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1. Introduction

A fundamental tension in philosophy of mathematics, one that goes back at 
least to Plato’s Meno, is that between a view of mathematical entities as being ab-
stract in nature and a view of knowledge as being of concrete (or causal) origin. 
Considered independently, each view can be quite appealing, but their combi-
nation raises the serious difficulty of giving a coherent account of mathematical 
knowledge. Abandoning, or at least substantially weakening, one of these views 
is a common move to resolve this dilemma. One thinker who resisted the urge to 
give up his conviction of the empirical origins of human knowledge was Moritz 
Pasch (1848– 1930).

Throughout his life Pasch referred to his own philosophical outlook as em-
piricist. When he proclaimed in the introduction to his Vorlesungen über neuere 
Geometrie that “geometry is seen as nothing else but a part of natural science” 
(Pasch 1882b, 3), he meant this to be understood literally, in the sense that mathe-
matical theories are based on empirical concepts. Geometric points, for example, 
are introduced at the beginning of his book as those physical objects that cannot 
be divided any further within the limits of what we can observe. Likewise, Pasch 
rejects the common demand that geometric lines should be imagined as being 
infinitely extended, since this precludes them from being (at least in principle) 
perceptible objects. Instead, he considers finitely extended line segments to be 
among the primitive objects of geometry (Pasch 1882b, 4). For him, all mathe-
matical propositions, i.e., not only those of geometry, are ultimately formulated 
on the basis of observations of physical objects, and he maintains that we can 
understand the basic mathematical terms only by indicating appropriate objects 
(“den Hinweis auf geeignete Naturobjecte,” Pasch 1882b, 16).1 The further devel-
opment of mathematics then proceeds through the deduction of propositions 

 1 In this context, one also speaks of “ostensive definitions” of the primitive terms.
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and the definition of new concepts, and both of these processes sustain the epis-
temological status of their starting points.

Pasch’s empiricist view of mathematics appears to be at odds with one of the 
basic tenets of structuralism, according to which mathematics is about purely 
abstract structures. Nevertheless, I will argue in the remainder of this chapter 
that Pasch’s mathematical work drove him to adopt an approach that can justly 
be called “structuralist,” in spite of the fact that his deeply held philosophical 
convictions seem to be incompatible with it. In order to do this, I will begin with 
discussing the notion of “methodological structuralism” (Reck 2003) and pro-
pose two minimal conditions that an approach has to satisfy to qualify as being 
structuralist (section 2). I will then look in more detail at Pasch’s work in geom-
etry (section 3) and the foundations of arithmetic (section 4) to ascertain that it 
does indeed satisfy the proposed conditions for minimal methodological struc-
turalism. Thus, I conclude that Pasch’s approach has its rightful place in an ac-
count of the prehistory of mathematical structuralism.

2. Minimal Methodological Structuralism

The notion of “methodological structuralism” was introduced by Reck (2003, 
371) in order to distinguish the more ontologically oriented views on the na-
ture of mathematics, like those expressed by Resnik (1997) and Shapiro (1997), 
from a certain way of practicing mathematics that is (in principle) independent 
of one’s particular ontological commitments.2 To assess whether a structuralist 
methodology can be found in the investigations of Pasch and others, it will be 
useful to identify some of its characteristic features.

A paradigmatic example of a structuralist methodology is the work in modern 
abstract algebra as presented by van der Waerden (1930). Reck describes this as 
follows:

What modern algebraists do is to study various systems of objects, of both math-
ematical and physical natures (the latter at least indirectly), which satisfy cer-
tain general conditions: the defining axioms for groups, rings, modules, fields, 
etc. More precisely, they study such systems as satisfying these conditions, i.e., 
as groups, rings, etc. (2003, 371)

Thus, while an algebraist might explicitly discuss the field of complex numbers in 
her work, only those properties that are formulated in the field axioms and those 

 2 See also the editorial introduction to this volume by Reck and Schiemer.
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that follow from them are considered. That only the relations that are specified by 
the general conditions that define these systems are taken into account, but not 
any other properties that these objects might have as individuals, is what makes 
this approach structural. Here is how Reck formulates this idea:

a methodological structuralist will not be concerned about the further identity 
or nature of the objects in the various systems studied. He or she will simply 
say: Wherever they come from, whatever their identities and natures, in partic-
ular whatever further “non- structural” properties these objects may have, in-
sofar as a system containing them satisfies the axioms . . . , the following is true 
of it: . . . This is the sense in which methodological structuralism involves a kind 
of abstraction. Here abstraction concerns simply the question of which aspects 
of a given system are studied and which are ignored when working along such 
lines. (Reck 2003, 371)

