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1. Introduction

Structuralism in the philosophy of mathematics holds that mathematics is the 
science of abstract structures. An alternative characterization of the position 
does not assume structures as the subject matter of mathematics, but rather holds 
that mathematical theories study only the structural properties of their objects.1 
The focus on such properties is closely related to criteria of structural identity of 
mathematical objects. Specifically, it is often held that objects that share the same 
structural properties should be identified. For instance, in the context of non- 
eliminative structuralism, this view figures prominently in recent debates on the 
identity of structurally indiscernible positions in a pure structure.2

As the present volume shows, there exists a rich and multifaceted mathe-
matical prehistory of these philosophical debates. In particular, one can iden-
tify a number of methods and styles of reasoning in 19th- century mathematics 
that eventually led to a “structural turn” in the discipline.3 The present article 
will focus on one important strand in the mathematical roots of structuralism, 
namely Felix Klein’s group- theoretic approach to geometry outlined in his 
Erlangen program of 1872. Klein’s program is generally acknowledged today as 
one of the milestone contributions in 19th- century geometry. Moreover, there 
is a consensus that his novel algebraic approach in geometry— that is, the study 
and classification of geometries in terms of transformation groups— had a 

 1 These are usually characterized as properties not concerning the intrinsic nature of objects but 
rather their interrelations with other objects in a system. Compare, for instance, Benacerraf (1965) 
and Linnebo and Pettigrew (2014).
 2 See, for example, Keränen (2001) and Shapiro (2008). Compare Leitgeb and Ladyman (2008) for 
a critical discussion of this view.
 3 See the editorial introduction as well as Reck and Price (2000) for a general overview of relevant 
methodological developments in 19th- century mathematics.
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significant impact on the gradual development of geometry into a science of ab-
stract structures.4

Despite the wealth of research on Klein’s program and its significance for sub-
sequent developments in geometry, no close study has so far been dedicated to its 
specific structuralist underpinnings. In particular, Klein’s work has not yet been 
discussed through the lens of modern structuralism.5 In the present chapter, 
I want to fill this gap. In particular, I will address the following questions: how, 
precisely, did Klein contribute to the development of the structural turn in math-
ematics? In what sense was his group- theoretic approach to geometry struc-
turalist in character? Finally, in what sense did Klein’s account anticipate the 
philosophical debates in structuralism mentioned above?

The aim in this chapter is twofold. The first aim is historical in nature and 
concerns the geometrical background of Klein’s program. In particular, my focus 
will be on work on duality phenomena in 19th- century projective geometry. The 
chapter will survey different attempts to justify the principle of duality and then 
describe two ways in which the principle was generalized in analytic geometry, 
namely Julius Plücker’s contributions to “general reciprocity” and Otto Hesse’s 
so- called transfer principles. Roughly speaking, transfer principles were con-
ceived at the time as mappings between geometrical domains that allow one to 
translate theorems about configurations of the one domain into corresponding 
theorems about the second domain. As I will argue, Klein’s group- theoretic ac-
count in the Erlangen program can be understood as a generalization of this 
work on reciprocity and transfer principles.

The second aim is more philosophical in character. This is to analyze in closer 
detail Klein’s structuralist account of geometrical knowledge. I will argue here 
that his group- theoretic approach is best characterized as a kind of “methodo-
logical structuralism” regarding geometry (see Reck and Price 2000). Moreover, 
one can identify at least two aspects of the Erlangen program that connect his ap-
proach with present philosophical debates, namely (i) the idea to specify struc-
tural properties and structural identity conditions for geometrical figures in 
terms of transformation groups and (ii) an account of the structural equivalence 
of geometries in terms of transfer principles. Both ideas clearly present “struc-
tural methods” in the sense specified in Reck and Price (2000).

The article is organized as follows. Section 2 will discuss the geometrical back-
ground of Klein’s program. Specifically, different ways to justify the principle of 
duality in projective geometry are outlined in section 2.1. In section 2.2, I dis-
cuss the use of transfer principles in analytic geometry. Section 3 will then turn 

 4 See, e.g., Tobies (1981), Wussing (2007), and Gray (2008).
 5 See, however, Biagioli (2018) for a recent study of the Klein’s structuralism underlying his work 
on non- Euclidean geometry.
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to Klein’s approach: section 3.1 focuses on his group- theoretic study of geome-
tries in terms of invariants. In section 3.2, I present Klein’s method of “transfer 
by mapping.” Section 4 will then discuss several structuralist themes underlying 
Klein’s conception of geometry. Section 4.1 will focus on Klein’s account of geo-
metrical properties and congruence specified relative to a group of transform-
ations. In section 4.2, I discuss how Klein’s use of transfer principles to identify 
geometries can be generalized to a notion of structural equivalence in category- 
theoretic terms. Section 5 contains a short summary.

2. Duality and Transfer Principles

The mathematical background of the Erlangen program is known to be rich and 
multifaceted.6 Klein’s group- theoretic approach in geometry has different roots, 
including algebraic work on permutations groups by Camille Jordan and Évariste 
Galois, Arthur Cayley’s invariant- theoretic approach in geometry, as well as 
Sophus Lie’s parallel work on geometry, to name just a few. A different influence 
on Klein’s program concerns the development of projective geometry in the 19th 
century. Particularly relevant here are, as we will see, different contributions to 
the principle of duality as well as its generalization in work by Plücker and Hesse. 
In the present section, I will survey these methodological developments in pro-
jective geometry and Klein’s reception of them.

2.1. The Principle of Duality in Projective Geometry

Projective geometry, as developed by Jean- Victor Poncelet, Gaspard Monge, 
Joseph Diez Gergonne, Karl G. C. von Staudt, and Moritz Pasch (among many 
others), can be characterized as the study of those geometrical properties of fig-
ures that remain invariant under certain projective transformations.7 This ap-
proach with its focus on projective invariants was certainly relevant for Klein’s 
subsequent characterization of geometries in terms of their transformation 
groups. More generally, the development of projective geometry brought with 
it a certain flexibilization of what count as the primitive elements in a geometry 
and, in turn, a new focus on geometrical form that clearly stimulated Klein’s 
approach.

 6 See, in particular, Wussing (2007), Rowe (1989, 1992), and Gray (2008) for detailed studies of 
Klein’s program and its mathematical background.
 7 See Torretti (1978) and Gray (2005) on the historical development of projective geometry.
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A central innovation in work by Poncelet, Gergonne, and others was the dis-
covery of the principle of duality for theorems in projective geometry.8 In the 
case of plane geometry, this principle expresses the fact that for every theorem 
concerning certain projective properties of configurations in the plane, one can 
formulate a second theorem with a dual (or reciprocal) structure based on the 
method of dualization, that is, by interchanging the words “point” and “line” as 
well as the relational expressions of “lying on a line” and “meeting in a point.”9 In 
order to illustrate this principle, consider the following pair of well- known dual 
theorems, namely Pascal’s theorem and Brianchon’s theorem.10 The former the-
orem expresses the following geometrical fact:

Theorem 1: Let A, B, C, D, E, F be six points on a conic that form a hexagon. Then 
the intersection points of the sides AB and DE, FA and CD, and BC  and EF  of the 
hexagon will lie on a line. (See Fig. 1, left diagram.)

Brianchon’s theorem, in turn, states a closely related geometrical fact:

Theorem 2: Let a, b, c, d, e, f be six lines that form a hexagon circumscribing a conic. 
Then the principal diagonals i j, , and k of the hexagon meet in a single point. (See 
Fig. 5.1, right diagram.)

