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1.  Introduction

This chapter presents aspects of the work of Charles Sanders Peirce, illustrating 
how he adhered to a number of the pre- structuralist themes characterized in the 
introduction to this volume. I shall present aspects of his contributions to math-
ematics as well as his philosophy of mathematics in order to show that relations 
occupied an essential role. When writing about results in mathematics he often 
states that they are based on his “logic of relatives,” and he refers to the reasoning 
of mathematics as “diagrammatic reasoning.” Besides pointing to structural 
themes in Peirce’s work, much of this exposition will be devoted to explaining 
what is meant by these two phrases.

In a recent article Christopher Hookway (2010) places Peirce as an ante 
rem structuralist.1 In support of this claim Hookway refers to some of Peirce’s 
writings on numbers (also to be treated here). In addition he spends some time 
analyzing what Peirce means by the phrase “the form of a relation.” These con-
siderations involve an in- depth knowledge of Peirce’s categories and their met-
aphysical implications. In contrast I  will focus on methodological aspects, in 
particular Peirce’s writings on reasoning in mathematics, stressing that mathe-
matics consists of the activity of drawing necessary inferences. This leads to a po-
sition that resembles methodological structuralism as it is characterized in Reck 
and Price (2000). Furthermore I find that Peirce’s position is similar in spirit to 
the contemporary categorical structuralist views, in particular, as formulated by 
Steve Awodey (2004). Still I resist characterizing Peirce as a structuralist since 
I do not find that this label captures the richness of his views as presented here. 

 1 But see Pietarinen (2010) arguing that Peirce’s continuum cannot be a structure.
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To mention one point, besides claiming that mathematics is the science of neces-
sary reasoning, Peirce has something to say about how this necessity is achieved.

The chapter consists of two main parts. The first documents Peirce’s exten-
sive knowledge of, and contribution to, the mathematics of his time. Areas in-
clude arithmetic, set theory, algebra, geometry (including non- Euclidean and 
topology)— and logic. Examples, together with indications of what drove his en-
gagement with them, will be given from his work in geometry, arithmetic, set 
theory, and algebra. In relation to the pre- structuralist themes it can be men-
tioned that he presented different axiomatizations of the natural numbers. 
Furthermore his insistence on the inappropriateness of the characterization of 
mathematics as “the science of quantity” will be addressed. Finally we shall see 
that he draws a clear distinction between pure and applied mathematics— both 
in arithmetic and in geometry. I further note that Peirce’s use of formal methods 
and his view of mathematics as an autonomous body places him as an early mod-
ernist according to the characterization given by Jeremy Gray (2008).

The second part is concerned with Peirce’s philosophy of mathematics. It 
addresses Peirce’s description of mathematical reasoning as diagrammatic rea-
soning. A diagram to Peirce is an iconic sign that represents rational relations. 
In order to explain what is contained in “diagrammatic reasoning” the chapter 
therefore includes a few relevant parts of Peirce’s semiotics. In addition one ex-
ample of a proof will be given in order to explain how mathematical, that is, nec-
essary, reasoning proceeds by constructing and observing diagrams.

2. Mathematics and the Logic of Relations

A few biographic details are relevant.2 Charles Sanders Peirce was born in 
Cambridge, Massachusetts, in 1839, as the son of Benjamin Peirce, a dis-
tinguished professor of mathematics at Harvard and a leading social figure. 
Benjamin Peirce taught his children mathematics and Charles certainly was very 
talented— as he was talented in so many fields. (Peirce had one sister and three 
brothers, of whom the oldest, James Peirce, became professor in mathematics 
at Harvard.) C. S. Peirce studied chemistry at Harvard and (in 1859), obtained 
a job at the US Coast and Geodetic Survey, and later, in 1879, was appointed a 
lecturer in logic at the Department of Mathematics at Johns Hopkins University. 
In 1884 his contract with Johns Hopkins was not renewed, and in 1891, due to 
disagreements, he was also forced to resign from his post at the US Coast and 
Geodetic Survey.

 2 This biographic information is based mainly on the introduction of Peirce (1976, vol. 1) and 
Gray (2008). I also recommend Brent (1998).
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Peirce is often referred to as having a somewhat asocial behavior, something 
he admits and blames on his upbringing by his father focusing mainly on his 
formal training: “In this as in other respects I think he underrated the impor-
tance of the powers of dealing with individual men to those of dealing with ideas 
and with objects governed by exactly comprehensible ideas, with the result that 
I am today so destitute of tact and discretion that I cannot trust myself to transact 
the simplest matter of business that is not tied down to rigid forms” (NE IV, v).3 
Another peculiarity to mention is his habit of adopting his own terminology, 
e.g., calling relations “relatives” and writing “semeiotic” for “semiotics.”

Two further things regarding Peirce’s early years are worth mentioning here. 
First is Kant’s influence on his thinking. Much of Peirce’s thought is developed 
in reaction to the ideas of Kant; it is certainly the case that many of the ideas 
dealt with in this chapter are presented by Peirce with reference to Kant. Peirce 
writes (commenting on a text from 1867 introducing his categories) about his 
early influence by Kant, stating that he by 1860 “had been my revered master for 
three or four years” (CP 1.563). Second is Peirce’s passion for logic. According to 
Peirce this passion was aroused by reading Whateley’s Logic: “It must have been 
in the year 1851, when I must have been 12 years old, that I remember picking 
up Whateley’s Logic in my elder brother’s room and asking him what logic was. 
I see myself, after he told me, stretched on his carpet and poring over the book for 
the greater part of a week for I read it through. . . . From that day to this logic has 
been my passion although my training was chiefly in mathematics, physics and 
chemistry” (NE IV, vi).

There are two distinct periods in Peirce’s contributions to logic (see Dipert 
2004). The first is algebraic, using algebraic tools in order to formulate a cal-
culus of the logic of relations with inspiration from (among others) Boole and 
de Morgan. A seminal paper in this period is his “Description of a Notation for 
the Logic of Relatives, Resulting from an Amplification of the Conceptions of 
Boole’s Calculus of Logic” published in 1870 (reprinted in CP 3.45– 148). The 
second and later period is characterized as “diagrammatic.” In this period Peirce 
develops his existential graphs (see Roberts 1973 or Shin 2002).

An important part of Peirce’s characterization of mathematics is his statement 
that mathematics is the science of necessary reasoning concerning hypothetical 
states of things. He attributes this claim to his father, writing: “It was Benjamin 
Peirce, whose son I boast myself, that in 1870 first defined mathematics as ‘the 

 3 Citations of Peirce follow traditional standards. (NE I, 3) refers to the collections New Elements 
edited by Carolyn Eisele (Peirce 1976) volume I, page 3. Similarly (CP 4.229) refers to the Collected 
Papers of Peirce edited by Hartshorne and Weiss (1931– 1967) volume 4, paragraph 229. (EP 2, 
7) refers to Essential Peirce, volume 2, page 7. I sometimes include a reference to the year the paper 
was written/ published. This is available from R. Robin’s catalog; see http:// www.iupui.edu/ ~peirce/ 
robin/ robin_ fm/ toc_ frm.htm.
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science which draws necessary conclusions.’ This was a hard saying at the time; 
but today, students of the philosophy of mathematics generally acknowledge its 
substantial correctness” (CP 4.229). The reference to 1870 is to Linear Associative 
Algebra, which opens with the statement C. S. Peirce quotes (B. Peirce [1870] 
1881, 97). Peirce states at various places that the necessity of mathematical 
conclusions is obtainable precisely due to the hypothetical nature of mathemat-
ical statements, characterizing mathematics as the science “which frames and 
studies the consequences of hypotheses without concerning itself about whether 
there is anything in nature analogous to its hypotheses or not” (NE IV, 228). We 
shall return to these claims about mathematics throughout the chapter.4

2.1.  Geometry

A good place to learn about the extent of his knowledge of geometry is his (un-
published) book New Elements of Geometry Based on Benjamin Peirce’s Works 
and Teaching, which fills most of the second volume of the New Elements of 
Mathematics (Peirce 1976). As the title indicates, the book is an extension of his 
father’s Elementary Treatise on Geometry (published in 1837), but it contains 
much more— apparently so much more that the publisher in the end refused to 
publish the book. When Peirce was forced to retire from his position in the US 
Coast and Geodetic Survey in 1891 he turned to textbook writing as a possible 
source of income. Ginn, the publisher of the American Book Company, made 
enquiries regarding an update of his father’s book in 1894 (NE II, xiv). The in-
troduction of NE II makes clear that Peirce worked for long on (versions of) 
the book while corresponding with the publisher, who did not see the need for 
publishing all the topics and sections Peirce wanted to include.5 From the intro-
duction it is possible to gain insight into Peirce’s motivation for extending it as 
he wished to do. Given the developments of geometry during the 19th century, 
he found a substantial revision necessary. He lists a number of ways that geom-
etry had “metamorphosed” since 1835: Given the acceptance of non- Euclidean 
geometries, Peirce claims, “geometry has two parts; the one deals with the facts 
about real space, the investigation of which is a physical, or perhaps metaphys-
ical, problem, at any rate, outside of the purview of the mathematician, who 

