation (ormodel) ofℒ and truth in an interpretation (or satisfaction).Then
one uses these notions to characterize the key relation of logical consequence
for sentences of ℒ. A sentence ψ is said to be a logical consequence of a set
of sentences Σ just in case ψ is true in every interpretation in which every
member φ of Σ is true. When this holds, we write:

Σ ⊨ ψ
Other logical properties (such as logical truth and consistency) can easily be
defined in terms of consequence.

The possible interpretations of ℒ are obtained by varying two features:
the domain of quantification and the interpretation of the non-logical
terminology of ℒ (that is, its constants and predicates). Thus, an
interpretation is fixed by specifying these two features. The second feature is
specified by means of an interpretation function (or interpretation, for short).

The ordinary implementation of model theory is based on sets. Working
within set theory, an interpretation of ℒ is taken to be a pair ⟨d, f ⟩, where d
is a set representing the domain and f is an interpretation function from the
non-logical terminology of ℒ to set-theoretic constructions generated by d.
When ℒ is the language of first-order logic, the situation is familiar. For
example, f assigns an element of the domain to singular constant of ℒ, and
it assigns a subset of the domain to each monadic predicate.1

The next step is to define what it is for a sentence to be true in an
interpretation. Again, the situation is familiar when ℒ is the language of
first-order logic. We obtain the definition of truth in an interpretation
from the more general relation of truth in an interpretation relative to a

1 Our semantics treats all terms as denoting, as is usually done. The semantics could, if
desired, be generalized to allow non-denoting terms. For discussion of non-denoting terms in
the context of plurals, see Oliver and Smiley 2016, Chapter 5.
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variable assignment. Let i= ⟨d, f ⟩ be an interpretation, and let s be a variable
assignment relative to d, namely a function assigning an element of d to each
variable of ℒ. We use the notation JEKi,s as follows:

JEKi,s = { f (E), if E is a constant or a predicate;
s(E), if E is a variable.

(We may omit one or both subscripts when the intended notation is clear
from context.) So JEKi,s stands for the semantic value of E (that is, its
“denotation”) according to i or s.

To define when a formula φ is true in i relative to s, written i ⊨ φ [s], we
proceed by induction on the complexity of φ via satisfaction clauses. If φ is
an atomic formula, say St, then:

(Sat-A) i ⊨ St [s] if and only if JtKi,s ∈ JSKi,s
Since we treat the identity predicate as logical, it is always interpreted
homophonically (namely by means of the analogous predicate in the meta-
language). That is:

(Sat-=) i ⊨ t1 = t2 [s] if and only if Jt1Ki,s = Jt2Ki,s
If φ is a negation (¬ψ) or a conjunction (ψ1 ∧ ψ2), then we have the obvious
clauses:

i ⊨ ¬ψ [s] if and only if it is not the case that i ⊨ ψ [s](Sat-¬)
i ⊨ ψ1 ∧ ψ2 [s] if and only if i ⊨ ψ1 [s] and i ⊨ ψ2 [s](Sat-∧)

If φ is an existential generalization (∃v ψ), then

(Sat-∃) i ⊨ ∃v ψ [s] if and only if i ⊨ ψ [s(v/x)] for some x ∈ d

where s(v/x) is an assignment just like s, with the possible exception that
s(v/x) assigns x to v.

We are now ready to define our target notion, namely truth in an interpre-
tation. The definitions just given ensure that if φ is a sentence (that is, it has
no free variable), we can ignore variable assignments. More precisely, φ is
true in i relative to a variable assignment if and only if φ is true in i relative to
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any other variable assignment. Thus, we can define φ to be true in i, written
i ⊨ φ, if φ is true in i for some (equivalently, every) variable assignment.

So far, we have only recapitulated the standard, set-based definition of
truth in an interpretation for the language of first-order logic. But there is
a straightforward extension of this definition to the richer language ℒPFO+.
An interpretation of this language is a pair ⟨d, f ⟩, just as before, only that
f now also assigns set-theoretic semantic values to plural constants and
predicates. For example, f assigns a non-empty subset of d to every plural
constant, and it assigns a (possibly empty) set of non-empty subsets of d to
every monadic plural predicate. Likewise, a variable assignment s relative
to d is extended by assigning a non-empty subset of d to each plural
variable.

The extended definition of truth in an interpretation relative to an assign-
ment is achieved by adding the following satisfaction clauses to the previous
ones. If φ is an atomic plural predication, say Ptt, then

(Sat-PA) i ⊨ Ptt [s] if and only if JttKi,s ∈ JPKi,s
For the special case of plural membership, we have:

(Sat-≺) i ⊨ t ≺ tt [s] if and only if JtKi,s ∈ JttKi,s
This means that the interpretation of plural membership does not vary: it
always corresponds to set-theoretic membership. Finally, if φ is a plural
existential (∃vv ψ), then

i ⊨ ∃vv ψ [s] if and only if i ⊨ ψ [s(vv/x)] for some non-empty(Sat-P∃)
x ⊆ d

where s(vv/x) is an assignment just like s, with the possible exception that
s(vv/x) assigns x to vv.

It is worth highlighting an important implication of the last clause: plural
quantifiers are taken to range over the full powerset of the first-order domain
d, minus the empty set.2 This semantic treatment of plural quantifiers cor-
responds to a standard interpretation of second-order logic, that is, an

2 Since the range of plural quantifiers is always determined by the first-order domain, there
is no need to specify it separately.
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interpretation in which the second-order quantifiers range over all subsets
of the first-order domain. In the next chapter, we develop an analogue
of Henkin semantics, which permits plural quantifiers to have a narrower
range.