The two theorems express symmetric facts about the projective structure of 
hexagons relative to a conic section. That is, any concrete incidence relation be-
tween points and lines specified relative to one conic can be shown to correspond 
to a dualized relation between lines and points specified relative to the second 
conic. Accordingly, the theorems form an instance of the general principle of 
projective duality: one can deduce Brianchon’s result from Pascal’s result (and 
vice versa) by the previously mentioned technique of dualization, that is, by 

 8 The present subsection will closely follow Eder and Schiemer (2018) and Schiemer (2018) in the 
discussion of the principle of projective duality.
 9 A corresponding principle of duality for solid geometry states that for any theorem of solid pro-
jective geometry we get another theorem by interchanging the words ‘point’ for ‘plane’ and ‘plane’ for 
‘point’ (as well as of the primitive incidence relations).
 10 See again Schiemer (2018) for a more detailed discussion of this example. I would like to thank 
Günther Eder for his permission to use the two diagrams in figure 1 in the present chapter.
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Figure 1 Pascal’s and Brianchon’s theorem
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interchanging the primitive terms “point” for “line” as well as all the concepts 
defined in terms of them.

Much work in 19th- century projective geometry was dedicated to the analysis 
of the principle of duality. Klein’s Vorlesungen über Nicht- Euklidische Geometrie 
of 1928 contains an interesting retrospective survey of the different approaches 
to a general mathematical explanation of duality phenomena. In particular, he 
distinguishes between three accounts in the geometrical literature from the time 
(see Klein 1928, 38– 39). One approach, which Klein labels the “axiomatic jus-
tification of the principle of duality,” is ascribed to the works of Gergonne and 
Pasch. Duality is explained here purely syntactically, in terms of the strictly sym-
metrical character of the axiom systems describing the projective plane and 
projective space.

The second approach is more interesting for our discussion and was first for-
mulated in Poncelet’s Traité of 1822.11 Duality (or reciprocity) is specified here 
based on Poncelet’s theory of poles and polars and in terms of so- called polar 
transformations. Roughly speaking, polar transformations are dual correlations 
between figures that can be constructed relative to a given conic section. Based 
on a given conic, such a correlation will map every point in the plane to a certain 
line, its polar, and every line to a single point, its corresponding pole.12 The cen-
tral geometrical property of such transformations is that they preserve the inci-
dence relations between points and lines in a given plane. Following Poncelet, 
this is usually called the reciprocity between poles and polars: if a point lies on a 
line, then the pole of the line will also lie on the polar line corresponding to the 
point (and vice versa).

According to Poncelet, the principle of duality in projective geometry can 
be directly explained in terms of the theory of poles and polars. More specifi-
cally, in the second volume of the book, Poncelet introduces a general method 
of constructing new configurations from existing ones based on polar trans-
formations. Given the fact that a polar mapping preserves the incidence prop-
erties (up to duality) of the original configurations, it follows that the newly 
constructed figures have a reciprocal structure. Thus, polar transformations in-
duce a dual translation of theorems about one figure into theorems about its re-
ciprocal figure.

As will be shown in the next section, dual transformations such as those 
described in Poncelet’s polar theory are explicitly discussed in Klein (1872). 
Moreover, Klein’s subsequent writings on geometry, for instance his second 
volume of Elementarmathematik vom höheren Standpunkte aus (1925), also 

 11 See again Eder and Schiemer (2018) and Schiemer (2018) for closer discussions of Poncelet’s 
transformation- based account of duality.
 12 See, e.g., Coxeter (1987) for a modern textbook presentation of polar theory.
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contain detailed discussions of “transformations with a change of the spatial el-
ement” (Klein 1926, 117). However, in contrast to Poncelet’s original account of 
1822, dual transformations are not understood synthetically here, but analyti-
cally in terms of coordinate transformations. This brings us to the third way to 
think about projective duality mentioned in Klein (1928).

The third approach to justify the principle of duality mentioned in Klein’s book 
is arguably the most relevant one for his Erlangen program. The so- called ana-
lytic justification of duality was first formulated by Julius Plücker (1801– 1868) in 
his work on analytic geometry between the late 1820s and the 1840s. Briefly put, 
Plücker’s approach is based on the analytic representation of geometric concepts 
in terms of equations.13 Duality (or reciprocity) is discussed most extensively in 
the second volume of his Analytisch- geometrische Entwicklungen (Plücker 1931). 
The principle is explained here in terms of the reinterpretation of symmetric 
equations expressing geometrical configurations.

To illustrate his account, consider the linear equation presenting the concept 
of straight lines in the plane:

 ux vy+ + =1 0.  

In the standard interpretation of this equation, u,v are treated as constants that 
determine a collection of points on a line. Plücker’s basic insight was to treat the 
coefficients u,v instead as “line coordinates” similarly to the point coordinates 
x,y. Consequently, if x,y are treated as constants and u,v as variables, then the 
equation determines a collection of lines going through point (x,y). Put differ-
ently, whereas the equation f(x,y) = 0 in its usual interpretation presents a collec-
tion of points (or a point curve) on a line, the reinterpreted equation f(u,v) = 0 
presents a collection of lines or a line curve. Projective duality is explained by 
Plücker in terms of the possibility of reinterpreting equations in this sense. More 
specifically, it is a result of the particular form of this and related bilinear equa-
tions, that is, of the symmetrical role of the point and line coordinates occurring 
in them.

Plücker’s geometrical work from the time is known for the introduction of 
a number of different coordinate systems, including triangle coordinates (in 
Plücker 1830), homogeneous line coordinates for the plane (introduced in 
volume 2 of Entwicklungen of 1831), homogeneous plane coordinates, and line 

 13 See Nagel (1939) and Plump (2014) for closer studies of Plücker’s work. See Lorenat (2015) for 
a recent study of the priority dispute on the discovery of duality between Poncelet, Gergonne, and 
Plücker.
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coordinates in space (introduced in Plücker 1846).14 A  central mathematical 
motivation for this generalization of the concept of coordinates was to be able 
to reinterpret analytic equations representing geometrical concepts relative to 
different coordinate systems. As we saw, precisely this method is also used for 
the justification of projective duality. Compare Plücker on this purely analytic 
approach:

Every proof that can be drawn through the connection of general symbols cor-
responds to two such sentences connected to each other by the principle of rec-
iprocity in case we refer with these symbols to point coordinates at one point 
and to line coordinates at another point. (Plücker 1931, viii– ix)

According to Plücker, there is thus a direct connection between the reinterpre-
tation of an equation presenting an incidence relation in different coordinates 
systems and the general idea of “reciprocity” (or “Gergonne- Poncelet duality”).

This generalization of the concept of coordinates also brought with it a cer-
tain flexibilization of what counts as the “basic elements of space” in a geometry. 
The main idea underlying Plücker’s account of duality is to consider other elem-
ents than points as the primitive or basic elements in space. We saw that the line 
equation stated earlier can be interpreted in two ways, namely as presenting lines 
as collections of points or points as collections of lines. In the first reading, the 
points are taken as primitive objects and lines are determined as sets of points. In 
the second reading, lines are the primitive objects, and points are determined as 
classes of lines.

Plücker’s insight that different objects can serve as the primitive elements of a 
geometry exercised a strong influence on Klein’s subsequent geometrical work.15 
This is documented in several of Klein’s later writings on the topic, which contain 
detailed discussions of the analytic justification of duality. For instance, Klein 
comments on Plücker’s approach in the second volume of Elementarmathematik 
in the following way:

Now it is Plücker’s conception to look upon these u and v as the “coordinates 
of the line” and as having equal status with the point coordinates x and y, and as 
being considered, at times, as variable instead of them. . . . Now the principle of 
duality resides in the fact, that every equation in x and y, on one hand, and in u 
and v on the other hand, is completely symmetrical. Everything that we said above 

 14 See Wussing (2007, 28– 30) and Plump (2014) for further details on Plücker’s work on different 
coordinate systems.
 15 Klein was a student and assistant of Plücker at the University of Bonn until Plücker’s death in 
1868. See Rowe (1989) for further details.
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concerning the duality that is inherent in the axioms of connection resides in this 
property. (Klein 2016, 70)16

As Klein emphasizes here and in related writings, this insight presupposes the 
generalized concept of coordinates previously mentioned as well as what he calls 
“Plücker’s general principle of considering any configuration as a space element 
and its constants as coordinates.” (Klein 2016, 72)

Compare the following remark in Klein (1926):

With this idea of the arbitrary “element of space” that can be chosen as the 
starting point of geometry, a complete clarification of the Poncelet- Gergonnian 
principle of duality is given: since the equation for the incidence of point and 
straight line (in the space of point and plane) is symmetrical in the two elem-
ents, one can interchange the two words in all sentences that are based on the 
mere connection of the two elements. (124)

Thus, given this new concept of coordinates, any type of geometrical configura-
tion can serve as the basic elements in geometry, including conic sections, lines, 
planes, and spheres (among other objects). As we will see in the next section, this 
insight also led Plücker and other geometers to generalize the original version of 
Gergonne- Poncelet duality.