 4 Although Peirce claims that mathematics consists of the drawing of necessary conclusions, in 
some places he considers including the process of forming the hypotheses from which to reason as 
part of mathematics. See, for example, CP 4.238, where he praises the ingenuity of Riemann for de-
veloping the idea of a Riemann surface.
 5 See the correspondence between publisher, C. S. Peirce, and his brother, James (Jem) Peirce, pro-
fessor of mathematics at Harvard (NE II, xiv– xxvii), also providing information about the different 
versions of the book.
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accepts the generally admitted propositions about space, without question, as 
his hypotheses, that is, as the ideal truth whose consequences are deduced in the 
second, or mathematical part, of geometry” (NE II, 4). I return to this claim later. 
It is evident that Peirce was well informed about the various versions of non- 
Euclidean geometry formulated by Bolyai and Lobachewsky and even worked 
on both elliptic and hyperbolic geometry himself, claiming that space was hyper-
bolic (NE III, 710). To mention another thing, Peirce reviewed Halsted’s6 transla-
tion of Lobachevsky’s geometry in The Nation (54, February 11, 1892), calling it 
an excellent translation. The next topic Peirce mentions among the areas that had 
not previously been included in his father’s book is the new branch of geometry 
of Listing, named topology, which “deals with only a portion of the hypotheses 
accepted in other parts of geometry; and for that reason, as well as because its rel-
ative simplicity, it should be studied before the others.”7 The subsequent topic is 
what is today denoted as projective geometry. He then mentions “metrical geom-
etry,” which, he writes, was revolutionized after 1837 based on the contributions 
of Gauss’s students Lobachewsky, Riemann, and Bolyai (building on the works of 
Lambert and Saccheri).8 Finally, Peirce mentions the work of Cantor and others 
who “have succeeded in analyzing the conceptions of infinity and continuity, so 
as to render our reasonings concerning them far more exact than they had previ-
ously been” (NE II, 5).

Throughout his writings one finds explicit statements separating pure ge-
ometry, which traces the consequences of hypotheses, from “applied ge-
ometry,” which makes enquiries about the properties of real space and so is a 
branch of physics.9 At other places the distinction is implicit, as in the paper 
“Synthetical Propositions À Priori” (NE IV, 82– 85). The aim of this paper is to 
show— opposing Kant— that mathematical propositions are not synthetic. He 
remarks that it is possible that the propositions of geometry could be regarded 
as statements concerning physical space, but consistent with his general claims 

 6 Georg Bruce Halsted was a student of Sylvester’s from John Hopkins University and became 
professor at the University of Texas in 1884. According to Eisele “Halsted was spearheading in his 
publications on the new geometry the effort to bring to mathematicians in America the awareness of 
the revolution in mathematical thought” (NE II, ix).
 7 Peirce also made contributions to topology (see Havenel 2010 for an account of this). 
Furthermore, Havenel notes that topology is “par excellence the mathematical doctrine that is in-
compatible with the widespread idea that mathematics is the science of nothing else than quantities, 
geometrical quantities, and numerical quantities, for the topological properties do not involve meas-
urement” (Havenel 2010, 286).
 8 He makes references to Cayley (in 1854) and Klein (in 1873). In 1854 Cayley published a paper 
on finite groups, showing which multiplication tables are possible for a given number of elements 
of the group. Later, as Peirce indicates, Klein used the concept of a group and definitions of a metric 
(due to Cayley) to propose that the different geometries could be defined in terms of the invariance of 
properties of figures under a group of transformations, what is known as the Erlangen program.
 9 For explicit statements about the distinction between pure and applied geometry see NE IV, 359 
and NE III, 703– 709.
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of mathematics, he concludes that to the mathematician they are simply held 
to be hypotheses: “nothing but ignorance of the logic of relatives has made an-
other option possible” (NE IV, 82). He implicitly refers to the introduction of 
Riemann’s Über die Hypothesen, welche der Geometrie zu Grunde liegen ([1854] 
1892), calling it “Riemann’s greatest memoir.” According to Peirce, Riemann 
writes that geometrical propositions are matters of fact, and as such not neces-
sary, but only empirically certain; they are hypotheses. Referring to the last part 
of this statement, Peirce comments: “This I substantially agree with. Considered 
as pure mathematics, they define an ideal space, with which the real space ap-
proximately agrees” (84– 85).10

2.2. Foundations of Arithmetic

When Peirce writes about arithmetic, he distinguishes between different versions. 
The first is arithmetic as used in counting and calculations, which he denotes 
“vulgar” arithmetic (see NE I, xxxv and CP 1.291) or practical arithmetic. The 
other is pure arithmetic, concerning the abstract dealings with the properties 
of (the operations on) numbers. What is in particular worth mentioning in this 
context is that he bases both on axioms, and that proofs use what he denotes the 
“logic of relatives.” (Note that the use of “axioms” here is my terminology. Peirce 
refers to them as “primary propositions” or “definitions.” In general he is wary of 
using the label “axiom,” which at the time referred to propositions held to be in-
dubitably true.)11 Note that one may find statements claiming that even practical 
arithmetic is based on (ideal) hypotheses: “2 and 3 is 5 is true of an idea only, and 
of real things so far as that idea is applicable to them. It is nothing but a form, and 
asserts no relation between outward experiences” (NE IV, xv).

Peirce’s axiomatizations of (practical) arithmetic intend to prove that arith-
metical propositions are logical consequences of a “few primary propositions,” 
that is, countering Kant’s view that arithmetical propositions are synthetic. 
In “The Logic of Quantity” from 1893 (CP 4.85– 93) Peirce addresses Kant’s 

 10 See the article by J. Ferreirós (2006) for an interpretation of how Riemann understood “hypo-
thesis” (and foundations). According to Ferreirós, Riemann used the word “hypothesis” instead of 
“axiom” precisely to emphasize that they are not evident.
 11 “The science which, next after logic, may be expected to throw the most light upon philosophy 
is mathematics. It is a historical fact, I believe, that it was the mathematicians Thales, Pythagoras, 
and Plato who created metaphysics, and that metaphysics has always been the ape of mathematics. 
Seeing how the propositions of geometry flowed demonstratively from a few postulates, men got the 
notion that the same must be true in philosophy. But of late mathematicians have fully agreed that 
the axioms of geometry (as they are wrongly called) are not by any means evidently true. Euclid, be it 
observed, never pretended they were evident; he does not reckon them among his κοιναὶ ἒννοιαι or 
things everybody knows, but among the ὰἴτηματα, postulates, or things the author must beg you to 
admit, because he is unable to prove them” (CP 1.130).
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characterization of analytic judgments, finding that Kant’s thought “is seriously 
inaccurate” (even calling it “Monstrous”). The distinction between analytic and 
synthetic judgments depends on whether a predicate is involved in the subject, 
or “whether a given thing is consistent with a hypothesis.” Peirce accuses Kant 
of, due to insufficient knowledge of logic, confusing a question of logic with psy-
chology when he writes that being involved in the conception of the subject is the 
same as being thought in it (CP 4.86). According to Peirce the question is easily re-
solved if one is familiar with the logic of relatives. Its solution does not depend on 
“a simple mental stare or strain of mental vision. It is by manipulating on paper, 
or in the fancy, formulae or other diagrams— experimenting on them, experien-
cing the thing” (CP 4.86). That is, whether a judgment is analytic or not can be de-
termined by the use of logic and is an objective fact, not something depending on 
our thoughts. Note here also Peirce’s formulation “experimenting on a diagram” 
and “experiencing the thing,” which are central to his characterization of math-
ematical and diagrammatic reasoning, as I shall explain in the second part of 
the chapter. Concerning the status of arithmetic, he continues: “the whole of the 
theory of numbers belongs to logic; or rather it would do so, were it not, as pure 
mathematics, prelogical, that is, even more abstract than logic” (CP 4.90). Peirce 
holds that the different sciences can be ordered according to the generality of the 
objects they concern. In this philosophical system Peirce places mathematics at 
the top level, being the science that draws necessary conclusions, and logic as 
part of philosophy just below. Logic, according to Peirce, studies the drawing of 
necessary conclusions done in mathematics in order to formulate “laws of the 
stable establishment of beliefs” (CP 3.429). One may therefore note that Peirce, 
in contrast to, for example, G. Frege, who also took an interest in the foundations 
of arithmetic, did not claim that arithmetic is reducible to logic.12 Another in-
teresting point is Peirce’s remark that there is no one unique way to found arith-
metic on the logic of relations: There “are even more ways in which arithmetic 
may be conceived to connect itself with and spring out of logic” (CP 4.93). To 
document this claim Peirce refers to some of the texts presented in what follows.

Another motivation for providing axioms for arithmetic is to counter the em-
piricism of J. S. Mill, referred to in the introduction to the first paper presented in 

 12 It should be noted, though, that Peirce in his 1881 paper introducing the numbers writes things 
that could be construed as approaching a logicist position. He first writes that the aim of the paper is 
to show that the truths of arithmetic are consequences of a few primary propositions. He states about 
these propositions (calling them definitions), “the question of their logical origin . . . would require 
a separate discussion” (CP 3.252). For a more precise formulation of the interrelation between logic 
and mathematics in terms of how the different subjects, i.e., mathematics, philosophy, logic, etc., 
relate in Peirce’s system see Stjernfelt (2007, 11– 12). Peirce writes, for example, the following about 
the relations between the subjects (“sciences”) in his system: “The general rule is that the broader sci-
ence [e.g., mathematics] furnishes the narrower with principles by which to interpret its observations 
while the narrower science furnishes the broader science with instances and suggestions” (NE 
IV, 227).
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section 10.2.2.1, a position quite influential at the time. (Peirce implicitly refers 
to Mill as “a renowned English logician.”) In what follows three examples of 
characterizations of arithmetic are given, two of pure arithmetic and one of the 
“counting numbers.”