To explain the standard semantics with whichwe are currently concerned,
it might help to consider a particular interpretation of ℒPFO. This example
will also be useful later in our discussion. To keep things simple, let us assume
that ℒPFO contains only the following items:

A. singular terms: two constants t and r, plus the usual variables
(v, v1, v2, . . . );

B. plural terms: two constants tt and rr, plus the usual variables
(vv, vv1, vv2, . . . );

C. singular predicates: a monadic predicate S;
D. parentheses and the usual logical symbols (¬, ∧, ∃, ≺, etc.).

The interpretation we want to consider is i = ⟨d, f ⟩, with d = {a, b, c} and f
defined by the following identities:

f (t) = a f (r) = b
f (tt) = {a, b} f (rr) = {b, c}
f (S) = {a, b}

Then, for example, the next two sentences are true in i:

(7.1) r ≺ tt

(7.2) ∃v(v ≺ rr ∧ ¬Sv)

That is easy to verify using the clauses given above. For (7.1), we reason like
this:

i ⊨ r ≺ tt if and only if
i ⊨ r ≺ tt [s], for some s if and only ifJrKi,s ∈ JttKi,s, for some s if and only if
f(r) ∈ f(tt) if and only if
b ∈ {a, b}
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For (7.2), an analogous series of steps yields:

i ⊨ ∃v(v ≺ rr ∧ ¬Sv) if and only if
x ∈ {b, c} and x ∉ {a, b}, for some x ∈ d

Similarly, we could verify that these two sentences are false in i:

(7.3) t ≺ rr

(7.4) ¬∃v(v ≺ rr ∧ Sv)

It might also help to consider a particular interpretation of ℒPFO+.
This example too will be useful later in our discussion. For simplicity, we
assume thatℒPFO+ augmentsℒPFO with just one (monadic) plural predicate
P. Our interpretation of PFO+ is an extension of i = ⟨d, f ⟩, the interpretation
of ℒPFO presented just above. We only need to specify a semantic value for
P. Let f+ be an extension of f such that f+(P) = {{a, b}}. Then i+ = ⟨d, f+⟩ is
an interpretation of ℒPFO+. It follows by construction that any sentence of
ℒPFO that is true in i remains true in i+. Here are some sentences available
in ℒPFO+ but not in ℒPFO:

(7.5) Ptt

(7.6) ∃vv¬Pvv
(7.7) ∃v∃vv((Sv ∧ v ≺ vv) ∧ Pvv)

Using the appropriate clauses, it would be easy to verify that, in i+, the first
two sentences are true while the last one is false.

On the semantics just given, PFO and PFO+ have metalogical properties
that distinguish them from first-order logic. Neither system is complete
or compact, and both lack the Löwenheim-Skolem property. Indeed, both
systems are able to provide categorical characterizations of arithmetic and
analysis, and a quasi-categorical characterization of set theory. In this sense,
the expressive power of both systems goes beyond that of first-order logic.

7.3 Plurality-based model theory

We have seen that the familiar set-based model theory is easily extended
to PFO and PFO+. However, there is nothing inherent in the idea of a
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model theory that requires it to be set-theoretic. So why not adopt plural
resources in themetalanguage and exploit these richer resources to represent
the semantic values of plural expressions? This alternative approach, which
we call plurality-based model theory, was initiated by Boolos (1985a). On
Boolos’s new semantic paradigm, the semantic value of a plural variable is
not a set (or any kind of set-like object) whose members are drawn from
the ordinary, first-order domain. Rather, a plural variable has many values
from this ordinary domain and thus ranges plurally over it. This semantic
approach to plurals has become very popular among philosophers.3

To develop a plurality-based model theory, we proceed much as before.
Working within plural logic, we first define a notion of interpretation. Then,
we use this notion to characterize, via satisfaction clauses, that of truth
in an interpretation. And as before, we rely on variable assignments as an
intermediate step.

Let us spell out these steps. In set-basedmodel theory, we defined domains
and interpretations functions as special kinds of set-theoretic objects. This
allowed us to define an interpretation as a pair ⟨d, f⟩. These definitions were
possible because the semantic values of terms andpredicateswere themselves
objects. But now we want the semantic value of a plural term to be one or
more objects. So an interpretation function can no longer be a function in
the usual set-theoretic sense. We need a different strategy.

The model-theoretic characterization of logical consequence requires
that we can quantify over interpretations: an argument is valid just in
case it is truth-preserving under every interpretation of the language. Since
our metalanguage has just two sorts of quantifiers—singular and plural—
interpretations must be either objects or pluralities. Given the semantic
shift sanctioned by Boolos’s approach, it is natural to consider the idea that
interpretations themselves might be pluralities rather than objects. As it
turns out, this idea leads to a nice formulation of the plurality-based model
theory.

If we postulate a pairing operation on objects, there is a relatively simple
way to proceed. Recall that an interpretation is fixed by specifying a domain
of quantification and the interpretation of the non-logical terminology of
the language. We can represent a domain of quantification by pairing a
conventional symbol, say the symbol ‘∃’, with each element of the domain.
If we want the domain to consist of the objects a and b, for example, we

3 See, e.g., Oliver and Smiley 2005; Yi 2005; Yi 2006; McKay 2006, Chapter 3; Rayo 2006; and
Oliver and Smiley 2016, Sections 11.5, 12.5, and 13.2.
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will represent that by means of the pairs ⟨‘∃’, a⟩ and ⟨‘∃’, b⟩. (For simplic-
ity, we omit the quotation marks in this type of ordered pairs and write:
⟨∃, a⟩ and ⟨∃, b⟩.) Similarly, we can represent an interpretation function
by pairing the relevant expressions with their semantic value or values.
For example, if we want to assign the plurality a and b to the term tt,
we will do that by means of the pairs ⟨tt, a⟩ and ⟨tt, b⟩. An interpreta-
tion will just be a plurality ii of pairs representing the relevant semantic
information. Among ii there will be pairs representing information about
the domain and pairs representing an interpretation function. Quantifying
over interpretations amounts to quantifying over the appropriate pluralities
of pairs.

Let us illustrate the new definition of interpretation by showing how to
convert the set-based interpretation i = ⟨d, f ⟩ from the previous section
into a plurality-based interpretation. This way of coding a plurality-based
interpretation goes back to Boolos 1985a. First, the domain d = {a, b, c} is
represented by these three pairs:

⟨∃, a⟩ ⟨∃, b⟩ ⟨∃, c⟩

Call these pairs dd. Next, there is the interpretation function f, which was
defined by the following identities:

f (t) = a f (r) = b
f (tt) = {a, b} f (rr) = {b, c}
f (S) = {a, b}

We can represent f by means of eight pairs:

⟨t, a⟩ ⟨r, b⟩
⟨tt, a⟩ ⟨tt, b⟩ ⟨rr, b⟩ ⟨rr, c⟩
⟨S, a⟩ ⟨S, b⟩

Call these pairs ff. The plurality-based interpretation corresponding to i is
the plurality ii combining dd and ff.Thus ii consists of the eleven pairs shown
above.