2.2. Reciprocity and Transfer Principles

According to the analytic account, the projective duality between points and lines 
in the plane (as well as between points and planes in space) can be explained in 
terms of the analytic presentation of the incidence relations between these geo-
metrical concepts. Compare again Plücker on this point in System der Geometrie 
des Raumes of 1846:

Every geometrical relation is to be viewed as the pictorial representation of 
an analytic relation, which, irrespective of every interpretation, has its inde-
pendent validity. Consequently, the principle of reciprocity properly belongs to 
analysis, and only because we are accustomed to . . . express the matter in geo-
metrical language, does it seems to be an exclusively geometrical principle. . . . 

 16 A similar discussion is given in Klein’s Vorlesungen über die Entwicklung der Mathematik im 
19. Jahrhundert (Klein 1926), now for the related case of the analytic equation presenting straight 
lines: u1x1 + u2x2 + u2x2 = 0. Here again, it is the case that the coefficients u1,u2,u3 and the coordinates 
x1,x2,x3 have a strictly symmetrical role in the equation. One can therefore interpret the former as 
“line coordinates” and the equation as expressing a point determined through a bundle of lines.
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Understood purely analytically, the principle of reciprocity is naturally also not 
bound to the dimensions of space or restricted to them. (Plücker 1846, 322)

The account of reciprocity formulated here is thus not just an analytic reformu-
lation of Poncelet’s treatment of duality in synthetic projective geometry, but 
rather an independent justification with a more general applicability in geom-
etry. Moreover, as Plücker mentions in the preceding passage, the principle is 
not limited to a particular dimension of the space to be investigated analytically. 
This insight led him to formulate several alternative generalized notions of rec-
iprocity in his work from the 1820s and 1830s that extend classical Gergonne- 
Poncelet duality in different ways.17

One such extension concerns the introduction of dualities between other ge-
ometrical concepts than points, lines, and planes. For instance, Plücker’s “Über 
ein neues Coordinatensystem” (1930) contains a discussion of Poncelet’s theory 
of reciprocity based on the analytic treatment of the concepts of poles and polars. 
Based on this, Plücker also presents a “generalization” of this theory that applies 
to higher- order curves. Generally speaking, it is shown here as well as in other 
publications that one can extend duality to any pairs of geometrical objects with 
the same dimension- number. Thus, any two geometrical concepts whose ana-
lytic representation is based on the same number of independent variables can 
be shown to have dual properties.18

A second extension of Gergonne- Poncelet duality also introduced in Plücker’s 
work is usually called “linear reciprocity.” A detailed treatment of it can be found 
in his System der analytischen Geometrie of 1935.19 The discussion given here 
concerns the dual correlation between two configurations, where duality is un-
derstood in the usual sense that each point and each line in the first figure is 
mapped to a line and a point in the second, reciprocal figure. Unlike in Poncelet’s 
account of point- line duality, however, this correspondence is not specified 
within a single geometrical system, that is, within a given projective plane. 
Instead, reciprocity is specified here with respect to the interpretation in two co-
ordinates systems, one based on point coordinates and the other based on line 
coordinates.

Plücker calls two such coordinate systems connected by a polar mapping “re-
ciprocal systems” and describes them as follows:

 17 See Nagel (1939) and Plump (2014) for detailed studies of Plücker’s generalized notions of 
reciprocity.
 18 Compare, in particular, Nagel (1939) for a study of this generalized notion of reciprocity in 
Plücker’s work. Klein’s Elementarmathematik also contains a detailed discussion of Plücker’s notion 
of reciprocity between different higher- order curves based on the “Plückerian principle” to use arbi-
trary configurations as the primitive elements of a given space.
 19 See, in particular, Plump (2014) for a detailed discussion of this approach.
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We see from this in which sense the relation between the two systems is indeed 
a mutual one. We call such two systems reciprocally related or reciprocal ones 
and the principle resulting from this kind of relationship, by which the relations 
of one of two reciprocal systems can be transferred to the other one, the prin-
ciple of reciprocity. (Plücker 1835, 74)

The principle stated here clearly presents an extension of the kind of inner- 
system duality introduced earlier by Poncelet. Duality is now expressed analyti-
cally as a correlation between geometrical figures in different coordinate systems 
with different primitive spatial elements and not between figures within a given 
system.20

A further generalization of classical duality closely related to Plücker’s 
principle of linear reciprocity concerns so- called transfer principles in geom-
etry. Roughly speaking, these are analytically defined mappings between dif-
ferent geometrical domains that preserve the relevant projective properties of 
the configurations in question. Interestingly, the term “transfer principle” first 
occurs in Plücker’s own work in the context of his discussion of reciprocity. In 
his System der analytischen Geometrie (1935), Plücker argues that his concept of 
general coordinates implies different transfer principles (Übertragungs- Principe) 
based on the (re)interpretation of a given analytic equation in different systems. 
A transfer is described here as a mapping between the elements of different co-
ordinate systems that allows one to construct, based on a given figure, a corre-
sponding figure in another system (see Plücker 1835, vii).

This account of geometrical transfer principles was further developed in sub-
sequent work on analytic geometry, in particular by Ludwig Otto Hesse (1811– 
1874). Hesse introduced a particular transfer principle in projective geometry in 
his article “Über ein Übertragungsprinzip” (1866a).21 The principle is based on a 
mapping between points of the complex projective plane and pairs of points on 
the complex projective line that preserves the projective structure of these two 
domains. Hesse informally characterizes his approach as follows:

If one makes to correspond in a univocal way to each point in the plane a pair of 
points on the straight line and, vice versa, to each pair of points on the straight 
line a point in the plane, one has a transfer principle that reduces the geometry 
of the plane to the geometry of the straight line and vice versa. (Hesse 1866a, 15)

The relevant transfer mapping is presented analytically in the following 
way: Hesse introduces a function from points P = (x, y) in the projective plane to 

 20 Compare again Klein (2016, 71– 72) for a discussion of this notion of linear reciprocity.
 21 See Hawkins (1984) for a closer discussion of Hesse’s transfer principles.
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pairs of points p = {λ1, λ2} on the projective line (i.e., the fundamental line) speci-
fied by the quadratic equation:22

 φ λ λ( ), , ,x y A B C= + + =λ2 0  

where A, B, C are linear functions of coordinates x, y.
This mapping between the plane and the fundamental line is structure- 

preserving in the sense that it preserves the primitive projective “relations be-
tween figures” (Figurenverhältnisse) in the two systems. This is established by 
Hesse in terms of a number of “fundamental theorems” (Fundamentalsätze) 
that show how primitive projective properties of the objects in the first system 
correspond to properties of pairs of points on the fundamental line. One such 
theorem concerns the correspondence between the collinearity of points in the 
plane and the involution between point pairs on the projective line: any three 
collinear points P P P1 2 3, ,  correspond to three pairs of points p p p1 2 3, ,  on the pro-
jective line that are in involution (and vice versa).23