Notice that for a methodological structuralist “abstraction” is not necessarily un-
derstood as a process that yields some kind of new abstract entities, but rather as 
an attitude of restricting oneself to taking into account only some features of the 
systems under investigation, while disregarding others. In sum, methodological 
structuralism can be described as the study of systems of objects that are char-
acterized, or defined, axiomatically, with an exclusive focus on the relations that 
hold between these objects, while ignoring further questions about the nature of 
the objects. Dedekind’s Was sind und was sollen die Zahlen? (1888) is a perfect 
example of an approach that falls under this definition (see Ferreirós and Reck 
in this volume). However, the insistence on axiomatic definitions seems to be 
too strong, and Reck himself adds the qualification that methodological struc-
turalism is only “typically tied to presenting mathematics in a formal axiomatic 
way” (Reck 2003, 371; my emphasis). We should also note that the second condi-
tion formulated previously (i.e., the focus on relations) leaves open the possibility 
of pursuing structuralist investigations at one time and working along other, 
nonstructuralist lines at other times. Thus, methodological structuralism can be 
one particular approach among others pursued by the same mathematician; an 
approach that can be taken in certain investigations, but that can be ignored in 
others. It is the result of an attitude about how to conduct certain investigations 
that can be independent of one’s philosophical conceptions of mathematics and 
the nature of mathematical objects.

With the refined understanding of methodological structuralism given in 
the previous paragraph we must confront the problem of triviality: Is anything 
at all excluded by the characterization or has now every mathematician be-
come a methodological structuralist? For example, Euclid can be interpreted as 
having studied a system of points and lines in his planar geometry, taking into 
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consideration only those relations between them that were licensed by his ax-
ioms. This suggests a further criterion to distinguish an approach that is explicitly 
intended to be structural from one in which axioms are used to describe a single 
system that is being studied.3 On the one hand, Euclid investigated only one par-
ticular system, which consisted of idealized points and lines, and it seems fair to 
say that he did not envisage other systems of objects to satisfy the same relational 
properties. For Dedekind, on the other hand, it was clear that the natural num-
bers were only one particular instance of a simply infinite system and that there 
were others as well, like the system of his potential thoughts (Gedankenwelt). 
Similarly, in modern algebra groups and fields can be instantiated by many dif-
ferent systems, like numbers, rotations, etc. Based on these reflections, I propose 
the following two conditions that must be satisfied by investigations to count as 
being along the lines of a minimal version of methodological structuralism:

 (1) Focus on relational features of systems of objects.
 (2) The possibility of multiple systems that share these relational features must 

be envisaged.

With these two conditions in hand, we can now look at the works of particular 
authors and assess whether they qualify as being structuralist in methodology.4

3. Empiricist Structuralism in Geometry

Various aspects of Pasch’s work in geometry appear to be congenial to methodo-
logical structuralism. Pasch presented in his Vorlesungen über neuere Geometrie 
(1882b) the first axiomatization of projective geometry in a way that is consid-
ered to be rigorous by contemporary standards. Indeed, Hilbert’s axiomatiza-
tion of Euclidean geometry, Grundlagen der Geometrie (1899), can be readily 
interpreted along structuralist lines (see Sieg’s article on Hilbert in this volume) 
and was heavily influenced by Pasch. Moreover, Pasch famously also gave a char-
acterization of the nature of deduction that emphasizes the relational features of 
the systems under investigation and which is worth quoting in full:

In fact, if geometry is genuinely deductive, the process of deducing must be in 
all respects independent of the sense of the geometrical concepts, just as it must 

 3 For a discussion of various roles and functions of axioms, see Schlimm (2013a), in particular 
49– 52 for their descriptive function.
 4 As far as I  can tell, the approaches of the authors presented in this volume all satisfy the 
conditions for minimal methodological structuralism.
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be independent of figures; only the relations set out between the geometrical 
concepts used in the propositions (respectively definitions) concerned ought to 
be taken into account. (Pasch 1882b, 98)5