Our next goal is to provide the satisfaction clauses defining the relation of
truth in a plurality-based interpretation relative to a variable assignment. In
this context, a variable assignment is a plurality of pairs ss representing the
assignment of an object to each singular variable and of one or more objects
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to each plural variable. For instance, an assignment ss containing precisely
the pairs ⟨v, a⟩, ⟨vv, b⟩ ⟨vv, c⟩ is one that assigns a to v and the plurality b and
c to vv. The notation for semantic values will follow our earlier convention.
That is, we let the symbol JEKii,ss indicate the interpretation of E according
to ii if E is a term or a predicate, and we let it indicate the assignment to E
according to ss if E is a variable. In both cases, the result can be one or more
things. For instance, if we consider the interpretation ii and the assignment
ss just introduced, we have that JttKii,ss indicates a and b, whereas JvvKii,ss
indicates b and c.

We are finally ready to state the clauses that define when a formula φ is
true in ii relative to ss, written ii ⊨ φ [ss]. If φ is an atomic formula, say St,
then:

(Sat-A∗) ii ⊨ St [ss] if and only if JtKii,ss ≺ JSKii,ss
A small wrinkle needs to be ironed out. A predicate may obviously have an
empty extension, but there is no empty plurality. This mismatch is easily
handled, for example by always adding an arbitrary triple to the interpre-
tation of any predicate. This convention will henceforth be implicit in model
theories where predicates are given a plural interpretation.

For plural membership, we have:

(Sat-≺∗) ii ⊨ t ≺ tt [ss] if and only if JtKii,ss ≺ JttKii,ss
Notice that plural membership is always interpreted homophonically, in
accordance with our decision to treat it as logical. If φ is a negation (¬ψ)
or a conjunction (ψ1 ∧ ψ2), then we have:

ii ⊨ ¬ψ [ss] if and only if it is not the case that ii ⊨ ψ [ss](Sat-¬∗)
ii ⊨ ψ1 ∧ ψ2 [ss] if and only if ii ⊨ ψ1 [ss] and ii ⊨ ψ2 [ss](Sat-∧∗)

Let dd be the domain of ii. If φ is a singular existential (∃v ψ), then

(Sat-∃∗) ii ⊨ ∃v ψ [ss] if and only if ii ⊨ ψ [ss(v/x)] for some x ≺ dd

where ss(v/x) is an assignment just like ss, with the possible exception that
ss(v/x) assigns x to v. If φ is a plural existential (∃vv ψ), then

(Sat-P∃∗) ii ⊨ ∃vv ψ [ss] if and only if ii ⊨ ψ [ss(vv/xx)] for some xx ≼ dd
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where ss(vv/xx) is an assignment just like ss, with the possible exception that
ss(vv/x) assigns xx to vv.

Plural quantification receives, again, a standard interpretation. Plural
quantifiers are taken to range over every subplurality of the first-order
domain. Interestingly, it is possible to formulate an alternative, Henkin-
style semantics even within a plurality-based model theory. We develop this
idea in the next chapter, where we also explore its significant philosophical
implications.

We have obtained a definition of the relation of truth in an interpreta-
tion relative to a variable assignment for formulas of ℒPFO. However, our
definition is carried out in a richer metalanguage, namely ℒPFO+. This is
because the relation being defined (“φ is true in ii relative to ss”) has a singu-
lar argument for formulas and two plural arguments, one for interpretations
and one for assignments. So, in this setting, ‘ . . . is true in . . . relative to . . . ’ is
a plural predicate, which takes us beyond PFO into PFO+.This is not an acci-
dent but a manifestation of Tarski’s theorem on the undefinability of truth.
We examine this phenomenon more closely in Chapter 11. A consequence
of immediate concern is that we should expect the model theory for PFO+
to require an even richer metalanguage (see Section 7.5).

As in the case of set-based model theory, the satisfaction of a sentence is
independent of the choice of variable assignment. So we can define truth in
an interpretation as follows. For any sentence φ, φ is true in ii, written ii ⊨ φ,
if φ is true in ii for some (equivalently, every) variable assignment.

Going back to the interpretation ii we used as an example, it is easy to
verify that ii makes true the same sentences that were made true by its set-
based counterpart i. Recall that

(7.1) r ≺ tt

was shown to be true in i (p. 129). We can verify that this sentence is true in
ii by means the following reasoning:

ii ⊨ r ≺ tt if and only if
ii ⊨ r ≺ tt [ss], for some ss if and only ifJrKii,ss ≺ JttKii,ss, for some ss if and only if
b ≺ a and b

For another example, apply the above clauses to (7.2), which is easily seen to
yield:
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ii ⊨ ∃v(v ≺ rr ∧ ¬Sv) if and only if
x ≺ b and c, and x ⊀ a and b, for some x ≺ dd

where dd is the domain of ii. These truth conditions now have a pleasing
homophonic feel.

We mentioned above some of the key metalogical properties of PFO on
the set-based model theory. PFO turns out to have the same metalogical
properties on the plurality-based model theory just outlined. In particular,
PFO is neither complete nor compact, and it lacks the Löwenheim-Skolem
property. So PFO continues to have more expressive power than first-order
logic.

While the twomodel theories are on a par with regard to suchmetalogical
properties, it has nevertheless been argued that there are reasons to prefer the
plurality-based model theory over its set-based analogue. Let us turn to this
issue.