As a consequence of this and other fundamental principles, it follows that any 
projective theorem about the configurations of the one domain can be translated 
into a theorem about the configurations the other domain and vice versa. As in 
the case of duality, the method of transfer is thus primarily a method of unifica-
tion in geometry. It allows one to reapply proven results about a given field to the 
objects of a different field. Or, as Hesse puts it:

The principle of transfer developed here gives the opportunity to discover 
a large number of new theorems from the geometry of the straight line. It 
presents a recommendable task . . . to prove these theorems not directly in iso-
lation, but to invent proof methods that let the theorems appear as evident in 
combination. (Hesse 1866a, 20– 21)

Hesse’s method of transfer used for this identification of the projective geometry 
of the plane with that of the fundamental line is closely related to Plücker’s ap-
proach to linear reciprocity. In fact, in his Vier Vorlesungen aus der analytischen 
Geometrie (1866b), Hesse explicitly mentions Plücker’s method of reinterpreting 
equations by the substitution of point coordinates by line coordinates. This 

 22 The points on the fundamental line are determined in terms of their distance λ from a given 
point on the line.
 23 A second result states that all double points on the fundamental line correspond to the points 
lying on a given conic in plane and vice versa (Hesse 1866a, 17– 20).
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method provides a duplication of dual theorems based on the reinterpretation of 
all formulas used in the proof of a theorem. However, Hesse argues:

This is a very cumbersome approach, however, to reach from a given theorem 
to its corresponding one. Geometry therefore replaces the mediating formulas 
by transfer principles, through which one can immediately deduce the corre-
sponding theorem from a given theorem. In our case this principle is the well- 
known law of reciprocity. (Hesse 1866b, 32)

This passage clearly indicates the close connection between Hesse’s under-
standing of transfer principles and Plücker reciprocity. Whenever a given 
equation representing a mathematical concept can be reinterpreted in 
Plücker’s sense, one can also construct a transfer principle that directly maps 
the objects of the first domain to those of the second domain. In the case of a 
dual transformations (such as Poncelet’s polar transformations), this transfer 
principle is the principle of reciprocity in Plücker’s sense. However, Hesse 
points out, the method is more general than reciprocity and applies also to 
non- dual mappings, such as the one previously described. Hesse specifies the 
general principle as follows:

In all cases where two geometrical theorems result from different geometrical 
interpretations of the same analytic formula, a transfer principle can be discov-
ered that replaces the proving formulas in a large number of cases. (1866b, 32)

Thus, according to him, the possible reinterpretation of a given analytic ex-
pression in different coordinate systems indicates the existence of a structure- 
preserving mapping between them that can also be defined analytically. The fact 
that theorems about different geometrical objects can be proven from the “the 
same analytic source” shows that one can construct a mapping between these 
domains that induces a direct translation between the theorems.

Before turning to a closer discussion of Klein’s Erlangen program in the next 
section, let me quickly take stock here. Given the methodological developments 
in projective geometry already surveyed, one can identify two general struc-
turalist ideas implicit in the work of Poncelet, Plücker, and Hesse. The first one 
concerns a deliberate indifference with respect to the nature of the primitive 
spatial elements used for the construction of geometrical configurations and in-
stead a focus on their “invariant form.” The second one concerns the emphasis 
on structure- preserving mappings that allow one to transfer the structure of one 
geometrical system to a different system. As will be shown in the following sec-
tion, Klein’s work presents a group- theoretical reformulation and further gener-
alization of both ideas.
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3. Klein’s Erlangen Program

Klein’s program was first outlined in his “Vergleichende Betrachtungen über 
neuere geometrische Forschungen” (1872), a programmatic pamphlet dis-
tributed during his inauguration speech at the University of Erlangen.24 Klein 
presents here a novel method to study and to classify different geometries in 
terms of their corresponding transformation groups. While there is scholarly de-
bate on the actual impact of Klein’s article for subsequent research in geometry, 
it is clear that the Erlangen program contributed significantly to a new under-
standing of the subject matter of geometrical theories.25 In the following, I will 
restrict my attention to the presentation of some of the key concepts developed 
in 1872 (as well as in related writings) and discuss how they are related to the 
developments in projective geometry sketched above.

3.1. A Group- Theoretic Approach

Klein’s approach is motivated by a number of seemingly disconnected fields 
and methods in 19th- century geometry. Geometry, he writes, “which is after all 
one in substance, has been only too much broken up in the course of its recent 
rapid development into a series of almost distinct theories, which are advancing 
in comparative independence of each other” (1872, 216).26 Klein’s aim in 1872 
was therefore to formulate a “general principle” that allows for the comparison 
and classification of these different geometrical fields. This was, roughly put, the 
methodological idea that each geometry should be identified with a space and a 
group of transformations acting on it that leave the relevant geometrical proper-
ties invariant.

This algebraic approach to studying the properties of figures clearly brought 
with it a more abstract conception of the subject matter of geometrical theories. 
Two issues are noteworthy here. The first point concerns Klein’s specific un-
derstanding of a geometrical space. It is clear from Klein (1872) as well as from 

 24 A revised version of the article was published in Mathematische Annalen in 1893 and then again 
in 1921 in the first volume of Klein’s collected works (Klein [1921– 23] 1973). In the following, I quote 
from the English translation by Haskell published in 1892/ 1893.
 25 Compare Rowe (1989) on this point. See Wussing (2007) for a study of the influence of Klein’s 
approach for the subsequent development of abstract group theory. Compare, in particular, Hawkins 
(1984) and Birkhoff and Bennett (1988) for partly conflicting assessments of the relevance of Klein’s 
article for subsequent geometrical research.
 26 This is true despite the fact that projective geometry has developed into a fundamental geomet-
rical theory in work by Cayley and Klein in the sense that it not only characterizes the non- metrical 
properties of configurations but can also be used to represent the metrics of both Euclidean and non- 
Euclidean geometries. See, in particular, Biagioli (2016) for a discussion of Cayley’s work and Klein’s 
projective model of non- Euclidean geometry.
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related writings that space is not primarily meant to be physical or intuitive in 
his account. Rather, geometries study the configurations in formal “manifolds” 
of arbitrary dimensions “that have been developed from geometry by making 
abstraction from the geometric spatial image, which is not essential for purely 
mathematical investigations” (Klein 1872, 216). Klein gives an explicit charac-
terization of the notion in his article “Über die sogenannte Nicht- Euklidische 
Geometrie (2. Aufsatz)” (1873), which was also written in 1872:

If n variables x x xn1 2, ,...,  are given, the infinity to the nth value systems we ob-
tain if we let the variables x independently take the real values from −∞ to +∞, 
constitute what we shall call, in agreement with usual terminology, a manifold 
of n  dimensions. Each particular value (x x xn1 2, ,..., ) is called an element of the 
manifold. (Klein 1873, 116)

The basic spatial elements of a geometry are therefore not genuine geomet-
rical objects such as points or lines, but rather tuples of numbers assigned to the 
variables in question.27 Klein’s approach is in line here with the purely analytic 
approach in geometry of Plücker and Hesse discussed in the previous section. 
As Klein points out in 1872, the reference to genuinely spatial concepts or spa-
tial representation is to be used only for pedagogical purposes. In his own terms, 
given this purely analytic approach of manifolds, “space- perception has then 
only the value of illustration” (Klein 1872, 244).

The second issue to be mentioned here concerns Klein’s understanding of the 
notion of geometrical transformations. In his view, one can take “the totality of 
configurations in space as simultaneously affected by the transformations, and 
speak therefore of transformations of space” (Klein 1872, 217). Transformations 
in this sense can include those between spatial elements of the same kind (such 
as transformations between points), but also those with a change of spatial elem-
ents (such as dual mappings).

While Klein gives only an informal description of such spatial transform-
ations and of the geometrical properties preserved by them, his focus on numer-
ical manifolds suggests that they are also treated analytically. In fact, while Klein 
remains silent on this issue in 1872, he gives a detailed discussion of the analytic 
representation of various transformations in related writings. For instance, in 
his 1873 paper, transformations of manifolds are described analytically in the 
following sense:

 27 In his discussion of manifolds of arbitrary dimensions in 1872, Klein refers both to Hermann 
Grassmann’s Ausdehnungslehre as well as to Bernhard Riemann’s theory of general manifolds. See 
Scholz (1980) for a historical survey of the development of the concept.