Pasch’s insistence that, in order to be rigorous, deductions must be independent 
of the meanings of terms and instead rely only on their relational connections, 
as opposed to the particular meanings of the concepts, forms the cornerstone of 
his deductivism, which he himself referred to as “formalism” (Pasch 1914, 121). 
This approach meets the first condition for minimal methodological structur-
alism and thus appears to point to a general structuralist understanding of math-
ematics. In fact, his axiomatic standpoint has been interpreted as foreshadowing 
the idea that a system of axioms implicitly defines an abstract structure (Tamari 
2007, 6 and 96). According to these indications, it seems straightforward to 
consider Pasch a methodological structuralist. However, Pasch also held an 
empiricist philosophy of mathematics, a brief sketch of which was given in the 
introduction to this chapter, which stands in stark contrast to the interpretation 
of axioms as implicit definitions and requires us to take a closer look at his works 
and adopt a more nuanced position.

The empiricist standpoint, according to which the fundamental concepts and 
propositions of mathematics are empirical in nature, is the background for most 
of Pasch’s works, not only in geometry, but also in analysis. For Pasch, the basic, 
or “core” (Kern), propositions that form the starting points of a deductive pre-
sentation of mathematics are “directly based on observations” (1882b, 17) and 
“obtained through experience” (1914, 3). The content of a mathematical disci-
pline like analysis, Pasch maintains, is constituted by facts; these can be derived 
from basic facts, which are themselves expressed by the basic propositions (1914, 
3). However, despite his insistence on the empirical foundation of mathematics, 
Pasch quickly realized that a deductive development of mathematics cannot be 
carried out on the basis of empirical facts alone. This led him to distinguish be-
tween a mathematical set of axioms called a “stem” (Stamm) and a philosophi-
cally grounded, empirical set of axioms (first called “basic principles” and later 
a “core”).6 One of the reasons for this distinction was the observation that the 
axiomatic presentation of a mathematical theory does not necessarily determine 
the meanings of its primitive terms in a unique way. This insight was not based 
on some considerations of first- order logic or nonstandard models as we might 
be inclined to think nowadays, but on the duality of projective geometry, which 
was identified in the 1820s by Poncelet and Gergonne (Pasch 1914, 142). Duality 

 5 All translations are by the author; translations of Pasch (1920b) and Pasch (1921) are based on 
those of Pollard (2010).
 6 See Schlimm (2010).
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is the curious mathematical phenomenon in which, if the primitive terms (say 
of “point” and “line,” and the relations “lying on” and “contains”) of a theorem 
of projective geometry are interchanged, the result is again a theorem of projec-
tive geometry. In Pasch’s words, the stem propositions for this discipline form a 
collection of propositions that is “transformed into itself ” if the stem concepts of 
point and line are interchanged.7

This fact, which is the source of duality, provides the proof that the group of 
projective stem propositions may not be considered as a definition of the pro-
jective stem concepts. Rather, it shows how the relations that are expressed by 
the projective stem propositions can be satisfied in more than one way. (Pasch 
1914, 143)

Thus, the form of the axioms does not determine whether the term “point” in-
deed refers to points or to lines and, because the axioms of projective geometry 
cannot fix the meanings of the terms themselves, they cannot be regarded as 
their definitions.8

While some concepts may be defined by the propositions in which they occur, 
Pasch observes that it is not possible that all concepts could be defined in this 
way, because this would allow the possibility “that definitions can generate math-
ematical concepts out of nothing” (1914, 143). He elaborates:

If one would want to claim that a totality of relations σ between concepts β, e.g., 
the basic propositions of arithmetic, could constitute a definition of the totality 
of concepts β, then one would have to be certain that the relations σ could not 
be satisfied in any other way than by the concepts β, excluding also the case 
where the concepts β are permuted. (1914, 143)

What Pasch explicitly rejects here is the understanding of a set of axioms (which 
govern the relations σ) as defining the primitives occurring in them (which 
refer to the concepts β), which is commonly referred to as an implicit definition. 
In fact, in reference to the first edition of Schlick’s Allgemeine Erkenntnislehre 
(1918), which discusses Hilbert’s approach to definitions by axioms, Pasch 
writes that

the expression “implicit definition” has a different meaning when used by Mr. 
Schlick (definition by axioms). I have presented in §72 of Veränderliche und 