2.2.1.  Basing Pure Arithmetic on the Logic of Relations
The first example comes from Peirce’s article “On the Logic of Number,” 
published in the American Journal of Mathematics 4 (1881).13 (The paper is 
reproduced in CP 3.252– 288.) The system presented here has been called the 
first successful axiom system for the natural numbers (see Mannoury 1909 and 
Shields 1997, 43).14 In the introduction Peirce writes that the aim of the paper 
is “to show that [the elementary propositions concerning number] are strictly 
syllogistic consequences from a few primary propositions” (CP 3.252). Peirce 
remarks that the inferences drawn are not exactly like syllogistic consequences 
but that they are of the same nature.

The numbers, or as Peirce refers to them, “a system of quantities,” is intro-
duced as a collection together with a particular relation defined on it. The natural 
numbers are defined as a totally ordered (discrete) set with a minimum element, 
fulfilling the axiom of induction. In Peirce’s terminology they are a semi- infinite, 
discrete and simple system of quantity. In contemporary terms a simple system of 
quantity is a totally ordered set (i.e., the relation defined on the set is transitive, 
reflexive, and anti- symmetric and fulfills trichotomy). Furthermore, “discrete” 
and “semi- infinite” mean the set has a minimum element (called a semi- limited 
system of quantity) and fulfills the axiom of induction. In what follows we 
shall see how Peirce defines these notions. His use of notation (or perhaps lack 
thereof) may be a bit confusing to a modern reader. He uses the expression “one 
thing is said to be r of another,” meaning that one thing is related to another. In 
contemporary technical terms we would instead write that ArB or ( , )A B r∈  for 
A being “one thing” and B “another.” Peirce also uses the formulation that “the 
latter be r ’d by the former.” Listing properties that hold for the relation “less than 

 13 Peirce sketches a characterization of the natural numbers even earlier than 1881 in the paper 
“Upon the Logic of Mathematics,” dated 1867 and published in the Proceedings of the American 
Academy of Arts and Science, vol. 7 (CP 3.20- 3.44). It is based on his modifications of “the logical cal-
culus of Boole.” He defines, e.g., “logical identity” and “addition,” corresponding at first to operations 
on classes. That is, addition corresponds to taking the union of two classes. Identity between two 
classes states they consist of the same elements. Toward the end of the article Peirce notes that if one 
considers a kind of abstraction on classes— “numerical rank”— identity will play the role of equality 
and by considering the operation disjoint union one obtains the rules of arithmetic, for example, that 
a b b a+ = + .
 14 Shields presents Peirce’s axioms formulated in a modern way and compares his axiomatization 
to Dedekind’s and Peano’s. One thing Shields points out as worthy of attention is that Peirce chose a 
transitive relation as the basic relation when defining the numbers instead of the successor relation. 
Peirce later formulates systems based on an equivalent of the successor relation.
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or equal to” and using “r” and “q” to stand for this relation, he states the funda-
mental properties of a system of quantities as follows: “In a system in which r  is 
transitive, let the q’s of anything include that thing itself, and also every r  of it 
which is not r ’d by it. Then q q may be called a fundamental relative of quantity” 
(CP 3.253). That is, Peirce defines a system of quantity to be a collection Q on 
which there is defined a relation, q, which fulfills that q is transitive and reflexive, 
and for any A in the collection, AqB holds for all B s for which BqA is not the case. 
(If one thinks of the relation ≤  on the numbers, the last property states that for 
any two numbers A and B, if not B A≤  then A B≤ .) Peirce continues to list the 
properties of q, stating that “it is transitive; second, that everything in the system 
is q of itself, and, third, that nothing is both q of and q’d by anything except itself.” 
The last is anti- symmetry. A relation fulfilling these three properties defined on 
a set is usually called a partial order on that set. He defines a simple system (of 
quantity) to be one in which it is the case that for any two elements, A and B
, it is the case that either ArB or BrA(i.e., trichotomy).15 Simple systems can be 
discrete, which means “every quantity greater than another is next greater than 
some quantity (that is greater than without being greater than something greater 
than)” (CP 3.256). For simple and discrete systems of quantity he introduces 
semi- limited systems, i.e., systems that have a limit, often an absolute minimum 
element (which he calls “one”). Finally Peirce considers this class of quantities 
(that is, a simple, discrete system with a minimum element), noticing that “an 
infinite system may be defined as one in which from the fact that a certain prop-
osition, if true of any number, is true of the next greater, it may inferred that 
that proposition if true of any number is true of every greater” (3.258). That is, 
Peirce notes that what is today called the induction axiom characterizes the nat-
ural numbers.16 Elsewhere Peirce denotes this principle by Fermatian inference.

In the next paragraph Peirce continues to study “ordinary number,” which 
can be defined as a semi- infinite (that is semi- limited and infinite), discrete, and 
simple system of quantity, defining addition and multiplication (using the notion 
of predecessor), and he shows how one may then prove a number of fundamental 
propositions of arithmetic by induction, e.g., associativity, commutativity of ad-
dition, and the distributive law.17 I present one of Peirce’s proofs that addition is 

 15 In modern terminology a set on which there is defined a partial order fulfilling trichotomy is 
denoted a totally ordered set.
 16 Note the unfortunate choice of terminology calling a system of quantities for which the induc-
tion axiom holds an “infinite” system. The reason behind this might be that Peirce contrasts infinite 
systems with finite systems at the end of the paper.
 17 In a later paper from 1901– 1904 (NE IV, 2– 3) Peirce has introduced more notations, for ex-
ample “G” denoting the successor function, but essentially maintains the same characterization of 
numbers. In this paper he shows that the associative law holds for numbers, where numbers are de-
fined as an ordered system on which induction holds. Two numbers are defined to be equal in terms 
of the relation “greater than,” where A = B means that A is at least as great as B and B is as least as great 
as A. Furthermore he notes that “as least as great as” is transitive and reflexive and if N M≥ , then 
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commutative; that is, usingx x and y x to denote natural numbers, x y y x+ = +
(see CP 3.267). Addition is defined by the following two rules (here adding “s” to 
denote successor): 1+ =y s y( ) and x y s x y+ = +′( ), where ′x  denotes the pred-
ecessor of x. The proposition is proved using induction twice, and it employs the 
associative rule, x y z x y z+ + = + +( ) ( ) , that Peirce proves first. In the first step 
it is shown that the statement holds for y = 1,  namely that x x+ = +1 1 .  I omit 
the details from this part. For the general proposition, one may now note that 
x y y x+ = +  has been proven for y = 1. In order to conclude the statement by 
induction, it thus remains to show that if the statement holds for y n= , then 
it holds for y n= +1 . We suppose that x n n x+ = +  and consider x n+ +( )1 .  
Calculating on— or manipulating— this expression, we obtain the following 
(which Peirce would refer to as a diagram):

 x n+ +( ) =1  

 x n+( ) + =1  

 1+( ) + =x n  

 1+ +( ) =x n  

 1+ +( ) =n x  

 1+( ) +n x.  

Here we have used associativity of addition, the result that x x+ = +1 1 , , and 
the induction hypothesis. The diagram displays that if x n n x+ = + , , then 
x n n x+ + = + +( ) ( )1 1  holds. Combining this with the fact that x x+ = +1 1  and 
using the principle of induction, the result follows.

Note that the (natural) numbers are defined as a relational system, that is, as a 
collection on which is defined a certain order relation. Peirce formulates prop-
erties of relations, e.g., transitive and “quantitative” relations, in his language of 

GN GM≥ .  Finally he formulates the axiom of induction: “whatever is true of zero and which if true 
of any number N, is also true of GN the ordinal number next greater than N, is true of all numbers” 
(NE IV 2). The addition of numbers is defined as follows: (i) 0 + 0 = 0, (ii) GM + N = G(M + N), (iii) M 
+ GN = G(M + N). By successive use of these definitions and induction, he is able to prove the stated 
proposition.
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the logic of relatives in many of his papers. To mention a couple of examples, he 
expresses formally a one- one relation in “On the Logic of Number” (1881) and 
properties of transitive relations in “The Logic of Quantity” (1893).

In a collection of papers called Recreations in Reasoning dated around 1897 
Peirce defines the numbers by something very close to the Dedekind- Peano ax-
ioms. More precisely he adopts notation for what plays the role of a successor 
and states basic properties of this relation. These properties together with what 
Peirce derives as a consequence of them constitute what is now known as the 
Dedekind- Peano axioms. Another thing to mention about this system is that 
Peirce derives the principle of induction from this system, and thus calls it the 
Fundamental Theorem of Pure Arithmetic (CP 4.165). Peirce continues to define 
the relation “greater than” on this system and deduces some properties so that 
this system is comparable to the first- mentioned example of defining the natural 
numbers via an order relation.