120 Georg Schiemer

A transformation of a manifold into itself is understood as the process that 
leads from every element to one corresponding element (or several). One may 
want to specify the transformation in terms of n equations, in which the cor-
responding element depends on the respective original one. The type of equa-
tions and their respective relation is at first irrelevant for the concept. In the 
following, we will always presuppose, however, that they are invertible. The in-
verted equation presents what should be called inverted transformation. (Klein 
1873, 117)

Transformations of a space are thus represented as transformations of coordi-
nates within one or between distinct coordinate systems, specified in terms of a 
number of analytic or algebraic equations describing the functions between the 
coordinates.28

Klein’s work after 1872 also contains an extensive discussion of the geomet-
rical transformations first mentioned in the Erlangen program. Consider his 
monograph Elementarmathematik vom höheren Standpunkte aus of 1908. The 
“analytic presentation” is described here as follows:

The analytic expression of a point transformation is what analysis calls the in-
troduction of new variables ′x , ′ ′y z, :

We can interpret such a system of equations geometrically in two ways, I might 
say actively and passively. Passively, it represents a change in the coordinate 
system, i.e., the new coordinates ′ ′ ′x y z, ,  are assigned to the point with the 
given coordinates x y z, , .  .  .  . In contrast with this, the active interpretation 
holds the coordinate system fixed and changes space. To every point x y z, , , the 
point ′ ′ ′x y z, ,  is made to correspond, so that there is, in fact, a transformation 
of the points in space. It is with this conception that we shall be concerned in 
what follows. (Klein 2016, 81– 82)

 28 Sophus Lie’s Theorie der Transformationsgruppen presents the first systematic treatment of 
the notion of a spatial transformation (Lie 1893). Compare Hawkins (2000) for a detailed study of 
Lie’s work.
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Klein’s distinction between an “active” and a “passive” interpretation of the equa-
tions presenting a transformation is interesting here. The latter account seems 
similar to Plücker’s account of linear reciprocity, and more specifically, to Hesse’s 
analytic presentation of transfer principles between different geometrical fields. 
The former, active account specifies transformations relative to a given coordi-
nate system as a permutation of all points that also induces a transformation of 
all configurations in the manifold.

Returning to Klein’s 1872 article, it is plausible to assume that this under-
standing of analytically defined coordinate transformations within a fixed coor-
dinate system also forms the background of his Erlangen program. Klein argues 
here that one can view different geometrical fields such as Euclidean or projec-
tive geometry as determined by a class of relevant transformations. These are the 
class of isometries in the first case and the projections (including collineations 
and dual transformations) in the second case. Moreover, given that the trans-
formations of such a class always have inverses and that any two of them can 
be merged into a new composed transformation, it follows that these classes— 
equipped with a suitable composition operator— also form groups in the alge-
braic sense of the term. Compare Klein on this point:

The most essential idea required in the following discussion is that of a group 
of space- transformations. The combination of any number of transformations 
of space is always equivalent to a single transformation. If now a given system 
of transformations has the property that any transformation obtained by com-
bining any transformations of the system belongs to that system, it shall be 
called a group of transformations. (Klein 1872, 217)29

Klein mentions a number of geometrical transformations that form a group in 
this sense: the class of all movements in a given space; the class of rotations rela-
tive to a given point; the class of collineations; as well as the group consisting of 
all linear substitutions that leave the metric properties unchanged. Klein calls 
the latter group the “principal group” (Hauptgruppe) of a space and the corre-
sponding geometrical discipline “elementary geometry.” Dual transformations 
in the sense specified in the previous section are also mentioned by Klein in this 
context. In particular, he argues that while such transformations do not form a 

 29 It should be noted that Klein does not state the modern axiomatic conditions for abstract groups 
here (including the associativity of the group operations and the existence of a neutral element). His 
specification of the concept of groups of transformations in terms of a closure condition for the com-
position of transformations is directly based on Jordan’s theory of permutation groups given in his 
Traité. Compare Wussing (2007, 186) for a detailed survey of Klein concept of groups and his mathe-
matical background.
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group by themselves, the class of collineations and dual mappings does form a 
group (Klein 1872, 217).

Given this conceptual framework, Klein showed in 1872 that groups of 
transformations allow one to specify the notion of geometrical properties of 
configurations in a given manifold. More specifically, his proposal was to char-
acterize the relevant properties of a given geometry in terms of an invariance 
condition specified relative to a group. Thus, given a geometry X with a transfor-
mation group GX, properties of figures are specified as geometrically relevant if 
they are preserved under the transformations of group GX. This approach is first 
characterized informally with respect to the invariance relative to the “principal 
group”:

Geometric properties are not changed by the transformations of the principal 
group. And, conversely, geometric properties are characterized by their re-
maining invariant under the transformations of the principal group. For if we 
regard space for the moment as immovable, etc., as a rigid manifoldness, then 
every figure has an individual character; of all the properties possessed by it as 
an individual, only the properly geometric ones are preserved in the transform-
ations of the principal group. (Klein 1872, 218)

As Klein points out, this invariance- based method not only applies to “elemen-
tary geometry” of three- dimensional space, but more generally to any geometry 
of a formal manifold of arbitrary dimensions that can be characterized in terms 
of a group of transformations.

This shift of attention from concrete figures to manifolds leads to a “general-
ization of geometry” that is significant in at least two respects. First, Klein’s ap-
proach led to the new situation that different (and partly conflicting) geometrical 
fields were to be treated on equal footing, that is, as equally justified. Or, as Klein 
puts it, “There is no longer, as there is in space, one group distinguished above 
the rest by its signification; each group is of equal importance with every other” 
(Klein 1872, 218). Second, the group- theoretic method implies a radically new 
conception of the nature of a geometrical theory. A geometry is now conceived as 
a tuple consisting of a manifold (of a given dimensionality) and a group of trans-
formations acting on this manifold. Consequently, the general task of a geom-
eter is to study those properties of geometrical configurations that are preserved 
under the transformations in question. Put differently, given this new frame-
work, geometry turns into an invariant theory for the given group:

Given a manifold and a group of transformations of the same: to investigate 
the configurations belonging to the manifold with regard to such properties 
as are not altered by the transformations of the group. . .  . Given a manifold 
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and a group of transformations of the same: to develop the theory of invariants 
relating to that group. (Klein 1872, 218– 219)30

As we saw previously, the transformations in question are generally under-
stood as coordinate transformations expressed by a number of analytic equa-
tions. Consequently, geometrical invariants also have to be specified analytically, 
namely in terms of equations between coordinates and constants representing 
a geometrical concept that remain preserved under the transformations of a 
given group.

While Klein does not give a more detailed discussion of the invariant theory 
related to his group- theoretic approach in 1872, it is developed in his subsequent 
work.31 For instance, Klein’s Elementarmathematik contains a section titled 
“Group Theory as a Geometrical Principle of Classification” where the analytic 
invariant theory of various geometries is discussed in further detail. Klein shows 
here that elementary or “metrical” geometry is characterized by the group of cer-
tain special linear substitutions corresponding to the principal group specified in 
1872. Geometrical invariants are then given by analytic expressions that remain 
unaltered by such substitutions. In Klein’s terms, “the geometry is thus the invar-
iant theory of these linear substitutions” (Klein 2016, 153).