 7 See Eder and Schiemer (2018).
 8 A similar argument is made by Frege in his correspondence with Hilbert (Frege 1976, 58– 80).
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Funktion [i.e., Pasch 1914, 142– 143] the concerns that speak against a defini-
tion by axioms. (1920a, 145)

Readers should note that Pasch himself uses the term “implicit definition” in his 
writings, but in a different sense, namely in the sense of contextual definition, not 
in relation to axioms.9 In particular, Pasch does not allow implicit definitions for 
the basic terms, but only for the introduction of new terms using basic or already 
defined terms. An implicit definition, in Pasch’s sense, tells us how to replace an 
expression that contains a new term by an expression that does not contain it.10 
Pasch contrasts them with explicit definitions, whereby something that belongs 
to a genus is defined by specific marks (Pasch 1914, 20). Thus, Pasch’s under-
standing of definitions, which is rooted in his empiricism, is clearly at odds with 
interpreting him as understanding axioms as implicit definitions of the class of 
their models or of an abstract structure.

In light of the preceding considerations, we can see how Pasch’s move of 
distinguishing basic concepts and propositions from stem concepts and prop-
ositions allowed him to keep a deductivist view of mathematics (according to 
which a mathematical discipline is developed deductively from its stem), while 
at the same time retaining his convictions about empiricist foundations for 
mathematics (for the core). For Pasch, to demonstrate the viability of his empir-
icist philosophy of mathematics in general, each stem had to be connected to a 
core. For the case of projective geometry, Pasch showed in his Vorlesungen how 
the stem concepts and propositions can be linked to their empirical basis; I have 
referred to this project as “Pasch’s Programme” (Schlimm 2010). In addition, be-
cause in a purely deductive development of a theory the stem propositions of a 
discipline can play the role of basic propositions (Pasch 1914, 121), Pasch can 
accommodate the observation that mathematicians can disagree on their philo-
sophical views on the nature of mathematics while at the same time agreeing on 
the validity of proofs and theorems. After all, from a purely logical point of view, 
a theory can be developed from either a core or a stem, as long as they are con-
sistent (Pasch 1924, 232).

One reason for Pasch’s insistence on an empirical foundation of mathematics 
is his concern for its use in scientific and everyday applications.

To apply mathematics, the basic concepts must refer to something that is pre-
sent in the world of experience and for which the content of the basic prop-
ositions is meaningful and valid. We acknowledge this connection with 
experience as soon as we consider analysis to be something else than .  .  . an 

 9 See Gabriel (1978) and Pollard (2010, 36– 39).
 10 His introduction of the term Menge (set) is an example (Pasch 1914, 19).
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internally consistent construction [einen Bau von innerer Folgerichtigkeit]. 
(Pasch 1914, 138)

Thus, although Pasch allows for the possibility of working with meaningless 
terms in mathematics (if the stem is left uninterpreted), or with terms that refer 
to something other than empirical concepts and relations, he believes that a com-
plete picture of mathematics should include an account of its applicability and 
that this is best given by empiricism. In addition, the latter removes any doubt 
about the arbitrariness of mathematics.

The traditional view renders the mathematical point as a concept that does not 
refer to something real; I would like to call it a hypothetical concept. . . . Now, 
if hypothetical concepts and the assumed relations between them (hypothet-
ical propositions, hypotheses) are applied to objects of nature, at first to drawn 
figures, then this remains something arbitrary as long as we do not formulate 
the laws that govern this application; hereby one has to put up with the im-
precision that inheres in the application. It then becomes necessary to make 
two different kinds of hypotheses. Hypotheses of the first kind, which are those 
already mentioned, only relate the hypothetical concepts with each other, not 
with empirical ones; hypotheses of the second kind are to establish a bridge be-
tween hypothetical and empirical concepts. Compared to the empiricist way of 
proceeding this is nothing but a detour. (Pasch 1914, 139)

In short, the need for additional hypotheses that connect the mathematical stem 
concepts to their empirical counterparts when mathematics is applied is used 
as an argument in favor of using empirical concepts from the start. Notice how 
Pasch anticipates the need for connecting the scientific terms of a hypothetico- 
deductive theory with empirical referents; without any reference to Pasch, later 
philosophers of science referred to his hypotheses of the second kind as “coordi-
nating definitions” (Reichenbach 1928, 31), “bridge laws” (Nagel 1961, chap. 11, 
sec. 2.3), or “bridge principles” (Hempel 1966, 72). Considerations of parsimony 
lead Pasch to skip the bridge laws and use empirical hypotheses directly.