2.2.2.  Practical Arithmetic or Demonstration That Arithmetical 
Propositions Are Analytic

The fundamental theorem in practical arithmetic, serving as the foundation for 
counting, is denoted “The Fundamental Theorem of Arithmetic.”18  It states that 
“if the count of a lot of things stops by the exhaustion of those things, every count 
of them will stop at the same number” (NE IV, 82). Peirce contrasts this to the 
Fundamental Theorem for Pure Arithmetic. In the text “Synthetical Propositions 
à Priori” (NE IV, 82– 85) he demonstrates that “5 + 7 = 12” follows from the fun-
damental proposition of arithmetic. Therefore “5 + 7 = 12” is not “synthetical” 
(but corollarial, since it follows directly from the definitions). From the funda-
mental proposition Peirce deduces the principle of associativity (A + B) + C = A 
+ (B + C) and then that the equality 5 + 7 = 12 follows. The article continues to 
prove the fundamental proposition using the language of the “logic of relatives” 
(demonstrating, according to Peirce, that it is not synthetic). The main steps are 
listed here. First a finite collection is defined. A collection, A, is finite, if when-
ever there is (here using modern notation) a one- to- one function λ : ,A A→   
then it is necessarily onto.19 (That is, there is no one- to- one correspondence 

 18 Peirce explicitly writes that the proposition 5 + 7 = 12 is analytic (NE IV, 84). He here explains 
that the proposition is analytic since it follows by necessity from the definitions. In contrast are 
propositions that he calls “theorematic,” to which we return in the second part of the chapter. See 
Levy (1997) for a discussion concerning the relation between the synthetic and analytic distinction 
and corollarial vs. theorematic proofs. See also Otte (1997) on the analytic- synthetic distinction in 
Peirce’s philosophy.
 19 In Peirce’s terminology it is expressed as “Suppose a lot of things, say the As, is such that  
whatever class of ordered pairs λ may signify, the following conclusion shall hold. Namely, if every 
A is a λ of an A, and if no A is λ’d by more than one A, then every A is λ’d by an A. If that necessarily 
follows, I term the collection of As a finite class” (NE IV, 83).



252 Jessica Carter

between A and a proper subset of A.) In the next step it is shown that if a collection 
is counted, it is finite. To count a collection, according to Peirce, means to estab-
lish a one- to- one correspondence with the objects in the collection (taken in some 
order) and an initial segment of the natural number sequence. Finally, in the last 
step, it is demonstrated that if one assumes that a count of a sequence results in two 
different numbers, and the relation “next followed in the counting by” is employed, 
then there will be no least number in the sequence. This is a contradiction.20

2.3. Foundations: Set Theory

It is clear that underlying Peirce’s conception of the various systems of numbers 
is a form of naive set theory. The same holds for his work in logic. Following 
Boole, Peirce’s algebraic logic deals with classes. As an example one may point to 
his early paper “On an Improvement of Boole’s Calculus of Logic” (1867), where 
Peirce uses letters to refer to classes of things or occurrences. It is then possible 
to define operations corresponding to addition and multiplication (and their 
inverses) on these classes (addition corresponding to, at first, union, and later 
to disjoint union). Such classes then form the basis for formulating the laws of 
arithmetic, as noted in note 13.

In later papers Peirce develops what can be denoted as versions of transfinite 
set theory along the lines of Cantor (and Dedekind)21— although he disagrees 
with Cantor on certain points. He often mentions the theory of multitudes, 
which is how he refers to cardinal numbers, and is well aware of Cantor’s work on 
set theory, but developed some ideas independently. In particular Peirce claims 
credit for two results. One is the proof of the theorem that “there is no largest 
multitude,” which in contemporary terms is that the cardinality of a set is strictly 
less than the cardinality of its power set. I return to this result later. The second 
is the definition of a finite collection as a collection for which the syllogism of 
transposed quantity holds.22 In connection with his work on logic Peirce realized 
that the validity of inference rules depends on the size of the collection they are 
applied to (see “On the Logic of Number” from 1881 or the letter to Cantor in NE 

 20 In the paper “On the Logic of number” (1881), referred to in section 10.2.2.1, a similar, although 
more complicated, proof is made.
 21 Peirce notes that his approach is closer to Cantor’s since they both start with cardinal numbers, 
whereas Dedekind is concerned with ordinals.
 22 In his later years Peirce expresses his frustration (e.g., in CP 4.331) that he has not received 
more credit for his original ideas. For one thing, he accuses Dedekind of not giving him credit for his 
definition of a finite collection. Peirce writes in 1905 that he sent his 1881 paper, where he defines a 
finite collection, to Dedekind. There is no evidence, however, that Peirce’s definition served as inspi-
ration for Dedekind since he formulated his definition of an infinite set as early as 1872 (see Ferreirós 
2007, 109).
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III(2), 772). The syllogism of transposed quantity is the following— using one of 
Peirce’s own examples:

Every Texan kills a Texan.
Nobody is killed but by one person.

Every Texan is killed by a Texan.

This syllogism is only valid when applied to finite collections (of Texans), so a 
finite collection may be defined as a collection for which this syllogism is valid. 
If one translates the premises and conclusion to expressions using functions, it 
states the same as the definition given earlier. The first premise is that there is a 
function, k : Texans Texans→ , the second that this is one- to- one. The conclu-
sion is that the function is onto.

A further thing to note is that Peirce, like others at the time, struggled to find 
a proper definition of a collection.23 Such a characterization could serve as a hy-
pothesis from which the properties of sets would follow, similar to what he had 
accomplished for the numbers. One definition offered is the following: “We may 
say that a collection is an object distinguished from everything which is not a 
collection by the circumstance that its existence, if it did exist, would consist in 
the existence of certain other individual objects, called its members, in the ex-
istence of these, and not in that of any others; and which is distinguished from 
every other collection by some individual being member of the one and not a 
member of the other; and furthermore every fact concerning a collection will 
consist in a fact concerning whatever members it may have” (NE IV, 9).

The paper “Multitude and Number,” dated 1897, presents in some detail 
Peirce’s contribution to the theory of multitudes (see CP 4.170– 226). These notes 
start out by defining a relation “being a constituent unit of ” that can be regarded 
as a membership relation. Via this relation he defines a collection, as “anything 
which is u’d by whatever has a certain quality or general description and by 
nothing else” (CP 4.171). Having defined collections, he defines the notion of 
multitude to “denote that character of a collection by virtue of which it is greater 
than some . . . others, provided the collection is discrete” (CP 4.175). A collection 
is discrete if its constitutive units are or may be distinct as opposed to a contin-
uous collection. Equality of collections is defined in terms of one- to- one rela-
tions: That the “collection of M’s and the collection of N’s are equal is to say: There 
is a one- to- one relation, c, such that every M is c to an N; and there is a one- to- one 

 23 See Dipert (1997) for a discussion of Peirce’s philosophical conception of sets. Noting the diffi-
culty of providing a characterization of a set, Dipert furthermore presents Peirce’s subtle criticism of 
Dedekind’s definition of an infinite collection. For this criticism see (CP 3.564).
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relation, d, such that every N is d to an M” (CP 4.177). Before dealing with the dif-
ferent types of multitudes, Peirce addresses a question of which kinds of relations  
are meaningful on collections, mentioning in particular what we would denote 
as trichotomy. Peirce’s classification of multitudes can be compared to Cantor’s 
treatment of cardinal numbers (Peirce also refers to his papers, e.g., in CP 4.196). 
But Peirce disagrees with his names, calling them enumerable (finite), denumer-
able (countable), primipostnumeral (first uncountable), secundopostnumeral, 
etc. When dealing with the countable collections he shows standard propos-
itions, e.g., that the product of two denumerable multitudes is a denumerable 
multitude. Furthermore he uses Cantor’s notation for cardinal numbers, i.e., 
the alef, ℵ. Whenever moving on to the next multitude, Peirce writes that the 
problem is to determine the smallest multitude exceeding the previous (CP 
4.200). For example, the section on the “primipostnumeral” begins: “Let us now 
enquire, what is the smallest multitude which exceeds the denumerable multi-
tude?” Interestingly he finds that a way to obtain a primipostnumeral collection 
is by taking the collection of subsets of a denumerable set, and so he implicitly 
accepts the Continuum Hypothesis. He shows that this has the same multitude 
as, e.g., the collection of quantities between zero and one. He also argues that the 
size of this is 2ℵ  and that in general larger multitudes can be obtained by taking 
further powers.

Taking the collection of subsets as a larger collection corresponds to Peirce’s 
theorem, namely that there is no largest multitude. Peirce seems to be particu-
larly fond of this theorem as he presents many different proofs of it. The proofs 
are often used to illustrate various points: In the “Prolegomena for an Apology 
to Pragmaticism” the proof serves as an example of “diagrammatic reasoning.” 
In other places it is given as an example of “theorematic” reasoning, something 
Peirce contrasts with “corollarial” reasoning. I return to these notions in the last 
part of the chapter.

In addition to studying multitudes, Peirce engages himself with a characteri-
zation of the continuum that he in the paper just treated argues cannot be a mul-
titude. The reason is the stated property, that there is no greatest multitude. For 
one thing Peirce finds that it is possible “in the world of non- contradictory ideas” 
to consider the aggregate of all postnumeral multitudes and that this aggregate 
cannot be a multitude. It must instead be a continuous collection. There are both 
mathematical and philosophical angles to Peirce’s thoughts on the continuum. 
Here I will make a few remarks pertaining to the mathematical ones.24 First, one 

 24 Scholars have explained how “continuity” is fundamental to Peirce’s mature philosophy; see 
Hookway (1985), Stjernfelt (2007) and Zalamea (2010). Moore (2015) evaluates Peirce’s description 
from a mathematical point of view. Dauben (1982) presents in some detail Peirce’s conception of the 
continuum from the point of view of set theory.
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may mention that Peirce’s conception of the continuum has little to do with the 
project of rigorization of analysis, which led, e.g., Weierstrass and Dedekind to 
formulate their versions of the mathematical continuum, although he is aware of 
these developments. He is critical of the replacement of infinitesimals with the 
“cumbrous” method of limits pointing to the odd formulations mathematicians 
made, such as defining a limit “as a point that can ‘never’ be reached,” stating that 
“This is a violation not merely of formal rhetoric but of formal grammar” (CP 
4.118). Furthermore he objects to the characterization of the continuous line as 
composed of points and mentions topology and projective geometry as areas 
where continuous quantity in this sense does not enter at all (see CP 4.218– 225, 
3.526).