3.2. Transfer by Mapping

Klein’s main focus in 1872 was not the study of particular geometries in isola-
tion but rather the comparison of different theories in terms of their transfor-
mation groups. Thus, group theory was to provide a unifying approach that 
allowed for the classification of different geometrical systems studied at the time. 
More specifically, Klein’s idea to introduce an order of generality between dif-
ferent geometries is based on a relation between their transformation groups. 
Recall that geometries are conceived in Klein’s program as consisting of a mani-
fold and a group of transformations acting on it. Given two such geometries, say  
A = < >M A,  and B = < >M B, , geometry B can be characterized as a subgeometry 
of A if transformation group B forms a subgroup of A. It follows from this that 
every invariant property studied in A (i.e., relative to the transformations in A) is 

 30 As is shown in Wussing (2007), Klein’s use of the notion of invariants can be seen as a conces-
sion to the earlier invariant- theoretic approach in geometry, e.g., in work by Cayley and Clebsch, that 
strongly influenced Klein’s own group- theoretic approach.
 31 Lie’s Theorie der Transformationsgruppen contains a detailed presentation of invariants of trans-
formation groups (Lie 1893). Compare also Fano (1907) for a study of the invariants of different 
transformations groups discussed by Klein and others.
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also an invariant in B but not vice versa. Moreover, all theorems of A turn out to 
be theorems of B.

Klein discusses a number of geometrical theories in 1872 that can be ordered 
in this way in terms of the relation of subgroups or group extensions. His ge-
neral approach is to construct subgroups of a given transformation group by 
restricting the latter to transformations that leave invariant a given spatial ele-
ment or a given configuration (such as a conic section). The main example in 
this respect concerns “elementary geometry,” specified by the principal group of 
geometrical transformations. It is shown that the group of projective transform-
ations forms an extension of this group. It follows from this that every property 
of projective geometry is also a property of elementary geometry but not vice 
versa. Compare Klein on this point:

We inquire what properties of the configurations of space remain unaltered by 
a group of transformations that contains the principal group as a part of itself. 
Every property found by an investigation of this kind is a geometric property of 
the configuration itself; but the converse is not true. (Klein 1872, 220)

Thus, while the projective properties— including metrical properties such as 
the cross- ratio for a given set of points— are also invariant under the transform-
ations of the principal group, properties such as sameness of lengths of segments 
are not invariant in the projective setting.32

A second approach to interrelate different geometries in Klein (1872) concerns 
so- called transfer principles. Such principles are introduced by Klein as a general 
method to show the equivalence of geometries in section 4, titled “Übertragung 
durch Abbildung.” The method of “transfer by mapping” is informally character-
ized here as follows:

Suppose a manifoldness A has been investigated with reference to a group B. If, 
by any transformation whatever, A be then converted into a second manifold-
ness ′A , the group B of transformations, which transformed A into itself, will 
become a group ′B , whose transformations are performed upon ′A . It is then a 
self- evident principle that the method of treating A with reference to B at once 
furnishes the method of treating ′A  with reference to ′B , i.e., every property of 
a configuration contained in A obtained by means of the group B furnishes a 
property of the corresponding configuration in ′A  to be obtained by the group

′B . (Klein 1872, 223)

 32 By the same method, Klein shows that various non- Euclidean geometries form subgeometries 
of projective geometry. See, in particular, Biagioli (2016) and Torretti (1978) on Klein’s discussion of 
non- Euclidean geometries and the relation to Arthur Cayley’s work a generalized metric. Compare 
Brannan et al. (2011) for a modern presentation of the hierarchy of Kleinian geometries.
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To paraphrase Klein’s approach in modernized terms: consider two geometries, 
both understood as tuples consisting of a manifold and a group of transform-
ations acting on it, that is, G  = < >A B,  and ′G  = < ′ ′>A B, , respectively. A transfer 
principle between G  and ′G  is a mapping between the manifolds f: A → ′A  that 
induces an isomorphism between the corresponding groups B and ′B  acting on 
them. It follows that every invariant property of configuration in A determined 
with respect to the transformations in B can be mapped to a corresponding 
invariant property of configurations in ′A  with respect to ′B . Moreover, the 
transfer principle allows one to translate every theorem of geometry G  into a cor-
responding theorem of geometry ′G .

Given Klein’s account of transfers by representation, several points of com-
mentary are in order. First, principles of this form play a crucial role in his ge-
neral program to classify different geometrical fields investigated at the time. He 
discusses a number of concrete examples of such principles that connect different 
theories in his 1872 article. This includes a transfer principle between the “theory 
of binary forms” given by the group of “∞3 linear transformations” of a straight 
line and the “projective geometry of systems of points systems on a conic” in 
the plane (determined by the linear transformations of the conic into itself). The 
transfer principle in question, Klein argues, preserves the relevant properties of 
configurations in the two domains. As a consequence, the two geometries are 
shown to be equivalent:

The theory of binary forms and the projective geometry of systems of points on 
a conic are one and the same, i.e., to every proposition concerning binary forms 
corresponds a proposition concerning such systems of points, and vice versa. 
(Klein 1872, 223)33

This account of transfer principles presented in 1872 is strongly influenced 
by preceding geometrical research.34 In particular, Klein explicitly refers to 
Lie’s work as well as to his own article “Über Liniengeometrie und metrische 
Geometrie” (1872a) for a discussion of another transfer principle connecting 
line geometry with the metric geometry in four variables. As is shown there, this 
mapping allows one to “transfer the complete content of metrical geometry to 
line geometry” and thus induces a “translation into the language of line geom-
etry” (Klein 1872a).

Moreover, the discussion of transfer principles in Klein’s 1872 paper was 
strongly influenced by the developments in projective geometry surveyed in the 

 33 A second, analogous example concerns the elementary geometry of the plane and the projective 
geometry of a quadratic surface with a given fixed point (Klein 1872, 224).
 34 See, in particular, Rowe (1989) for a detailed study of Klein’s work on transfer principles and its 
mathematical background.
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previous section, in particular, by Plücker’s and Hesse’s work on generalized rec-
iprocity and transfer principles. Interestingly, in Klein’s article, the very notion of 
“transfer” is first mentioned in the context of his discussion of the development 
of projective geometry:

Every space- transformation not belonging to the principal group can be used to 
transfer the properties of known configurations to new ones. Thus we apply the 
results of plane geometry to the geometry of surfaces that can be represented 
upon a plane; in this way long before the origin of a true projective geometry 
the properties of figures derived by projection from a given figure were inferred 
from those of the given figure. (Klein 1872, 220– 221)35

How are the transfer principles developed in projective geometry related to 
Klein’s own use of “transfers by mapping”? As we saw, transfers were introduced 
in Plücker’s and Hesse’s work as mappings between different coordinate systems 
that induce a translation of the theorems about the projective properties of fig-
ures. Klein’s method generalizes such principles in the sense that the structure 
preserved by them is now expressed group- theoretically, that is, in terms of an 
isomorphism relation between the groups of transformations associated with 
two manifolds.36

A third point to mention here also concerns the projective background of 
Klein’s concept of transfers. Section 5 of the article, titled “On the Arbitrariness 
in the Choice of the Space Element,” shows that such principles can be used 
to connect geometries describing manifolds with different spatial elements 
(Raumelemente) such as points, lines, higher- order curves, etc. Compare Klein 
on this point:

As element of the straight line, of the plane, of space, or of any manifoldness to 
be investigated, we may use instead of the point any configuration contained in 
the manifoldness, a group of points, a curve or surface, etc. As there is nothing 
at all determined at the outset about the number of arbitrary parameters upon 
which these configurations shall depend, the number of dimensions of our line, 

 35 As he points out, the transfer of geometrical properties is then generalized in work by Poncelet 
and others in terms of the introduction of dual transformations, i.e., those based on a change of the 
elements of space that preserve several symmetrical incidence properties (Klein 1872, 221).
 36 Klein, in his 1872 article, does not explicitly use the notion of group isomorphism. However, it is 
clear from his related writings from the time that this notion or, in his terms, the “similarity” between 
groups of transformations was assumed in the background of his discussion of transfer principles. 
See his definition of this notion given in 1873: “Two transformation groups are said to be similar if 
we can associate the transformations of the one group to the transformations of the other group such 
that composition of corresponding transformations yields corresponding transformations” (118).
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plane, space, etc., may be anything we like, according to our choice of the ele-
ment. (Klein 1872, 224)