Now, where does this discussion leave Pasch with regard to structuralism? 
He certainly would disagree that mathematics is about abstract structures. 
However, he would allow us to hold this view if we wanted to, but at the cost of 
having to explain how these structures can be applied to the world. Pasch him-
self clearly prefers an empiricist account of mathematics for which the problem 
of application does not arise. Nevertheless, his mathematical practice satisfies 
the two conditions for methodological structuralism laid out at the end of sec-
tion 2: The focus on the relations that are expressed by the axioms of a mathe-
matical discipline, not on the nature of its elements, is what guarantees the rigor 
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of mathematical deductions. Mathematicians can develop their theories on the 
basis of stem concepts and propositions, which need not have a determinate ref-
erence, but can have multiple realizations instead; the paradigmatic example of 
such a theory is projective geometry. In fact, it was the duality of projective ge-
ometry that led Pasch to the distinction between a philosophically meaningful 
axiomatic foundation (consisting of core concepts and core propositions) and a 
mathematically sufficient axiomatic basis (consisting of stem concepts and stem 
propositions).

4. Empiricist Structuralism in Arithmetic

We have seen in the previous section how Pasch’s insistence on rigorous 
deductions together with the surprising fact of the duality of projective geometry 
pushed him toward a minimal version of methodological structuralism, which 
he was able to combine with his empiricism about mathematics by separating 
purely mathematical axioms from philosophically grounded ones. In the pre-
sent section I want to look at Pasch’s work in a different mathematical discipline, 
namely arithmetic, in order to illustrate that the previous considerations were 
not unique to geometry, but arose also in other disciplines. This suggests that 
one ingredient for the emergence of structuralist views of mathematics was a 
particular attitude towards rigorous deduction that was developed in the 19th 
century.11

In addition to geometry, Pasch also worked on the foundations of arith-
metic throughout his entire career; e.g., see Pasch (1882a, 1909, 1914, 1921, and 
1924). The development of mathematical concepts on the basis of empirical ones 
through definitions and deductions, which Pasch presented for geometry, is the 
same approach he adopted for establishing the foundations of number theory 
and analysis. Here, too, Pasch aims at reducing the discipline to a core from 
which everything else can be derived. For him, such a reduction serves to pre-
sent mathematics as a deductive discipline, justifies confidence in its consistency, 
allows us to assess its certainty, and forms the basis for any philosophical reflec-
tion about mathematics, such as the question of its relation to experience (Pasch 
1921, 155).

Pasch disagrees with “the standard practice of putting a more or less finished 
notion of number at the beginning” of one’s mathematical investigations (Pasch 
1921, 155).12 Instead, in his account “the natural numbers do not appear all of a 

 11 See Gray (1992) and Detlefsen (1996) for a general overview of these developments.
 12 Contrast this with, for instance, the famous saying attributed to Kronecker that “God created 
the whole numbers, everything else is the work of man” (Weber 1893, 15).
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sudden: they stand at the end of a long and difficult path” (Pasch 1920b, 4). Let 
us now briefly examine Pasch’s account of natural numbers, as presented in his 
work on the origin of the concept of number.13 Pasch’s empiricist outlook is for-
mulated clearly in the very first paragraph:

The sort of thought process to be exhibited here might arise in any person 
who, first, considers only the things he himself perceives and distinguishes one 
from another and who, second, credits himself with eternal life and unlimited 
memory. Among the things observed by this person are his own actions. (Pasch 
1920b, 1)14