Peirce’s and Cantor’s motivations for engaging in set theory are thus quite dif-
ferent, and both had motives and sources of inspiration besides the mathemat-
ical. It is usually said that Cantor’s initial inspiration came from analysis, where 
he worked on the conditions for unique representation of functions by trigono-
metric series. Peirce, on the other hand, was first influenced by his work in logic 
and later his interest in mathematics in general. He also had a philosophical mo-
tive, and doubly so, since mathematics (and logic) served as a foundation for his 
philosophical system.

2.4. Algebra

In this section I address another theme from what can be denoted Peirce’s use 
of the axiomatic method. More importantly, the examples from Peirce’s writings 
on algebra illustrate his emphasis on the inadequateness of the claim that math-
ematics is the “science of quantity.” He writes things like “To this day, one will 
find metaphysicians repeating the phrase that mathematics is the science of 
quantity,— a phrase which is a reminiscence of a long past age when the three 
words ‘mathematics,’ ‘science,’ and ‘quantity’ bore entirely different meanings 
from those now remembered. No mathematicians competent to discuss the 
fundamentals of their subject any longer suppose it to be limited to quantity. 
They know very well that it is not so” (NE IV, 228– 229). Furthermore, I will note 
his characterization of algebra as a system of symbols functioning as a calculus, 
i.e., a language to reason in. Part of Peirce’s knowledge of algebra stemmed 
from his father, Benjamin Peirce, including his monograph Linear Associative 
Algebra, first published in 1870, the same year as Peirce’s remarkable paper 
on the logic of relatives (that is, his “Description of a Notation for the Logic 
of Relatives, Resulting from an Amplification of the Conceptions of Boole’s 
Calculus of Logic,” CP 3.45– 149). Peirce remarks that he and his father discussed 
the contents of both with each other, writing: “There was no collaboration, but 
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there were frequent conversations on the allied subjects, especially about the 
algebra” (NE III, 526). Inspiration for this work clearly comes from the British 
algebraists and the emerging way of designing algebras by detaching symbols 
of their traditional meaning (denoting numbers), and simply focusing on the 
rules of combinations. This work had a boost from Hamilton’s introduction of 
the quaternions, where it turned out that multiplication is not commutative. 
In a sense B. Peirce’s Linear Associative Algebra can be seen as a generalization 
of the work of Hamilton, dealing in general with systems— or algebras— of 
expressions formed as linear combinations of a given number of elements. In 
C. S. Peirce’s writings there are numerous examples from linear associative al-
gebra, but the examples to be considered here concern the imaginary numbers 
and permutation groups.

In a section of the paper “The Logic of Quantity” Peirce discusses the imagi-
nary number i . This (long) paper starts out with the criticism of Kant’s claim that 
mathematical propositions are synthetic, as referred to in section 10.2.2.25 Peirce 
starts by praising Cauchy for giving the first “correct logic of imaginaries,” but 
regrets that the rule- of- thumbists “do not understand it to this day” (CP 4.132). 
They object that there cannot be a quantity that is neither positive nor negative 
and that the square of a quantity is always positive. Despite this Peirce explains 
how it is possible to introduce a quantity whose square is negative. The mathe-
matician “would reason indirectly: that is the mathematician’s recipe for every-
thing” (CP 4.132). The algebraist simply states that he needs a quantity whose 
square root is −1, noting: “there is no such thing in the universe: clearly then, 
I must import it from abroad” (CP 4.132). Peirce’s explanation displays his use of 
the axiomatic method. He lists the fundamental properties of numbers26 (quan-
tities), stating that “If there is one of those laws which requires a quantity to be ei-
ther positive or negative, find out which it is and delete it. If you have a system of 
laws which is self- consistent, it will not be less so when one is wiped out.” Peirce 
deduces that the property “(16) x > 0  or x < 0  or x = 0” is required in order to 
prove that the square of all (nonzero) numbers is positive. The conclusion is that 
if this property is deleted, one may introduce the hypothesis that there is a quan-
tity, i , defined as the square root of −1. The symbols so introduced have no other 
meaning than given by the hypotheses,27 i.e., the meaning of i  is that i2 1 0+ =

 25 “The Logic of Quantity” is dated 1893. It was supposed to be included in Peirce’s book The Grand 
Logic. It is a long paper starting out with criticisms of the positions of Kant and Mill on mathematics. 
The ensuing sections deal with the logic of quantity, that is, expressing properties of quantitative 
relations in his language of relations and deriving their consequences. Toward the end are sections 
treating the imaginary quantities, quaternions, and a section of measurement and infinitesimals.
 26 The listed properties of quantities include, for example, the commutative and associative prop-
erties of addition and multiplication and properties of the relation “less than.”
 27 In CP 4.314 a similar statement is made, i.e., that symbols have no meaning other than that we 
give them. The example in this case concerns developing an algebra of three elements.
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: “the meaning of a sign is the sign it has to be translated into” (CP 4.132). In this 
way the system of symbols of algebra becomes a calculus; “that is to say, it is a 
language to reason in” (CP 4.133). He continues: “To say that algebra means any-
thing else than just its own forms is to mistake an application of algebra with the 
meaning of it” (CP 4.133).

In order to define a complex number, reference to numbers (and so quantities) 
is required. But a complex number goes beyond quantities since relations must 
be introduced that do not fulfill the properties of relations defining quantities, 
e.g., transitivity and the like: “[It] is readily seen that what is called an imaginary 
quantity or a complex quantity is not purely quantity” (NE IV, 229). To show 
that there are examples from mathematics that have nothing to do with quantity 
whatsoever, Peirce presents the notion of a group: “By a ‘group,’ mathematicians 
mean the system of all the relations that result from compounding certain rela-
tions which are fully defined in respect to how they are compounded” (NE IV, 
229). As an example of a group where these relations have nothing to do with 
quantity he presents what is essentially a group of permutations, where elements 
are permutations on the four letters A, B, C, and D. The group is presented as 
containing relations that, composed by themselves four times, give the identity. 
That is, if l  represents such a relation, it fulfills that l4 = Id. One such relation is 
D A C B A C B D: : : :+ + + , meaning that that D maps to A A,  to C, C to B, and 
finally B to D. Today this could be written in cyclic notation as ( )DACB . He notes 
there are more such relations, 24 in total, that they have converses (i.e., inverses), 
and refers to the product of such relations— which he notes has a logical meaning 
having nothing to do with quantity (similarly to the use of “+” above in the pre-
sentation of the permutation). The totality of these 24 relations thus forms a 
group. Furthermore he talks about smaller sub- collections of the 24 elements 
that will also form a group (NE IV, 227– 234, 1905– 6).

2.5. Conclusions: Peirce, Pre- structuralist Themes,  
and Relations

Summing up on Peirce’s adherence to a number of pre- structuralist views, I have 
noted Peirce’s distinctions between physical geometry and mathematical geom-
etry on the one hand and practical and pure arithmetic on the other. Regarding 
the first distinction, he remarks that the hypotheses in pure geometry are studied 
irrespective of whether they apply to the real world or not. I showed that it is 
possible to find similar comments referring even to practical arithmetic. In the 
writings on algebra I also noted that Peirce several times explicitly rejects the 
characterization of mathematics as the science of quantity, producing examples 
that have nothing to do with quantity.
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Furthermore I  have shown that Peirce uses formal methods in arithmetic 
to determine which hypotheses are sufficient in order to derive the properties 
in question. One aim was to argue that the statements of arithmetic are logical 
consequences of certain definitions, or hypotheses. His use of the “axiomatic 
method” in arithmetic can be likened to the process described by Hilbert ([1918] 
1996) where, given a collection of propositions, a certain collection of axioms 
can be identified so that the given propositions can be derived from them— what 
Hilbert calls “deepening of foundations.” This seems to fit well with Peirce’s pro-
cedure. His method thus has two interrelated aims. Focusing on reasoning and 
inference rules, the point is on the one hand to formulate “a few primary prop-
ositions” of the numbers so that properties of them follow by necessity. On the 
other hand, focusing on the propositions, the aim is to determine the postulates 
sufficient for deriving the propositions of arithmetic. Peirce’s discussions of the 
meaning of “postulates” and “hypotheses” reflect these concerns: “For what is 
a postulate? It is the formulation of a material fact which we are not entitled to 
assume as a premiss, but the truth of which is requisite to the validity of an in-
ference” (CP 6.41). A further similarity to Hilbert’s method is Peirce’s claim that 
there are multiple ways of organizing the propositions of arithmetic (cf. CP 4.93). 
One could take as basic the propositions defining the numbers via the successor 
function or the definition of numbers as a certain ordered collection.

In the case of the imaginary quantity, I indicated how Peirce traces out the 
consequences of a body of fundamental properties of the numbers, in order to 
determine which of these contradicts a desired property (i.e., that the square of 
a quantity is negative). In this case, he mentions the property of a collection of 
axioms of “being internally consistent.” It does not seem, however, that he is con-
cerned with further metamathematical considerations such as consistency in ge-
neral, independence, and completeness. He appears to be quite confident in the 
mathematical method, writing in numerous places “in mathematics there are no 
mistakes and no (deep) disagreement” (CP 3.426).