The indifference to the basic nature of geometrical objects expressed here 
clearly echoes Plücker’s idea of a generalized concept of coordinates and the 
flexibilization of the basic elements of space that comes with it. As we saw in the 
previous section, Plücker thought of the dimensionality of a space as determined 
by the number of independent variables needed to present the basic spatial elem-
ents in analytic terms. Thus, for instance, a plane is two- dimensional if points are 
assumed as the basic elements; it is five- dimensional if conic sections are taken as 
the basic elements. This is precisely the idea also underlying Klein’s discussion of 
manifolds in 1872.37

Given this Plückerian account of “spatial elements,” Klein’s central observa-
tion is that the choice of the basic elements and thus of the dimensionality of a 
given manifold is of secondary importance for the investigation of geometries. 
What is relevant, from a mathematical point of view, are their group of trans-
formations and the algebraic relations between them. Compare again Klein on 
this central “structuralist” insight:

But so long as we base our geometrical investigation on the same group of 
transformations, the geometrical content [Inhalt der Geometrie] remains un-
changed. That is, every theorem resulting from one choice of space element will 
also be a theorem under any other choice; only the arrangement and correla-
tion of the theorems will be changed. The essential thing is thus the group of 
transformations; the number of dimensions to be assigned to a manifold is only 
of secondary importance. (Klein 1872, 224– 225)

A number of concrete examples of geometries of manifolds with different spa-
tial elements are mentioned by Klein whose equivalence can be established in 
terms of transfer principles. One such example concerns a mapping between the 
system of pairs of points on a conic and the plane with straight lines as the basic 
elements. This mapping assigns to each pair of points ( , )λ λ1 2  on a conic the 
line that intersects the conic at points ( , )λ λ1 2  (and vice versa).38 It thus induces 
an isomorphism between the group of linear transformations of the conic in it-
self and the group of linear transformations of the lines in the plane that leave 
the conic invariant. Interestingly, in the discussion of this and several related 

 37 In fact, in a corresponding note in his article, Klein explicitly refers to Plücker’s work on “how to 
regard actual space as a manifoldness of any number of dimensions by introducing as space- element 
a configuration depending on any number of parameters, a curve, surface, etc.” (Klein 1872, 245).
 38 See Fano (1907, 358– 359) for a detailed analytic presentation of this mapping and the resulting 
equivalence theorem.
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results, Klein explicitly mentions Hesse’s work: “The correlation here explained 
between the geometry of the plane, of space, or of a manifoldness of any number 
of dimensions is essentially identical with the principle of transference proposed 
by Hesse (Borchardt’s Journal, vol. 66)” (Klein 1872, 225).

4. Structuralist Themes

The geometrical research surveyed in the last two sections strongly contributed 
to a general structural turn in 19th- century mathematics. In particular, the sys-
tematic use of transformations and transfer principles both in projective ge-
ometry and in Klein’s program brought with it a new conception of the subject 
matter of geometry: geometry was no longer understood as the study of concrete 
figures in intuitive space, but rather as a theory of abstract forms or invariant 
properties and thus as a branch of pure mathematics. Klein’s group- theoretic 
classification of different geometrical fields in terms of transformation groups in 
1872 is often considered a culmination point of this development.39

How is the group- theoretic approach in geometry related to modern debates 
on structuralism? It seems natural to describe Klein’s account as a kind of “meth-
odological structuralism,” a position first introduced by Reck with respect to 
Dedekind’s foundational work on analysis and arithmetic.40 This account differs 
from other philosophical theories of structuralism in the sense that it is more 
concerned with mathematical methodology than with metaphysical issues 
concerning the nature of structures. As Reck points out, structural methods in 
modern mathematics usually imply some form of abstraction from the subject 
matter or the particular nature of the objects described by a mathematical theory 
(Reck 2003, 371).41

Regarding Klein’s work, one can identify two different types of structural ab-
straction in his approach to geometry. The first type is specified relative to a given 
geometry and concerns the abstraction from particular configurations in order 
to study their invariant properties. The second type is related to Klein’s use of 
transfer principles. It concerns the abstraction from particular manifolds and 

 39 Compare, for instance, Tobies who writes that Klein’s Erlangen program “formed a deci-
sive turning point for the geometry of the 19th century. Klein’s use of the group concept supported 
approaches to structural mathematical thinking formed at the end of the 19th century. (Tobies 
1981, 36– 37, my trans.) See, in particular, Biagioli (2018) for a recent study of Klein’s geometrical 
structuralism.
 40 See, in particular, Reck (2003) as well as Reck and Price (2000) for a more general discussion of 
the position.
 41 Thus, methodological structuralism can be viewed as the philosophical analysis of styles of rea-
soning introduced in modern mathematics that allow the mathematician to abstract from particular 
representations of objects in a system by highlighting their purely structural features or properties.
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their basic spatial elements in order to identify the structural content shared by 
different geometries. In the remaining part of the chapter, I will analyze these 
two structuralist ideas in Klein’s work.

4.1. Invariance and Structural Indiscernibility

A central “structuralist” idea underlying the geometrical developments previ-
ously sketched concerns the emphasis on invariant properties. Projective ge-
ometry in Poncelet’s Traité and in subsequent work was viewed as the study of 
properties of spatial configurations that remain invariant under different types 
of projections. Generally speaking, invariance criteria were used as a method to 
carve out those properties that are geometrically relevant. A second and related 
idea concerns the notion of the geometrical identity (or congruence) of figures. 
In Euclidean geometry, two figures are usually taken to be distinct if there exist 
some metrical properties that allow one to discriminate between them. From 
a projective point of view, however, the same two figures will be treated as in-
distinguishable in case there exists a projective transformation between them. 
Thus, the identity of figures is determined here in terms of a primitive concept of 
structure- preserving transformations.

Obviously, these two ideas in projective geometry formed an important 
background for Klein’s own group- theoretic approach. In fact, in his 1872 
paper, the issue of projective identity is explicitly mentioned in his discussion 
of the extension of the “principal group” by projective transformations. As 
Klein puts it:

But projective geometry only arose as it became customary to regard the orig-
inal figure as essentially identical with all those deducible from it by projection, 
and to enunciate the properties transferred in the process of projection in such 
a way as to put in evidence their independence of the change due to the projec-
tion. (1872, 221)

As was mentioned in section 2, the notion of projective identity discussed 
here was further generalized in work on duality and general reciprocity. Dual 
mappings between figures based on Poncelet’s theory of poles and polars allow 
one to identify symmetric incidence relations in a figure that are preserved by 
such transformations. Moreover, dual figures that share reciprocal properties are 
usually treated as identical. Compare again Klein on this point:

From the modern point of view two reciprocal figures are not to be regarded as 
two distinct figures, but as essentially one and the same. (1872, 221)
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Thus, in cases of dual figures, geometers abstract also from the particular nature of 
the basic elements of geometrical figures (e.g., points or lines in the case of plane 
geometry).

Arguably, the most systematic expression of these structuralist insights re-
garding the role of invariants and the nature of geometrical identity is developed 
in Klein’s program. As we saw, both notions are specified here relative to a given 
group of transformations. Thus, the “elementary” metrical properties of a figure 
in a given manifold are specified relative to the principal group, its projective 
properties are specified relative to the extended group of projections and so on. 
Related to this, a criterion of structural identity is given based on the transform-
ations of a given group.42

Expressed more formally in set- theoretic terms, Klein’s account can be 
brought into the following form: let M  be a manifold and G  a group of trans-
formations f M M: →  acting on M :

Definition 1 (G- property): A property P of figures in M  is a G- property if is it 
invariant relative to G , i.e., for any F M1 ⊆ : if P F1( ) then for all f G P f F∈ ( )( ): 1 .