We notice immediately that Pasch goes beyond assuming what is humanly pos-
sible, but instead posits an ideal agent with human- like cognitions, perceptions, 
and actions, but endowed with “eternal life and unlimited memory.” While this 
move might seem striking at first, it has been popular among empiricists, who 
would otherwise have to restrict themselves to a finite (and in fact rather small) 
number of experiences; for example, a very similar starting point of a contem-
porary empiricist account of mathematical knowledge is Kitcher’s ideal subject 
(Kitcher 1983, 109– 111). As a careful systematizer, Pasch singles out 11 core 
concepts to describe the actions of the ideal agent: (1) things, (2) proper names, 
and (3) collective names, which are themselves things; the actions of (4) specifying 
a thing, (5) assigning a proper name, and (6) assigning a collective name— collective 
names can only be assigned to collections of things that were previously specified 
or assigned a proper name by the agent; any such action is (7) an event, which 
can be temporally related to other events by the relations (8) earlier, (9)  later, 
and (10) immediate successor; finally, an ordered sequence of events forms (11) a 
chain of events. By considering names and events (both of which he considers to 
be things) in addition to physical objects Pasch frees the ideal agent from being 
restricted to what is physically present, and by considering experienced events 
the ideal agent is able to introduce order:

I assume that I have experienced some events on which I confer the collective 
name A. By experiencing these events, I have registered observations about 
succession and immediate succession, about precedence and immediate prec-
edence. But the events A also produce in me a comprehensive concept that 

 13 Pasch’s “Der Ursprung des Zahlbegriffs” was completed in 1916 and appeared in print in two 
parts, Pasch (1920b) and (1921), which were reprinted together in Pasch (1930a). The approach is 
based on the account given in Pasch (1909), but contains several modifications.
 14 The English translations in this section are taken from Pollard (2010).
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combines them into a whole, into a thing that I call the chain of the events A or, 
more briefly, 𝔄. (Pasch 1920b, 17)

So, while we may think of the events A as something like a finite set, {s1, s2, . . . , sn}, 
the chain 𝔄 of events A is more like a finite ordered set: < >s s sn1 2, , ..., . Given that 
Pasch allows the same thing to be given different names and be specified multiple 
times, he introduces the notion of a line for those chains whose elements are all 
specifications of different things.15 The members of a line are those things that 
are specified by the elements of the line. Using these notions, Pasch introduces 
the concept of number as follows: to determine the number of a given collection 
N, first an arbitrary larger line ℨ is obtained, whose members have the collective 
name z and whose first member is called e. Then,

from among the members z that follow e I  can specify one and only one 
member n such that the segment of ℨ reaching as far as n is equivalent to the 
collection N.

In addition to N, all and only the collections that are equivalent to N yield 
this member of the line ℨ.

The thing n is called the number drawn from the line ℨ for the collection N.
Any z other than e can serve as “numbers.” (Pasch 1921, 149)

After extending the use of the term “number” also to the member e of ℨ, and 
introducing the names “one,” “two,” “three,” etc., for the members of ℨ, Pasch 
concludes:

Now all the members of the line ℨ have become numbers. Notches in a stick 
can serve as members of such a line. One notch must be singled out as the first, 
with all the remaining notches appearing to one side of it. The next member of 
the line is always the next notch over. (Pasch 1921, 150)

On the one hand, Pasch’s example of notches on a stick nicely illustrates the em-
pirical character that the natural numbers have for him; on the other hand, it 
also illustrates that for him the numbers are not one single, particular system 
of objects. In fact, it is compatible with this account that Julius Caesar is one of 

 15 In (1909) Pasch used the terms Folge and Reihe (sequence and series), but he changed them in 
(1920b) to Kette and Rotte to avoid imbuing terms that already have multiple mathematical meanings 
with new meanings (Pasch 1920b, 17 and 19). While Kette translates straightforwardly as “chain,” the 
term Rotte is less familiar and thus more difficult to translate. In a military formation, a Rotte consists 
of those soldiers or planes that are side by side; in this case an individual is called a Glied. Accordingly, 
Pollard (2010, 68) translates Rotte as “line” (and Glied as “member”), which we follow here, despite 
the fact that Pasch wanted to use a term that does not already have a mathematical meaning.
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the members of ℨ, and thus a number.16 If a collection is empty, then there is no 
member of ℨ that can serve as the number of this collection. For this case, Pasch 
introduces the name “zero” as if it were the name of a thing (using an implicit def-
inition, in Pasch’s sense).

Pasch continues his account by introducing the figures “0”, “1”, . . . , “9”, to-
gether with rules for obtaining greater numerals (technically, these are chains of 
specifications of figures) as distinct names. In this way only simple combinatorial 
processes are required to generate a potentially infinite list of names for numbers.