7.4 Criticisms of the set-based model theory

There is an apparent element of artificiality in the set-based model theory.
Plural terms are taken to denote sets. So plural quantification is interpreted as
quantification over sets. By contrast, the plurality-based model theory does
justice to the intuitive idea that a plural termdoes not stand for a set of things,
but it stands for the things themselves. Intuitively, the term ‘Paris and Rome’
does not stand for the set of the two cities; it stands for the cities themselves.
The plurality-based approach captures this intuitive idea. It assumes that a
plural term refers plurally to some things, without the mediation of a set that
stands proxy for them.

The issue becomes especially pressing when the things intuitively denoted
by a plural term are too many to form a set. Consider a plural constant
intended to refer to all the sets. Assuming traditional plural logic, we can
construct a plurality-based interpretation in which this term refers plurally,
as intended, to all sets.⁴ There is no corresponding interpretation in the set-
basedmodel theory.Wemust interpret a plural term bymeans of a single set.

⁴ If the correct plural logic is the “critical” one we propose in the final chapter, then
this interpretation is unavailable. We discuss the semantic significance of this approach in
Section 12.8.
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But there is no set of all sets in standard set theory. So the semantic value of
our constant cannot encompass all sets.

Anothermanifestation of this issue concerns the domain of quantification.
By requiring that the domain of quantification be a set, the set-based model
theory rules out any interpretation whose domain is too big to form a set.
In particular, there is no set-based interpretation whose domain includes all
sets.Thismeans that there is no interpretation corresponding to the intended
model of set theory. The set-based model theory is thus unable to capture all
the intuitive interpretations of the language.

Theplurality-basedmodel theory avoids these limitations, again assuming
traditional plural logic. Since the domain of quantification is given by a
plurality, it is possible to represent a domain encompassing all sets. Consider
all and only the pairs such that their first coordinate is the symbol ‘∃’ and
the second coordinate is a set. Plural comprehension and the existence
of a pairing operation on objects jointly entail that there is a plurality of
exactly those pairs. This plurality represents a domain encompassing all sets.
Likewise, there is a plurality that represents a domain encompassing every
object whatsoever. Therefore, the plurality-based model theory can be said
to capture not only the intended interpretation of set theory but also absolute
generality.

As stated, these considerations pertain to intuitive limitations of the set-
based model theory, namely its inability to represent intuitive semantic
values or intended interpretations. But are such considerations relevant to
logic? We can move beyond the intuitive level by focusing on a key fact that
has been implicit in our discussion. While every set-based interpretation
can be converted into a plurality-based one, it is a consequence of the
plural version of Cantor’s theorem that the reverse claim isn’t true.⁵ This
fact is relevant to logic. For logical consequence is defined by quantifying
over every interpretation and hence depends on which interpretations are
admitted. Let us elaborate on this claim.

Imagine two parties A and B wishing to characterize the relation of
logical consequence for sentences of a given language ℒ. Suppose B has
a richer conception of interpretation than A. That is, every interpretation

⁵ The theorem states that the subpluralities of xx are strictly more numerous than the
members of xx, provided that xx has two or more members (see Section 3.5). Using traditional
plural logic, we let xx be the universal plurality—that is, the plurality of absolutely all objects.
It follows that the pluralities are more numerous than the objects. Since any plurality can
be the domain of a plurality-based interpretation, it follows in turn that the plurality-based
interpretations are more numerous than the set-based interpretations, which are objects.



7.4 criticisms of the set-based model theory 137

countenanced byA is also countenanced by B, but not the other way around.
So, letting ⊨A and ⊨B be the two parties’ consequence relations, we have:

Δ ⊨B φ ⇒ Δ ⊨A φ

for any set of sentences Δ and any sentence φ. But there is no guarantee
that the opposite implication holds and hence no guarantee that the two
relations of consequence are coextensive. The proponent of the set-based
model theory and the proponent of the plurality based model theory are in
the same situation as A and B.

When the language is first-order, Georg Kreisel’s famous “squeezing
argument” can be used to establish that the two model theories yield an
equivalent relation of consequence (Kreisel 1967). Let ⊨P and ⊨S be the
relation of consequence sanctioned, respectively, by the plurality-based
model theory and by the set-based model theory. But let us restrict attention
to first-order sentences. The argument goes as follows. In the preceding
paragraph, we established that:

Δ ⊨P φ ⇒ Δ ⊨S φ

By the completeness theorem for first-order logic, we have

Δ ⊨S φ ⇒ Δ ⊢ φ

where ⊢ is the usual provability relation for first-order logic. Finally, we
observe that the plurality-based account of consequence is sound with
respect to this relation:

Δ ⊢ φ ⇒ Δ ⊨P φ

This closes the circle of implications. It follows that:

Δ ⊨S φ ⇔ Δ ⊨P φ

In sum, despite the fact that the the proponent of the plurality-based model
theory has a richer conception of interpretation than its set-based competi-
tor, their definitions of logical consequence yield exactly the same verdict for
arguments involving first-order sentences.

An essential premise of Kreisel’s argument is that the set-based relation of
consequence satisfies the completeness theorem. But this premise might not
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hold whenwemove beyond first-order logic. In fact, it fails for PFO, which is
not complete according to the plurality-basedmodel theory presented above.
So Kreisel’s argument is not available for PFO. We can, however, get the
same effect by appealing to set-theoretic reflection principles. For a simple
example, consider the principle which asserts that any sentence of PFO that
is true in the universe of sets is also true in some set-based model:

(PR) φ → ∃α (φVα)

where φVα is the result of restricting the quantifiers of φ to the set Vα,
whose elements are all the sets of rank less than α (see Section 4.6). The
principle (PR) turns out to be equivalent to the claim that any sentence that
has a plurality-based model also has a set-based model (Shapiro 1987). This
ensures the extensional equivalence of two definitions of logical truth: one
in terms of truth in every set-based model, the other in terms of truth in
every plurality-based model. An analogous result is available for the notion
of logical consequence, although the required reflection principle is stronger
than the one just mentioned (again, see Shapiro 1987).