Peirce’s use of formal methods as well as his distinction between pure and ap-
plied versions of mathematics places him as an early modernist, characterized 
by J. Gray (2008) as “an autonomous body of ideas, having little or no outward 
reference, placing considerable emphasis on formal aspects of the work and 
maintaining a complicated— indeed anxious— rather than a naïve relationship 
with the day- to- day world, which is the de facto view of a coherent group of 
people, such as a professional or discipline based group that has a high sense of 
what it tries to achieve” (1).

After the many of examples of the mathematics of Peirce we may better un-
derstand what is meant when stating that a result or theory is based on the logic 
of relations. The first thing to note is that Peirce finds that relations of various 
sorts play a key role in the definition of mathematical objects. Having seen the 
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examples presented here, we must concur. We have seen that, for example, an 
order relation is used to define the numbers and a bijective correspondence is 
used to define multitudes as well as “a count.” The properties of these can be 
formulated in his language of the logic of relations. Second, to Peirce the main 
activity of mathematics is reasoning, that is, the practice of drawing necessary 
conclusions. Logic, according to Peirce, includes the study of (the methods of) 
such inferences. Peirce notes that he together with other logicians like de Morgan 
(NE IV, 1) early realized that the previous versions of logic came up short when 
trying to capture the structure of the statements of mathematics.28 To formu-
late definitions as well as statements in mathematics thus requires reference to 
relations, so reasoning in mathematics must take into account how one draws 
inferences from statements involving relations.

3. Philosophy: Diagrammatic Reasoning

I now turn to focus on how Peirce proposes the necessity of reasoning is achieved, 
namely through diagrammatic reasoning. The description given here draws 
mainly on Peirce’s 1906 paper “Prolegomena for an Apology to Pragmatism” 
(PAP), published in The Monist (reprinted in CP 4.530– 582), and a draft of this 
(NE IV, 313– 330).29 But others of Peirce’s writings will also be referred to. My 
presentation focuses on how diagrammatic reasoning applies to mathematics. 
It thus complements the contributions of Stjernfelt (2007) on diagrammatic rea-
soning in general and Shin’s (2002) account of his existential graphs. I also refer 
to Marietti (2010) for a more detailed account than I am able to give here.

There are two key points to bear in mind when addressing “diagrammatic rea-
soning.” The first is that Peirce thinks of a diagram as a certain type of sign. An im-
portant property of this sign, the diagram, is that it is observable. Peirce explains 
that the necessity of the conclusion of a proposition is established because it can 
be perceived in the diagram. The second key point is that his definition of a “dia-
gram” applies to objects that one would not normally count as diagrams. I men-
tion three possible sources of inspiration for Peirce’s view of reasoning as linked 
to observing diagrams: First, Peirce’s work on logic contributed to this view. I will 
return to this point at the end of this section. Second, the reasoning based on 

 28 In Peirce’s early papers on logic (see, e.g., volume 3 of CP) there are sections on the Aristotelian 
syllogisms. But these are not used when he turns to his algebra of logic. One may also find comments 
as to the shortcomings of the syllogisms; see CP 4.426 in relation to Euclid’s Elements.
 29 The last part of PAP consists of a presentation of the existential graphs. The paper also includes 
an explanation of which types of signs these graphs are. The iconic existential graphs were suppos-
edly meant to pave the way for a proof of his pragmaticism: “For by means of this, I shall be able al-
most immediately to deduce some important truths of logic, little understood hitherto, and closely 
connected with the truth of pragmaticism” (CP 4.534). See also EP 2, xxvvii– xxix and Shin (2002).
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diagrams in Euclid’s Elements— a source Peirce is familiar with and often cites 
from— proceeds in a way that is compatible with the description of diagram-
matic reasoning. Third, Peirce explicitly mentions Kant in connection with the 
characterization of mathematical reasoning. According to Kant reasoning in 
mathematics proceeds by constructions, or the drawing of diagrams, formed in 
intuition. Peirce remarks that this view is partially correct, since it focuses on 
the method of mathematics rather than stating what mathematics is about, and 
he agrees that mathematics deals with constructions— but not in intuition (CP 
3.556, 1898). Peirce claims the necessity of mathematical reasoning is due to the 
procedure of constructing “a diagram, or visual array of characters or lines. Such 
a construction is formed according to a precept furnished by the hypothesis. 
Being formed, the construction is submitted to the scrutiny of observation, and 
new relations are discovered among its parts, not stated in the precept by which 
it was formed, and are found, by a little mental experimentation, to be such that 
they will always be present in such a construction” (CP 3.560). That is, although 
he agrees with Kant that reasoning is done by constructions, as I have noted, 
he disagrees with Kant that this construction invokes intuition and depends on 
“thought”— although a diagram might be considered in one’s imagination. As 
noted, it is essential for Peirce that the relations discovered are observed.30

When Peirce refers to a “diagram” he does not only understand it in its 
common sense, that is, as a figure mainly composed of points, lines, and circles, 
since he also describes it as a “visual array of characters or lines.” To Peirce “di-
agram” refers to a sign that represents (intelligible) relations: “a Diagram is an 
Icon of a set of rationally related objects  .  .  . the Diagram not only represents 
the related correlates, but also, and much more definitely represents the relations 
between them” (NE IV, 316– 317, 1906). Mentioning an “icon,” he refers to his 
semiotics. The next section therefore extracts a few points from his theory of 
signs. This introduction will be followed by an example of a proof together with 
a further elaboration of how to understand his characterization of necessary rea-
soning as diagrammatic reasoning.

3.1. Signs: Tokens and Types; Icons, Indices, and Symbols

Early on Peirce attached importance to signs, conceiving of them as the vehicles of 
thought. His theory of signs is interrelated with his categories (at first developed 
as a response to Kant’s 12 categories, see, for example, CP 1.545– 567 from 1867). 
According to Peirce there are only three types of categories. The categories consist 

 30 That relations are seen to hold because they are observed brings mathematics on a par with nat-
ural science. See Marietti (2010) for an elaboration of this point.
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of feeling, reaction, and law— or as he also called them, possibility, existence, and 
habit.31 One way Peirce arrives at these categories is in terms of his logic of relations. 
Any given relation applies to a fixed number of relata, and so a relation may be mo-
nadic, dyadic, or triadic, and so on. Peirce claimed that he could prove that higher- 
order relations are reducible to relations taking only one, two, or three relata.32 The 
monadic relations (predicates) correspond to the first category (feeling or quality), 
dyadic to the second (reaction or existence), and irreducible triadic relations to the 
third (law or habit). Later Peirce referred to the categories more abstractly in his 
phaneroscopy as firstness, secondness, and thirdness.

A sign, according to Peirce, is an irreducible triadic relation (corresponding to 
the three categories): it relates the sign, the object that is represented by the sign, 
and the interpretant of the sign. The last is important, in that Peirce holds that a 
sign is not a sign unless it is interpreted as such: “a sign (stretching that word to 
its widest limits), as anything which, being determined by an object, determines an 
interpretation to determination, through it, by the same object)” (PAP CP 4.531). 
In Peirce’s early classification of signs, each of these three, that is, the sign, the re-
lation between the sign and object, and the interpretant, is considered in terms of 
the previously mentioned three categories: possibility, existence, and law.33 I only 
mention two of these here. Peirce’s first division concerns the nature of the sign 
itself. This division includes the well- known notions of a token and a type: “A 
common mode of estimating the amount of matter in a MS. or printed book is to 
count the number of words. There will ordinarily be about twenty the’s on a page, 
and of course they count as twenty words. In another sense of the word ‘word,’ 
however, there is but one word ‘the’ in the English language; and it is impossible 
that this word should lie visibly on a page or be heard in any voice, for the reason 
that it is not a Single thing or Single event. It does not exist; it only determines 
things that do exist. Such a definitely significant Form, I propose to term a Type. 
A Single event which happens once and whose identity is limited to that one hap-
pening or a Single object or thing which is in some single place at any one instant 

 31 The paper “What Is a Sign” (Peirce 1894, EP 2, 4– 10) explains the three categories in terms of 
possible ways experience can be had: The first, most immediate, is feeling, e.g., thinking about the 
color red. Second is reaction, as when we are startled by a loud noise and try to figure out its origin. 
The second category thus requires “two things acting on each other” (EP 2, 5). Third is thought, or 
reasoning, formulating a law based on our immediate experiences and actions. This is described as 
“going through a process by which a phenomenon is found to be governed by a general rule” (EP 2, 5). 
Note also that the third category mediates between the other two. See also Hoopes (1991).
 32 See Misak (2004, 21), Burch (1997), and the paper “Detached Ideas Continued and the Dispute 
between Nominalists and Realists” (NE IV, 338– 339).
 33 Around 1903 (see Syllabus 1903, published in EP 2, 289– 299) Peirce presents his classification 
of signs into 10 different classes. Later, after introducing a more elaborate theory of interpretants 
and a distinction between the immediate and the dynamic object, he is able to produce 66 classes of 
signs. Peirce refers to both of these additions in PAP. In addition to PAP, see Hoopes (1991) and Short 
(2007) for an elaboration of the development of Peirce’s semeiotics. Bellucci and Pietarinen (n.d.) 
give an account in relation to logic and Carter (2014) in relation to use in mathematics.
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of time, such event or thing being significant only as occurring just when and 
where it does, such as this or that word on a single line of a single page of a single 
copy of a book, I will venture to call a Token” (CP 4.537). The sign corresponding 
to the first category is named a quality or a tone. A diagram is to be taken as a 
type, but a type can only be shown through a replica of it, that is, a token.