For each number drawn from ℨ, the figures yield a sign [Zeichen], and the 
sign yields a name. So figure- chains will satisfy our need for numerical signs 
in every case. . . . Conversely, any figure- chain one cares to construct can serve 
as a numerical sign, as long as I pick a sufficiently “large” ℨ. (Pasch 1921, 152)

Thus, the system of numerals is a systematically obtained sequence of names that 
can be used to refer to the members of any chain of things that one decides to 
use as numbers. In the first exposition of this way of proceeding, Pasch leaves it 
at that, switching effortlessly and without much ado from numbers as things to 
their names (e.g., “If a number, (i.e., its name) consists only of nines, . . .” (Pasch 
1909, 35); he understands a calculation to be the determination of a fixed name 
(e.g., in the decimal system) of a number that is given by an arithmetical expres-
sion (Pasch 1909, 53). Five years later, in 1914, Pasch is more careful and gives 
more explicit explanations. After noting that the construction of decimal place- 
value numerals yields names for each desired number, he notes:

Once this is achieved, one can disregard which things and which chain of these 
things were originally used; one only needs to hold fixed the names of these 
things, of the numbers. . . . The decimal place- value name of an absolute whole 
number counts as a fixed name. (Pasch 1914, 33– 34)

On the relevance of the decimal place- value system for the development of arith-
metic and for everyday life, Pasch approvingly quotes at length a passage from 
Kronecker’s “Über den Zahlbegriff ” (Kronecker 1887, 355).17 In 1921 Pasch 
reiterates the importance of numerals and the difference between numbers as 
things and their names, and here a more structuralist perspective emerges. He 
writes:

 16 Frege famously considered this to be a problem for a definition of numbers (Frege 1884, §55).
 17 Pasch spent two semesters in 1865– 866 in Berlin, attending lectures by Kronecker and 
Weierstrass. He later mentions these as having exerted a great influence on his thinking about the 
foundations of mathematics (see Pasch 1930b, 7 and Schlimm 2013b, 189). As far I know, Pasch never 
expressed any explicit criticism of Kronecker’s views of the natural numbers (but, see note 12).
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As we moved along, our starting point, the line ℨ, receded entirely into the 
background. We were no longer concerned with our original choice of things to 
serve as members of the line and, so, as numbers— nor did we care what things 
were added to the line to accommodate larger and larger numbers. We focused 
entirely on our need for names and signs for numbers of every size.

Indeed, once the nomenclature for the natural numbers is secured, we can 
quite disregard whatever things might have gotten us to this point. We need 
only retain the names of these things to perform the task for which the natural 
numbers were intended: determining whether a collection is equal to another 
or is greater than it or less. (Pasch 1921, 153)

Although for Pasch the natural numbers continue to be a system of things, this 
system is not a specific, fixed one, nor does it matter which things we choose. 
It is tempting to speak in this context of an arbitrary choice of representatives, 
but that would be misleading: the chosen things do not represent numbers for 
Pasch, they are numbers. Nevertheless, we can see here a form of abstraction 
from the individual nature of the elements, which is characteristic of a structur-
alist approach. What matters is only the sequential arrangement, or the struc-
ture, of these things, their relations among each other. In addition, it is clear that 
multiple systems of things can instantiate the natural number structure, which is 
characterized by the line ℨ.

We have seen above that, in his more mature writings, Pasch clearly separates 
the numbers (which he conceives of as things) from their names, e.g., the decimal 
place- value numerals. While acknowledging that we can get by with a system of 
numerals, he does not go so far as identifying the numbers with the numerals 
themselves, in contrast to some of his contemporaries (e.g., Heine and Thomae, 
who advocated “formal” theories of arithmetic and were severely criticized by 
Frege).18 In order to understand Pasch’s account better, it will be useful to com-
pare it to those of two contemporaries that he comments on, namely Alfred 
Pringsheim and David Hilbert.