These results may assuage the worries with which the section started. The
inability of a model theory to represent some intuitive semantic values or
intended interpretations need not have an effect on the logic. In particular,
the apparent artificiality of the set-based model theory need not manifest
itself at the level of logical consequence. For example, the model theory
does not validate incorrect existential consequences of the kind discussed
in Section 3.3. In other words, although plural terms have sets as semantic
values, a sentences like Ptt does not logically entail that sets exist. A parallel
case is that of predication in the usual set-based model theory for first-order
logic. Predicates have sets as semantic values. Yet a predication like St does
not logically entail that sets exists. Boolos (1984b, 448–9) insisted that “it
doesn’t follow just from the fact that there are some Cheerios in the bowl
that, as somewho theorize about the semantics of plurals would have it, there
is also a set of them all.” A set-based model theory does not sanction that it
follows logically from the fact that there are some Cheerios in the bowl that
there is also a set of them.

As far as logic is concerned, and assuming the appropriate reflection
principle, we have found no reason to think that adopting a set-based model
theory for PFO is any more problematic than adopting a set-based
model theory for first-order logic. As we will see shortly, however, other
considerations may help us decide which is the more appropriate type of
model theory.
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7.5 The semantics of plural predication

The interpretation of plural predicates raises a number of interesting ques-
tions. We presented a plurality-based model theory for PFO in Section 7.3.
Let us now examine how this model-theoretic approach can be extended to
PFO+. There are two main ways to proceed, depending on whether we want
to give plural predicates an extensional or an intensional interpretation.

As formulated above, the plurality-based model theory for PFO incorpo-
rates an extensional treatment of singular predication. For the semantic value
of amonadic singular predicate S is the plurality of objects to which S applies,
that is, its extension. This choice of semantic value aligns with the choice of
semantic value in the set-based model theory, where S is assigned the set of
objects in the domain to which S applies.

One might instead take an intensional approach to predication and
interpret predicates not as pluralities, but as properties. Suppose—if only
temporarily—that properties are objects, and let us interpret S by means
of the property σ. Then we could simply include the pair ⟨∃, σ⟩ in our
interpretation function. Recall the plurality-based interpretation function ff
for ℒPFO described in Section 7.3 (p. 132):

⟨t, a⟩ ⟨r, b⟩
⟨tt, a⟩ ⟨tt, b⟩ ⟨rr, c⟩ ⟨rr, d⟩
⟨S, a⟩ ⟨S, b⟩

On an intensional approach, ff would be replaced by the following plurality
of pairs:

⟨t, a⟩ ⟨r, b⟩
⟨tt, a⟩ ⟨tt, b⟩ ⟨rr, c⟩ ⟨rr, d⟩
⟨S, σ⟩

The clause for singular predication would be revised accordingly:

ii ⊨ St [ss] if and only if JtKii,ss has JSKii,ss
That is, the truth of a singular predication St amounts to the fact that
the semantic value of the term t (an object) has the semantic value of S
(a property).

We thus have two approaches to singular predication, one extensional
and one intensional. How do these approaches extend to plural predication?



140 the semantics of plurals

Let us start with the extensional approach. Suppose the semantic value of a
singular predicate S is a plurality of objects. Then the most natural choice of
semantic value for a plural predicate P would be a “plurality of pluralities”,
or a “superplurality” as we have called it. The intuitive reason is this. The
predicate S applies to objects and hence its semantic value is the plurality
of the objects to which it applies. Since P applies to pluralities, its semantic
value must be the plurality of pluralities to which it applies.

But what is a “plurality of pluralities”? Throughout the book, we use
‘plurality’ as a shorthand for a plural construction. Thus, to talk about “a
plurality of dogs” is just a shorthand for talking about one or more dogs.
It is controversial whether it makes sense to talk about “a plurality of plu-
ralities” and hence whether the expressive resources needed to formulate an
extensional version of plurality-basedmodel theory for PFO+ are legitimate.
We address the question of superplurals in Chapter 9. For the time being,
we would like to make two remarks. First, it is relatively straightforward to
develop a formal system of superplural quantification suitable to develop our
model theory (Rayo 2006). Moreover, natural language offers at least some
help.We can think of a superplurality as some things articulated into distinct
subpluralities, such as: Russell and Whitehead, and Hilbert and Bernays, or:
these things, those things, and these other things.⁶

Assuming the legitimacy of the expressive resources needed, we must
find a way to incorporate the proposed interpretation of plural predicates
into the model theory. We would like to proceed much as in the case of
singular predicates, where a singular predicate S was interpreted by means
of a plurality of ordered pairs, ⟨S, a⟩, ⟨S, b⟩, et cetera. Each of these ordered
pairs, say ⟨S, x⟩, represents that S applies to x. Now consider a plural predicate
P. We would like to interpret P by means of a bunch of ordered pairs, which
we may think of as ⟨P, aa⟩, ⟨P, bb⟩, et cetera. Each of these ordered pairs, say
⟨P, xx⟩, represents that P applies to xx. The problem, however, is that no
sense has yet been assigned to expressions such as ‘⟨P, aa⟩’. After all,
an ordered pair is an ordered pair of objects. Thus, the second coordinate
of an ordered pair must be an object; it cannot be a plurality of two or
more objects.

Fortunately, there is a natural way to assign sense to the mentioned
expressions.⁷ Suppose we want to talk about the ordered pair of P and aa.

⁶ For more examples from natural language, see Section 9.4.
⁷ For details and a more general treatment, see Appendix 11.A.
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Consider all ordered pairs of the form ⟨P, a⟩, where a ≺ aa. The plurality pp
of such ordered pairs can be used to represent the desired but problematic
pair ⟨P, aa⟩. To see that this representation works, observe first that the
representing plurality pp is well defined, and second, that the representation
uniquely determinesP and aa and thus does all thework that the problematic
ordered pair was meant to do. To wit: given the mentioned plurality pp
of ordered pairs, P can be retrieved as the unique object that figures as
the first coordinate of all the ordered pairs pp, and aa can be retrieved
as the plurality of objects each of which figures as the second coordinate
of one of these ordered pairs. In light of this, it is unproblematic to use
the familiar notation ‘⟨P, aa⟩’ as a suggestive shorthand for the mentioned
plurality pp.