The second division is his division of signs into icons, indices, and symbols. They 
appear as answers to the question: In what capacity does the sign represent the ob-
ject? The sign may represent because of similarities (likeness) between the object 
and the sign, in which case the sign is an icon: “Anything whatever, be it quality, 
existent individual, or law, is an icon of anything, insofar as it is like that thing and 
used as a sign of it” (EP 2, 291). Simple examples of icons used in mathematics are 
geometric objects, such as drawn triangles and circles. Icons do not only represent 
by visual resemblance; an important, and a characterizing, property of the icon 
is that it reveals new facts about the object that it represents. As such they are es-
sential to mathematics: “The reasoning of mathematicians will be found to turn 
chiefly upon the use of likenesses, which are the very hinges of the gates of their 
science. The utility of likenesses to mathematicians consists in their suggesting, in 
a very precise way, new aspects of supposed states of things” (Peirce 1894, 6). As 
will be shown below, icons may represent relations. Note also that most icons used 
in mathematics involve conventional (symbolic) elements.34 If I wish to prove 
something about an odd number, I could represent it iconically as “ 2 1⋅ +k ,” for 
some number k, using the symbols “⋅” and “+”. Subsequently I will represent the 
statement that “a number divides another number” by the icon “ p k a⋅ = .”

The index represents its object because of some existent (causal) relation be-
tween the two. Peirce mentions as an example a weathercock, which, as a result 
of the wind blowing, tells us about the direction of the wind, so that the weather-
cock becomes an index of the direction of the wind. The type of index just men-
tioned represents due to some causal relation between the sign and the object. 
A pure index represents because of some purposeful association of it with what it 
represents, as one does in mathematics. Peirce mentions the geometers assigning 
of letters to geometric figures, naming places on such figures, so that one may 
reason about these places, points, lines, etc., via these letters.35 This is obviously 
done in mathematics in general, as will be noted in the examples to follow.

 34 Peirce (CP 3.363) refers to the shading in Venn diagrams as a symbolic, or conventional ele-
ment. See Carter (2018) for further examples of iconic representations in mathematics.
 35 In a paper published in 1885 Peirce characterizes an index as follows: “the sign [index] signifies 
its object solely by virtue of being really connected with it. Of this nature are all natural signs and 
physical symptoms. I call such a sign an index. . . . The index asserts nothing; it only says ‘There!’ It 
takes hold of our eyes, as it were, and forcibly directs them to a particular object, and there it stops. 
Demonstrative and relative pronouns are nearly pure indices, because they denote things without 
describing them; so are the letters on a geometric diagram, and the subscript numbers which in al-
gebra distinguish one value from another without saying what those values are” (CP 3.361).
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Finally, the sign could represent by virtue of a law, or a habit, stating that the 
particular sign refers to a certain kind of object. These are symbols. Examples of 
symbols are words; in mathematics we use symbols like “+,” “π,” etc.

3.2. Diagrammatic Reasoning

I now return to Peirce’s description of the process of reasoning in mathematics. 
Reasoning consists of three steps: “following the precepts,” (1) one constructs a 
diagram representing the conditions of a proposition and (2) one “experiments” 
on it until (3) one is able to read off the conclusion from the resulting diagram. 
This description seems to fit well (part of) the proof procedure in Euclid’s 
Elements. Take, for example, proposition I.32, where it is proved that the sum 
of angles in a triangle is equal to two right angles. In order to prove this, a tri-
angle ABC is drawn. In the next step, “experimenting on it,” one extends the base 
line, say AB, and, from the starting point of this extended line, B, one draws a 
line parallel to AC. Reasoning in this diagram, one comes to see that the con-
clusion holds. What is remarkable is that Peirce finds that the above character-
ization also holds for mathematics in general, where the notion of “diagram” 
extends according to the preceding usage: “for even in algebra, the great purpose 
which the symbolism subserves is to bring a skeleton representation of the re-
lations concerned in the problem before the mind’s eye in a schematic shape, 
which can be studied much as a geometric figure is studied” (CP 3.556). (See also 
NE IV, 158.) The example of diagrammatic reasoning given by Peirce in PAP is 
the proof of the above- mentioned theorem that there is no largest multitude.36 
I present instead a (simpler) algebraic proof, proving that “if an integer divides 
two other integers, then this integer divides any linear combination of the two.”37 
Introducing indices, a b,  and p standing for the numbers and the symbol “|” to 
denote “divides,”38 the proposition can be expressed as

For p a,  and b being integers, if p a|  and p b|  then p sa tb| +  for any integers  
s and t.

 36 Peirce has a number of different formulations of this theorem in PAP, for example, “the single 
members of no collection or plural, are as many as are the collections it includes, each reckoned as an 
single object” (CP 4.532).
 37 Note that this example is not taken from Peirce. It is introduced by the author in order to explain 
“diagrammatic reasoning.”
 38 𝑛|𝑚 means that there exists a number 𝑘 such that 𝑘𝑛 = 𝑚. Using this notation it is for example the 
case that 2|8, −2|8, and 3|−39.
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In order to prove this theorem we follow the three steps given previously. First 
we have to “form a diagram according to a precept of the hypothesis.” That is, 
considering the antecedent of the proposition and translating the definition(s) 
used, we write down, in this particular case, the relations stated to hold between 
the numbers p a,  and p b,  respectively (cf. “calculating with a system of alge-
braic symbols”). The diagram thus obtained is that there exist numbers k and l  
such that

kp a= and lp b= .

In the second step this diagram is experimented on; the signs are manipulated by 
using relevant (and valid) algebraic formulas:

If kp a=  and lp b=  then skp sa=  and tlp tb= .

Combining (adding) the last two we see that

 sa tb skp tlp sk tl p+ = + = +( ) . 

Noting that sk tl+  must be an integer since s, k, t, and l are all integers, one is able 
to observe that p divides the linear combination of a and b. It is thus possible to 
read off the conclusion of the proposition in the final line— corresponding to the 
third step.

Combining the preceding and leaving out the explanatory text so that it is in 
fact a “visual array of characters” makes it easier to appreciate why Peirce insists 
on calling it a diagram. p a|  and p b|  is represented as

kp a=  and lp b.=
kp a=  and lp b=  implies that skp sa=  and tlp tb= .
sa tb skp tlp sk tl p+ = + = +( ) .

Observation of the last line tells us that p divides the linear combination, which 
is the conclusion.

A further, and most important, point is that by going through this diagram39 
one should be able to see that the conclusion follows by necessity from the 
stated condition. Relations referred to thus subsist on two different levels, as 
indicated by the following explanation: “a Diagram is an Icon of a set of ration-
ally related objects . . . the Diagram not only represents the related correlates, 

 39 In fact Peirce urges the reader to construct a diagram herself while following the instructions of 
the proof.
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but also, and much more definitely represents the relations between them” (NE 
IV, 316– 317, 1906, my emphasis). In the first stage of constructing the diagram 
relations referred to are relations that hold between numbers, the main relation 
used being the relation of “a number dividing another.” At the second level are 
what can be denoted logical relations. Recall that a major interest for Peirce 
when studying mathematics was to extract the principles of drawing necessary 
conclusions. The stated purpose of the “Prolegomena” is precisely to argue that 
all necessary reasoning is diagrammatic reasoning, assuming that mathemat-
ical reasoning is necessary reasoning. What is achieved by the process of dia-
grammatic reasoning is that one comes to see the necessary relation that holds 
between the hypothesis and the conclusion of the proposition, that is, what 
I here refer to as a logical relation. In support of this view, in a passage telling 
us how to do proofs in mathematics (again referring to this as an activity) by 
constructing a diagram, making alterations to it, and comparing these two 
diagrams, Peirce writes that finally “the book . . . will make it quite plain and 
evident to you that the relation always will hold exactly” (NE IV, 200). This last 
use of “relation” refers to the logical relation in question.40 Recall also the proof 
given in section 2.2 that addition is commutative. I remarked that the signs 
produced constituted a diagram. The purpose of that diagram was to allow us 
to see (or deduce) that if x n n x+ = +  then x n n x+ + = + +( ) ( )1 1  follows by 
necessity.

In the different versions of PAP, Peirce analyses which type of sign is involved 
in diagrammatic reasoning in order to address a number of issues, such as how 
the necessity of reasoning, and generality of the conclusions, are obtainable.41 In 
these papers Peirce mentions his extended theory of interpretants.42 According 
to Peirce the drawn diagram is a sort of hybrid sign. He stresses that a diagram is 
an icon, but of a special kind. A diagram shows that a consequence follows “and 
more marvellous yet, that it would follow under all varieties of circumstances 
accompanying the premisses” (NE IV, 318). Peirce explains that this is achieved 
since diagrams are schemas. Being drawn and so capable of being perceived, 
they are tokens. But they are at the same time representations of symbolic 
statements (actually the interpretant of a symbol) and so general: the diagrams 

 40 As further support of this claim, the paragraphs CP 4.227– 240 link Peirce’s characterization of 
mathematics as the science that draws necessary conclusions with a description of diagrammatic 
reasoning.
 41 See Stjernefelt (2007, chap. 4) for a more elaborate explanation of these issues.
 42 The extension made by Peirce includes different interpretants, in PAP named the immediate, 
dynamic, and final interpretant. The immediate interpretant is how it “is revealed in the right under-
standing”— the meaning of the sign; the dynamic interpretant is the actual effect the sign has on some 
interpretant. The final interpretant is “the manner in which the Sign tends to represent itself to be 
related to its Object” (CP 4.536). Another addition is that all of these can partake in either firstness, 
“emotional,” secondness, “energetic,” or thirdness, “logical” or “thought” (CP 4.536).
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are representations of (symbolic) statements like “The sum of the angles of a tri-
angle is equal to two right angles” or “If a number divides two numbers, then it 
will divide any linear combination of those two numbers.” In Peirce’s words: “the 
Iconic Diagram and its Initial Symbolic Interpretant taken together constitute 
what we shall not too much wrench Kant’s term in calling it a Schema, which is 
on the one side an object capable of being observed while on the other side it is 
General” (NE IV, 318).