In his lectures on number theory (1916), Pringsheim introduces numbers 
as an infinite “ordered system of signs [Zeichen] that satisfies certain rules for 
their combination” (Pringsheim 1916, vii), mentioning Heine and Helmholtz as 
other proponents of this view.19 The simplest such system would be a tally system 
based on a single primitive sign, “|”, but for reasons of practicality Pringsheim 
decides to use the decimal place- value system as the canonical system of nat-
ural numbers (Pringsheim 1916, 7).20 Thus, Pringsheim does not consider the 

 18 For a discussion of criticisms (including those by Frege) of this view, which Detlefsen calls “em-
piricist formalism,” see Detlefsen (2005).
 19 See Heine (1872, 173) and von Helmholtz (1887, 21).
 20 For a critical review, see Hahn (1919).
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system of natural numbers to be unique (because different systems of numerals 
would do), but determined only insofar as it obeys certain rules. Pasch mentions 
Pringsheim’s use of decimal numerals approvingly, but he maintains that his own 
development of them is “completely different in its nature” (Pasch 1921, 153). 
How so? For Pasch numbers are not signs (numerals), but those things that the 
numerals refer to. He also does not want to put the numerals at the beginning of 
arithmetic, but presents the combinatorial concepts and propositions that un-
derlie the use of numerals. Ultimately, Pasch’s interests lie deeper, at the level of 
the combinatorial origins of numbers.

A few years later, Hilbert also put forward an account of arithmetic based 
on sequences of signs in his Neubegründung der Mathematik. Erste Mitteilung 
(1922). Soon afterward, Pasch gave a reconstruction of Hilbert’s approach to 
arithmetic in light of his own (Pasch 1924). While he argues that formulas that 
look like Hilbert’s axioms could be derived from his core propositions, Pasch 
objects to Hilbert’s conception of the nature of mathematical objects. Hilbert 
proclaimed his philosophical standpoint on the foundation of pure mathematics 
as “at the beginning is the sign [Zeichen]”, listing as his first definition that “The 
sign 1 is a number” (Hilbert 1922, 163). First, Pasch disagrees with Hilbert’s con-
ception of signs. Hilbert seems to consider signs (and in particular numbers) 
to be types of inscriptions themselves, whereas for Pasch a sign is an inscrip-
tion type that denotes a thing. The connection between Hilbert’s inscriptions and 
Pasch’s view of numbers is that the former could be considered to be marks, just 
like the notches on a stick, that could serve as the members of the line ℨ (Pasch 
1924, 238). Second, Pasch replaces Hilbert’s signs “1” and “+” by the aliases 
(Decknamen) “e” and “u”, such that Hilbert’s axioms would correspond to stem 
propositions, obtained from the core propositions by the process of formaliza-
tion, i.e., the replacement of meaningful terms by meaningless ones (Pasch 1924, 
237, 239– 240). In other words, while Hilbert presents a particular instance of 
inscription types as numbers, in Pasch’s account it is explicitly recognized that 
these are just one of many possible instantiations. Thus, by building the possi-
bility of multiple instantiations into his account, Pasch’s attitude is clearly more 
structuralist than Hilbert’s, because it also satisfies the second criterion for meth-
odological structuralism, namely envisaging multiple realizations, laid out in 
section 2.

5.  Conclusion

In this chapter two conditions were put forward for a minimal version of meth-
odological structuralism, namely (a) the focus on relational features of systems 
of objects and (b) envisaging the possibility of having multiple systems that share 
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these relational features. Various factors pushed Pasch toward these two aspects 
of mathematics. In his work on geometry the quest for rigorous deductions led 
him to focus on the primitives and relations that are expressed by the axioms and 
to neglect any other properties that mathematical objects might have. The du-
alism of projective geometry forced him to accept the possibility that the axioms 
(stem propositions) can be satisfied by different systems of objects. In Pasch’s 
work on the foundations of arithmetic a structuralist perspective emerged from 
the fact that the canonical names for numbers, namely the decimal numerals, 
could refer to any appropriate system of objects. Thus, despite the fact that 
Pasch maintained an empiricist standpoint, according to which all mathemat-
ical knowledge is grounded on experiences of physical objects, he nevertheless 
came to adopt a methodological structuralism that satisfies both conditions 
(a) and (b). The further development of structuralism toward a more ontolog-
ically oriented position regarding the nature of mathematics went well beyond 
anything that Pasch would have found acceptable. As Dehn remarks, “The fond-
ness for operating with symbols that have gone far beyond what is intuitable has 
a mythical- revolutionary character; this was completely foreign to Pasch” (Engel 
and Dehn 1934, 128). What we see in Pasch’s work is that methodological struc-
turalism need not be driven by considerations of abstract structures like those 
found frequently in modern algebra and that it can be combined successfully 
with an empiricist philosophy of mathematics.
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