With this convention in place, we can proceed to state the interpretation
of a plural predicate P as a bunch of ordered pairs, ⟨P, aa⟩, ⟨P, bb⟩, et cetera—
keeping in mind that this bunch will be a superplurality, as it is a bunch of
pluralities. We can then say, informally, that an atomic plural predication,
such as Ptt, is true if and only if tt stands for a plurality that appears as second
coordinate in one of the pairs ⟨P, aa⟩, ⟨P, bb⟩, et cetera.

To provide a formal clause capturing these truth conditions, we need to
define a notion of interpretation capable of representing the target interpre-
tation of plural predicates as well as other non-logical expressions. As it turns
out, this can be done by letting an interpretation be a superplurality iii.⁸ Its
components will be a domain dd and an interpretation function fff, which
now consists of a superplurality. A variable assignment remains a plurality
ss. Let us use ‘are among’ to indicate the membership relation between a
plurality xx and a superplurality xxx. So, loosely speaking, xx are among xxx
just in case xx are one of the pluralities comprising xxx. We are finally in a
position to state the satisfaction clause for an atomic plural predication:

iii ⊨ Ptt [ss] if and only if JttKiii,ss are among JPKiii,ss
where JttKiii,ss is a plurality and JPKiii,ss a superplurality.

Let us now turn to the intensional approach to predication, which takes
properties rather than pluralities (or superpluralities) as semantic values
of predicates. To interpret plural predicates, we need plural properties, that
is, properties that (if instantiated) are instantiated by many things jointly. By

⁸ Again, see Appendix 11.A for technical details.
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contrast, singular properties (if instantiated) are instantiated by many things
separately. For example, the property of cooperating is plural while that of
being human is singular.

Suppose that plural properties are objects.⁹ Then, given any plural prop-
erty π, we could obtain an interpretation function ff+ for ℒPFO+ by simply
adding the pair ⟨P, π⟩ to the interpretation function ff considered above. For
an atomic predication, we would therefore have:

ii ⊨ Ptt [ss] if and only if JttKii,ss have JPKii,ss
which is perfectly analogous to the satisfaction clause for singular
predication on the intensional approach.

However, there is significant pressure to reject the supposition that plural
properties are objects. For this supposition is subject to a variant of a Russell-
style argument put forth by Williamson (2003), and it clashes with a plural
version of Cantor’s theorem.1⁰ Let us briefly comment on the last claim.
As discussed in Section 3.5, the instance of Plural Cantor concerned with
the universal plurality entails that there are more pluralities than objects.
If properties are objects, it follows that there cannot be a plural property
corresponding to every plurality. But this may seem implausible. If there are
some things, why shouldn’t there also be a plural property had by them and
only them?

The natural reaction is to postulate a type distinction between objects and
properties.11Thus, wemay think of properties as higher-level entities, which,
following Frege, we call concepts.This view leads us to combine the resources
of plural logic with those of second-order logic. The resulting system is an
extension of PFO+ where quantification into predicate position is allowed
for both singular and plural predicates. For example, these generalizations
are legitimate:

(7.8) ∃F¬Ftt
(7.9) ∃F∀vv Fvv
(7.10) ∀vv∃F(Fvv ∧ ∀uu(Fuu→∀v(v ≺ uu↔ v ≺ vv))

⁹ In the context of plural logic and its semantics, this assumption is endorsed by Hossack
2000 and McKay 2006.

1⁰ See Florio 2014c for a detailed exposition of these arguments.
11 This approach is endorsed, for example, by Oliver and Smiley and by Yi (see footnote 3 on

p. 131).
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In fact, they are also provable with the help of the appropriate instances of
this scheme of comprehension for plural concepts:

(PSO-Comp) ∃F∀xx(Fxx ↔ φ(xx))

where F does not occur free in φ. We assume this scheme as well as its
polyadic analogues.

Postulating a type distinction between objects and properties avoids the
two problems mentioned above. The Russell-style argument is blocked for
essentially the same reason Russell’s paradox was blocked in the simple
set theory discussed in Chapter 4. That is, owing to the sortal distinctions
between individuals, pluralities, and properties (now concepts), the key
condition driving the paradoxical argument cannot even be formulated (see
Williamson 2003, Section IX). Moreover, if properties are no longer objects,
it is consistent to hold both that there are more pluralities than objects and
that there is a plural property corresponding to every plurality. So there is
no clash with the plural version Cantor’s theorem.

How can we accommodate the view that predicates stand for concepts in
the plurality-based model theory? As in the case of superplurals, we cannot
supply the interpretation of predicates by simply adding some ordered pairs
to the interpretation function. Concepts are not objects. So we cannot
represent the fact that the semantic value of S is the singular concept X, and
the semantic value of the predicate P is the plural concept Y, by means of
⟨S,X⟩ and ⟨P,Y⟩. For these are not proper pairs.

In fact, there is a way to represent not only single such “pairs” but also
many of them simultaneously. We resort to concepts of an even higher level
than X and Y. To represent a bunch of pairs of the form ⟨S,X⟩, we use a
second-level concept R with two argument places, one open to objects and
the other open to first-level concepts, such that R(S,X) just in case ⟨S,X⟩
is one of the target bunch of pairs.12 By quantifying over the appropriate
sort of higher-level concepts, we can then define a notion of interpretation
capturing the informal idea that an atomic plural predication Ptt is true if
and only if Fxx, where xx is the plurality for which tt stands and F is the
plural concept interpreting P.

12 This approach, in its current version, assumes that concepts are individuated extensionally.
That assumption can be dispensed with, if desired. One option is to adopt suitable modalized
comprehension principles of the form ∃F2∀x(Fx ↔ φ(x)).



144 the semantics of plurals

7.6 The problem of choice

We have surveyed a number of ways in which the model theory for plural
logic may be developed. On the one hand, we could opt for a set-based
model theory. We argued in Section 7.4 that this model theory is no more
problematic than the usual set-based model theory for first-order logic, at
least from a purely logical point of view and assuming the relevant reflection
principle. On the other hand, we could opt for an extensional or intensional
version of a plurality-based model theory. The formulation of this style of
model theory has led us to introduce richer expressive resources. The model
theory for PFO was carried out in PFO+, as it construed interpretations as
pluralities and thus relied on a plural predicate to characterize the notion of
truth in an interpretation. The model theory for PFO+ was carried out in a
metalanguage including either superplural quantification or quantification
over concepts. As noted, the ascent to more expressive metalanguages is
not an accident but a robust Tarskian phenomenon, which we explore
systematically in Chapter 11.