Referring to “experimenting on a diagram” brings us to Peirce’s distinction 
between corollarial and theorematic reasoning. In corollarial reasoning, the 
consequences of the hypotheses can be read off directly from the constructed di-
agram. Furthermore the proof only makes use of the definitions of the concepts 
presented in the proposition, whereas this is not the case for theorematic rea-
soning. Corollarial reasoning “consists merely in carefully taking account of the 
definitions of the terms occurring in the thesis to be proved. It is plain enough 
that this theorematic proof we have considered differs from a corollarial proof 
from a methodeutic point of view, in as much as it requires the invention of an 
idea not at all forced upon us by the terms of the thesis” (NE IV, 8). The theore-
matic proof referred to is a proof of his theorem that the cardinality of a collec-
tion is less than the cardinality of its power set. Another example of a theorematic 
proof is the proof of Euclid I.32, since additional lines have to be drawn.43 The 
deductions of the properties of numbers are corollarial proofs (as well as the ex-
ample mentioned in note 18).

I finally note that Peirce also worked with diagrams (closer to the ordinary 
meaning of diagram) in relation to logic. In several places Peirce notes the sche-
matic shape of the presentation of arguments (as in the syllogism of the transposed 
quantity). As early as 1885 Peirce refers to syllogisms as “diagrams,” stating that 
their purpose is to make it possible to observe the relations among the parts (CP 
3.363). The reason this has not been noticed before, Peirce assumes, is that the 
constructions of logic are so simple that they are overlooked: “Why do the logicians 
like to state a syllogism by writing the major premiss on one line and the minor 
below it, with letters substituted for the subject and predicates . . . he has such a 
diagram or a construction in his mind’s eye” (CP 3.560, 1898). Later, in Peirce’s so- 
called diagrammatic period in logic,44 the representations of logical propositions 
and inferences were diagrams, that is, figures composed of lines. See Figure 1 for an 
example of such a diagram (that is also an example of an existential graph).45

 43 Various interpretations have been proposed regarding the distinction between theorematic and 
corollarial reasoning; see Hintikka (1980) for a logical interpretation and Levy (1997) for a specific 
interpretation concerning the theorem that there is no largest multitude.
 44 See Dipert (2004).
 45 In this period Peirce studied the well- known diagrams of Euler and Venn making it possible 
to visualize the validity of arguments and used these as inspiration for developing his own systems 
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In conclusion note the following. When writing down proofs in mathematics 
something like a diagram is formed. They are not exactly like the diagrams used 
in the Elements, but (relations between) concepts are represented in a sche-
matic form that allows us to do things to them so that new relations become 
visible. Furthermore when Peirce managed to formulate his systems of logic, 
as in Figure 1, the representations are composed of letters and lines. In PAP 
Peirce comments that if all steps of a proof were to be spelled out, they would 
be reproducible by his graphs (NE IV, 319). The conclusion is that reasoning in 
mathematics involves (representations of) relations and that in the existential 
graphs these are displayed using diagrams so mathematical reasoning (which is 
necessary reasoning) is diagrammatic reasoning.

4. Structuralist Elements

In the introduction I proposed that Peirce could be interpreted as a methodo-
logical structuralist. Reck and Price (2000) characterize such a position by two 
principles. The first states that mathematicians “study the structural features of ” 

of logic, his existential graphs (see, e.g., CP 3.456– 498, CP 4.347– 371, and Bellucci and Pietarinen, 
n.d.). Besides Euler and Venn diagrams, other visual tools used in mathematics, chemistry, and their 
combination served as inspiration for these systems. In the mid- 19th century “diagrammatic” nota-
tion was being developed and used both in chemistry and in graph theory. It was even proposed by 
Sylvester (a colleague of Peirce at Johns Hopkins) and Clifford to combine work in chemistry and the 
algebra of graphs around 1877 (see Biggs et al. 1976). Peirce was aware of the developments in both 
areas as well as the proposed link.

Man

Animal

Figure 1 This diagram represents the statement “Any man would be an animal” or 
that nothing is both a man and not an animal. A box around p means “not p.” A line 
joining p and q means p is related to q, in the sense that “some p is q.”
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the entities assumed in their everyday practices, such as the various number sys-
tems, algebraic structures, various spaces, etc. Second, “it is (or should be) of 
no real concern in mathematics what the intrinsic nature of these entities is, be-
yond their structural features” (Reck and Price 2000, 45). Besides the emphasis 
on structure and structural features, this description resonates well with Peirce’s 
emphasis that a mathematician only cares about deriving the consequences of 
her hypotheses. I have furthermore shown that the hypotheses, or definitions, 
formed by Peirce often characterize objects (e.g., the number systems) as rela-
tional systems. But I have also stressed, in particularly referring to the numbers, 
that Peirce found that there are different ways to define them, that is, there are 
multiple ways to logically organize the theory of numbers.

I have noted that Peirce did not seem to be interested in the foundations 
of mathematics, being convinced of the rigorousness of the reasoning of 
mathematicians and placing mathematics at the top of his philosophical system. 
These three elements, i.e., an “anti- foundationalist” view of mathematics,46 the 
methodological structuralism, and the (relativism of) logical structure can also 
be found in the contemporary categorical structuralist view of Steve Awodey 
(2004). One component of Awodey’s position is to “avoid the whole business of 
‘foundations’ ” (Awodey 2004, 55). Categorical structuralism rejects the idea of 
having a foundational system consisting of enough objects of some type, e.g.. 
sets, from which all mathematical objects may be built, and a collection of “laws, 
inference rules, and axioms to warrant all of the usual inferences and arguments 
made in mathematics about these things” (Awodey 2004, 56). In contrast 
structuralists advocate the “idea of specifying, for a given theorem or theory only 
the required or relevant degree of information or structure . . . for the purpose at 
hand, without assuming some ultimate knowledge, specification, or determina-
tion of the ‘objects’ involved. The laws, rules, and axioms involved in a particular 
piece of reasoning, or a field of mathematics, may vary from one to the next, or 
even from one mathematician or epoch to another” (Awodey 2004, 56). Awodey 
illustrates this top- town, or schematic, approach by the following example. Say 
one wishes to prove that if x2 1= −  then x x5 = .. The result follows in a field and 
a consequence is that i5 1= − . A proof can also be found based on the axioms of 
a ring. Assuming even less, it can be proved in a semi- ring with identity that 
x x x2 1+ + =  implies x x5 = . From a foundational (bottom up) point of view, 
one has to presuppose that the construction of the complex numbers as well as 
rings and semi- rings have been made in order to state these propositions. From 
a structuralist perspective the propositions are schematic statements about any 
structure (ring or semi- ring) fulfilling the appropriate conditions. There are also 
differences between Awodey’s categorical structuralism and Peirce’s position. 

 46 I borrow this term from Pietarinen (2010).
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To mention one, the basic entity of categorical structuralism is the morphism, 
whereas Peirce still refers to relations and their relata. Another is Peirce’s study of 
mathematics in order to extract, for logic, its method of drawing valid inferences. 
It thus appears that he believes in the objectivity and reality of such inference 
rules. He would presumably not, as does Awodey, accept the arbitrariness of 
inference rules.

5. Conclusion

In this chapter I  have documented Peirce’s impressive knowledge of and 
contributions to the mathematics of his time. Examples of his contributions to 
geometry, set theory, and the foundations of arithmetic and his discussions on 
algebra have been given. These examples also served to illustrate a number of 
pre- structuralist themes, such as Peirce’s distinction between pure and applied 
mathematics, e.g., his claim that applied geometry does not belong to mathe-
matics. In addition I mentioned his objection to the characterization of mathe-
matics as the science of quantity.

In a number of papers Peirce characterizes mathematics as the science that 
draws necessary conclusions from stated hypotheses. In the case of arithmetic 
we saw that he was able to deduce the properties of numbers from a system of 
axioms or, as he referred to them, “a few primary propositions.” A key element of 
Peirce’s position was to acknowledge the role of relations in mathematics both as 
used in the definition of mathematical objects (such as the numbers) and when 
formulating mathematical statements in general. We saw, e.g., that he defines the 
natural numbers as a relational system, and I noted that he formulates the prop-
erties of relations in his language of the logic of relatives. I have also presented 
Peirce’s notion of “diagrammatic reasoning,” that is, his explanation of how 
the necessity of reasoning is achieved by constructing, experimenting on, and 
observing diagrams. In this connection I proposed that these diagrams allow us 
to see the necessary relation, that is, a logical relation, holding between the ante-
cedent and conclusion of a proposition.

In the final section I  identified two structuralist positions that have some 
common elements with Peirce’s views as presented here. Peirce defined a system 
of quantity as a relational system, that is, as collections on which is defined a spe-
cific order relation. His motive was to show that the properties of numbers follow 
by necessity from this characterization. That is, in structural terms, one may 
say that they are structural properties. In this way Peirce may be construed as a 
methodological structuralist. Furthermore I find that his anti- foundationalism, 
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the claim that there are multiple ways to organize a mathematical theory and his 
insistence that mathematics concerns hypotheses, led to a view that is similar in 
spirit to categorical structuralism.
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