The existence of multiple model theories presents us with a problem: how
are we to choose between the available options? This problem of choice, as
we will call it, is connected with large and difficult philosophical questions.
So we will not attempt to reach a final verdict. We do, however, aim to paint
as complete a picture as possible of the considerations that are relevant to
solving the problem.

It is useful to classify the available options on the basis of whether or
not they use certain resources. Does a given option use plural resources?
And does it use conceptual resources? The table below summarizes the
alternatives and indicates some of the authors who have adopted them.

no plural resources plural resources

no conceptual
resources

Link and other linguists,
Quine, Resnik

Boolos, Hossack, McKay, Rayo

conceptual
resources

Higginbotham & Schein,
Florio

Oliver & Smiley, Yi, Rayo &
Yablo, Williamson, Linnebo

Three of the four alternatives are exemplified by model theories discussed
above: the set-based model theory uses neither plural not conceptual
resources; the extensional version of the plurality-based model theory
uses plural but not conceptual resources; the intensional version of
plurality-based model theory uses both plural and conceptual resources.
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However, we have not presented any option that uses only conceptual
resources. Let us briefly mention two such options.13

The first imitates the eliminative strategy of Higginbotham and Schein
discussed in Chapter 6. They analyze predication in terms of events and
eliminate pluralities in favor of concepts. The same resources (events
and concepts) could be put to use in developing a model theory for PFO+.
The second way to construct a model theory that uses only conceptual
resources imitates another eliminative strategy discussed in Chapter 6. We
have seen that there is a translation of PFO+ into MSOL+. Similar results
can be obtained for extensions of these theories. In particular, the systems
needed to formulate the extensional or intensional version of plurality-based
model theories for PFO+ can be interpreted in a fragment of higher-order
logic containing a few layers of concepts. These conceptual resources can be
used to develop a model theory for PFO+. What’s more, it can be shown that
the resulting model theory delivers the same relation of consequence as the
plurality-based model theory (see Florio 2014a).

Recall that the set-based model theory can deliver the same relation of
consequence as the plurality-based model theory for PFO, assuming the
appropriate reflection principle (Section 7.4). This continues to hold when
we add plural predicates to the object language. It follows that all the options
considered are on a par, as far as logic is concerned. If we are to solve the
problem of choice, we must look beyond the logic.

In light of this, someone with a purely instrumental view of the semantics
may deny that there is a problem of choice after all. If model theory is
a mathematical tool whose sole purpose is to characterize a relation of
consequence for a given language, then any option is just as good as any
other option—at least in the case at hand. And if an option must be selected,
one might well select the simplest and most economical one. However, if we
want model theory to be not just a mathematical study of logical relations
but a study of possible meanings of natural and formal languages, then
there might be further constraints capable of discriminating between the
options.

13 The existence of all these alternatives may be unsurprising: owing to the interpretability
results presented in Part II, we know that it is possible in principle to imitate any of the relevant
systems in any other of those systems.
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7.7 Absolute generality as a constraint

One such constraint is absolute generality. Since this issue will receive a
detailed discussion in Chapter 11, we limit ourselves to some brief remarks.
Absolutely general quantification seems possible; for example, it seems
possible to assert that the empty set has no elements, none whatsoever.What
would be the domain of an absolutely general quantifier? It cannot be a
set, since standard set theory recognizes no universal set. Perhaps it can
be a plurality (though see Chapter 12). For example, plural comprehension
implies that there are some objects uu such that:

∀x(x ≺ uu ↔ x = x)

This plurality includes absolutely everything there is and hence every set.
Using uu as a domain, the plurality-based model theory is able to repre-
sent an absolutely general interpretation of the quantifiers. Thus, absolute
generality—if there is such a thing—can serve as a constraint that narrows
down the options, ruling out the set-based model theory.

Could this conclusion be resisted by using some non-standard set theory
that does accept a universal set?1⁴ We might for example use New Foun-
dations (see Forster 2019) or some “logical” notion of set (or property) of
the kind developed in Fine 2005c and Linnebo 2006. Any such maneuver
would only shift the bump in the carpet. Recall the plural version of Cantor’s
theorem. In the context of traditional plural logic, this implies that there are
more pluralities than objects. Since any plurality can be used to interpret
a one-place predicate—namely by letting the predicate be true of precisely
these objects—the theorem means that there are more interpretations of the
predicate than can be represented by objects—no matter what kind of sin-
gular representation one chooses, including any non-standard conception of
set. If we want our model theory to capture every possible interpretation of a
predicate, then the plural version of Cantor’s theorem serves to rule out any
form of semantic singularism cashed out in first-order terms.

While absolute generality promises to be a powerful weapon against any
such form of semantic singularism, it is perfectly consistent with a model
theory formulated within higher-order logic. If we accept higher-order logic,

1⁴ Class theories such as von Neumann-Bernays-Gödel and Morse-Kelley take a major step
in this direction by accepting a class of all sets. But there can be no class of all objects, since a
class is prohibited from being an element of a set or class.
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there is good reason to accept a universal concept. This corresponds to the
following instance of second-order comprehension:

∃F∀x(Fx ↔ x = x)

Theuniversal concepts can then serve to represent a domain of quantification
containing absolutely all objects. As indicated in Section 7.6, it can be shown
more generally that every plurality-based model has an isomorphic model
described with purely conceptual resources (Florio 2014a).

So absolute generality does not single out the plurality-based model
theory as the only viable option. Put in terms of our diagram on p. 144,
absolute generality takes out the upper left-hand quadrant, but is neutral with
respect to the three remaining options.

7.8 Parity constraints

There are additional constraints onemight impose on themodel theory. One
might require that certain theoretical and empirical desiderata be satisfied.
For example, one might want the metatheory to be ontologically parsi-
monious or the representation of possible meanings to be psychologically
plausible. Moreover, one might want to be able to integrate the model theory
for PFO+ with the model theory for a language including a broader class of
expressions (such as generalized quantifiers, adverbs, and modalities). As
we have seen in Chapter 5, a similar thought is an important motivation
behind the analysis of plurals in terms of individual mereology favored by
some linguists.

In this section, we want to examine some constraints that demand some
form of parity between the language being analyzed and the language used
to analyze it. We therefore call them parity contraints. We consider four such
constraints.

First, we remarked above that the truth conditions of the plurality-based
model theory have a pleasing homophonic feel. This contrasts with the set-
based model theory whose truth conditions appear more artificial: they
equate truth in an interpretation to facts about sets. Could we rule out
semantic singularism, and any model theory based on purely conceptual
resources, by assuming homophonicity as a constraint?We need to be careful.
Since we are dealing with model theory, not truth theory, it is not really an
option to require homophonicity across the board. This would conflict with
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the aim of letting non-logical expressions be reinterpreted from model to
model.

Note that this also applies to more restricted requirements of homo-
phonicity, such as the following deflationist constraint on predication:

(7.11) ∀y(‘F’ is true of y ↔ Fy)

It states that a predicate can be said to be true of whatever it can be truly
predicated of. Friederike Moltmann cites this constraint in support of plural
reference and notes that it reflects “what is generally considered an important
condition on a semantic theory, namely that the object language be included
in the metalanguage” (2016, 108). A plural predicate can be truly predicated
of pluralities and hence these must be the semantic values of the terms with
which the predicate combines. Is this a reasonable constraint? Again, we
need to be careful. Since we are dealing with model theory, our ability to
enforce the constraint is limited. While the constraint may be plausible for
truth theory, it is not an option for model theory.

Our question, then, is whether one might capture the spirit of homo-
phonicity and of the deflationist constraint on predication through a require-
ment that is applicable to model theory. A second constraint does just that—
by requiring that the semantic value of an expression of the object language
be given by an expression of the same type in the metalanguage. Let us call
this the principle of type preservation. This constraint is less demanding than
the previous two, requiring only that the type of an expression be preserved
by its semantic value. On the plausible assumption that the relevant types
are determined by the logico-linguistic categories of PFO+, type preser-
vation solves the problem of choice in favor of the intensional version of
the plurality-based semantics. Type preservation rules out the extensional
version of plurality-basedmodel theory because thismodel theory interprets
predicates as superpluralities rather than concepts. Moreover, it rules out
the remaining model theories because they fail to preserve the type of plural
terms, interpreting them as objects or concepts rather than pluralities.

However, the power of type preservation comes with far-reaching, revi-
sionary consequences. It can often be illuminating to analyze expressions of
one type using resources from other types. An example is the analysis of
tense in terms of explicit reference to, and quantification over, moments
of time. Another example is the usual set-based model theory for ordinary
first-order languages, which interprets predicates by means of sets rather
than concepts and therefore violates the principle of type preservation.
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Indeed, much of the set-based model theory employed in linguistics and
mathematics would have to be rewritten. Especially in the case of linguistics,
it is unclear whether this can be done successfully while holding on to the
principle of type preservation. We have no guarantee that the array of types
needed to regiment natural languages can be systematically incorporated
in a unified and adequate model theory. A case in point is that of modals:
these expressions are usually interpreted using possible worlds, not primitive
modalities in the metalanguage.

A final parity constraint concerns the modal profile of plural terms.
These are generally thought to be rigid.1⁵ That is, the following principles
are supposed to hold. Let E be an existence predicate (paraphrasable as
∃zz zz ≈ . . . ), and let 2 stand for metaphysical necessity. Then:

2∀x ∀yy (x ≺ yy → 2(Eyy → x ≺ yy))(Rgd+)
2∀x ∀yy (x ⊀ yy → 2(x ⊀ yy))(Rgd−)

Informally, the principles state that if this object is one of those objects, then
necessarily, whenever those objects exist, this object is one of them. Similarly,
if this object is not one of those objects, then necessarily this object is not one
of them. But unlike plural terms, predication is not rigid, as illustrated by the
next example.

(7.12) John is tall but might not have been.

Now consider this constraint concerning modal profile: semantic values
should have the same modal profile as the expressions of which they are
semantic values. It would follow that predicates cannot have superpluralities
as semantic values, as the latter but not the former are rigid. Similarly, plural
terms could not have concepts as semantic values, as the former but not
the latter are rigid. Thus, the constraint helps with the problem of choice
by eliminating the off-diagonal options in our diagram (p. 144).

Once again, the constraint can be challenged. For example, Kripke
semantics for modal logic is widely regarded as illuminating, despite using
semantic values with the “wrong” modal profile. Although sets possess their
members necessarily, in Kripke semantics they are successfully used as
semantic values of predicates. The key is to allow these semantic values to
vary from world to world.

1⁵ See Chapter 10 for details and a defense.
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7.9 Conclusion

We have discussed various constraints that may help us choose among the
available model theories for plural logic. First, we have absolute generality,
which rules out the options in the upper left-hand quadrant of our diagram.
Then, we have two parity constraints applicable to model theory: type
preservation—which selects an option in the bottom right-hand quadrant—
and modal profile—which rules out the off-diagonal options. Putting every-
thing together, only the bottom right-hand quadrant remains.

However, neither of these parity constraints was found to be absolutely
compelling. So there seems to be no simple solution to the problem of
choice. What is required to make progress, it seems to us, is greater clarity
on what model theory is supposed to do. On a minimal conception of the
role of model theory, such as the one espoused by an instrumentalist about
semantics, the existence of several, equally good options is perfectly accept-
able. This is less so if model theory is supposed to capture certain features of
the “true nature” of our expressive resources. In that case, onemight insist on
a model theory that is not only extensionally but also intensionally correct.
This is especially importantwhenwe lack independentmeans of determining
the correct extension. If so, we can establish an extensionally correct theory
by relying on an intensionally correct one. These considerations lend further
support to the option in the bottom right-hand quadrant. This option will
play a role in Chapter 11, where we again discuss semantic matters in the
presence of absolute generality.
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