Geometrical properties are conceived extensionally here as classes of 
configurations of a given manifold. A definition of geometrical identity or con-
gruence of figures can be given within the same framework:

Definition 2 (G- congruence): Two figures F1, F2 ⊆ M are G- congruent if there 
exists a transformation f ∈ G such that f F F1 2( ) = .

This notion of G- congruence can be viewed as an expression of the structural 
identity of figures: two congruent figures are identical with respect to their struc-
tural content or in terms of sharing the same geometrical properties. Similarly, 
the notion of a G- property can be taken to express the structural properties of a 
given geometry in terms of an invariance condition.43

 42 In a recent analysis of the Erlangen program by Marquis, these two ideas are also emphasized 
as the philosophically relevant aspects of Klein’s approach: “(Transformation groups) constitute in a 
precise sense the algebraic encoding of a criterion of identity for geometric objects, or to be more pre-
cise for geometric object- types. Second, the same transformation groups also encode a definite cri-
terion of meaningfulness for geometric predicates, or, equivalently, a definite criterion for geometric 
properties” (Marquis 2009, 12).
 43 Notice that, in both definitions, the notion of geometrical structure assumed here is strongly 
context- relative. What counts as a structural property of the figures of a manifold depends critically 
on the particular transformation group associated with a geometry. Analogously, the congruence 
conditions for figures within a manifold are also specified in a given geometrical context. Thus, for 
instance, congruence in affine geometry is specified relative to the group of affine transformations; in 
Euclidean geometry, it is specified relative to the group of isometries, and so on.
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How is Klein’s view related to modern structuralism? Given the preceding dis-
cussion, several points come to mind here. First, Klein’s work on invariants under 
transformation groups seems closely connected to the structuralists’ focus on 
structural properties of mathematical objects. As mentioned in the introduction, 
one way to characterize the structuralist thesis is to say mathematical theories 
describe only structural properties of the objects of their subject domain.44 For 
instance, Benacerraf ’s “What Numbers Could Not Be” (Benacerraf 1965) first 
emphasized that Peano arithmetic is concerned only with the relations between 
numbers in ω- sequences and not with particular set- theoretic presentations of 
them. Klein’s approach is similar to Benacerraf ’s emphasis on purely structural 
properties. In fact, the former’s proposal to think of geometrical properties of 
figures as invariants relative to a transformation group can be viewed as an early 
attempt at a mathematically precise characterization of the notion in the context 
of geometry.

A second point to mention here concerns Klein’s understanding of the con-
gruence of geometrical configurations. His account is similar in several respects 
to recent philosophical work on structuralist identity criteria. We saw that two 
figures can be identified, according to Klein, in case there exists a transformation 
of the elements of a space that maps one figure to the other one. One can think 
of such “internal” identity criteria specified relative to transformation groups in 
two ways, either (i) as expressing the sameness of figures in a manifold with re-
spect to their structural properties or (ii) as expressing the identity of the abstract 
form shared by these figures.45

The first reading connects Klein’s account with recent debates on the iden-
tity of structurally indiscernible objects mentioned in the introduction.46 Briefly 
put, this debate concerns the question whether a version of Leibniz’s principle of 
the identity of indiscernible objects presents an adequate identity criterion for 
structural mathematics. The principle in question holds that two mathematical 
objects are identical in case that they share the same structural properties. More 
formally, for any two objects X, Y and structural properties P:

 X Y P P X P Y= ⇔ ∀ ⇔: ) )( ( ( ).  (PII)

Different versions of (PII) have been discussed in mathematical structuralism. 
For instance, it has been considered as a criterion of the identity of places in 
structures in Shapiro’s ante rem structuralism.

 44 Compare Korbmacher and Schiemer (2017) for a detailed study of the notion of structural 
properties in mathematics and its possible explications.
 45 Compare again Marquis (2009) for a more detailed discussion of this.
 46 See note 2 for references.
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A related discussion can be found in recent work on a structuralist account of 
mathematics based on homotopy type theory. Awodey (2014) emphasizes that in 
mathematical practice, isomorphic objects— that is, objects that share the same 
invariant properties— are usually not distinguished from each other. He takes 
the idea of treating isomorphic objects as identical to be a general “principle of 
structuralism” that should be reflected in any philosophical study of modern 
mathematics.47 Given Klein’s own remarks on the identity of figures stated pre-
viously, his approach seems well captured by Awodey’s understanding of math-
ematical identity. The identity of mathematical objects is thus not treated as a 
primitive notion but as a form of mathematical equivalence defined relative to 
transformation groups.

The second way to interpret Klein’s remarks on congruence, namely as the 
identity of the abstract shapes of configurations, is also related to non- eliminative 
structuralism.48 To see this, compare Marquis’s insightful discussion of Klein’s 
notion of identity based on a distinction between “types” and “tokens”:

One aspect of this criterion of identity has to be emphasized immediately: what 
we are characterizing with its help are types of geometric figures, not tokens of 
these figures. . . . Thus, a transformation group specifies the types that are ad-
missible in a geometric space, it determines what there “is” or what can be in a 
space in an essential way. (Marquis 2009, 20– 21)

Thus, according to Marquis, the congruence of figures given by a transformation 
group induces an identity condition for types of figures. For instance, the study 
of dual transformations between the figures of a given manifold gives a notion of 
identity for the duality types of figures. Consequently, one can think of the sub-
ject matter of geometry not only in terms of the invariant properties, but also in 
terms of these congruence types of figures.

This philosophical interpretation of Klein’s approach presents a particular 
version of structuralism discussed in the recent literature, namely in re struc-
turalism.49 This is, roughly put, the view that mathematical theories describe 
abstract structures as their subject matter but that these structures do not 
exist independently of concrete representations instantiating them. One way 
of thinking about this dependence relation between a structure and its con-
crete instantiations is again based on the notion of structural abstraction. Thus, 

 47 Structural properties are characterized here in terms of the notion of isomorphism invariance as 
well as in terms of the definability in a type theoretic language (Awodey 2014).
 48 See Reck and Price (2000) for a general overview of different structure theories.
 49 Compare Shapiro (1997) for a closer discussion of in re as opposed to ante rem structuralism.
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abstract structures are said to be gained from concrete mathematical systems by 
abstracting away all non- relevant properties of the objects in question.50

The Kleinian account of figure types can be understood as a version of in re 
structuralism concerning the subject matter of a particular geometry. As we saw, 
the study of a space relative to a group of transformations G allows one to treat 
the concrete configurations in the manifold as instances (or tokens) of more ge-
neral figure types. A figure type can be instantiated or exemplified by all figures 
occurring in the manifold that are congruent relative to G. However, the abstract 
types do not exist independently of their concrete representations but are func-
tionally dependent on them.51 Moreover, one can think of this dependence rela-
tion between types and concrete figures in terms of a notion of abstraction. As 
Marquis puts this: “A transformation group is a way to abstract types from spe-
cific tokens” (2009, 21). Given the set- theoretical reconstruction of his approach, 
one can characterize this notion of Kleinian abstraction more formally in terms 
of the following abstraction principle:

Definition 3 (Kleinian abstraction): Given a geometry < >M G,  and the corre-
sponding congruence relation ~G, for any two figures F F M1 2, ∈  we have

 Type Type1 2 1 2( ) ( ) ~ .F F F FG= ⇔  

Thus, the types of two figures in a manifold are identical in case that they are con-
gruent relative to the transformation group G.52

4.2. Transfer Principles and Structural Equivalence

The second type of structural abstraction developed in Klein’s program is related 
to his use of transfer principles. As we saw, his method of transfer by mapping is 
closely motivated by previous work on the generalization of Poncelet- Gergonne 
duality by Plücker and Hesse. In Klein’s work, the equivalence of two geometries 

 50 See, in particular, Linnebo and Pettigrew (2014) for a recent systematic study of a form of ab-
straction based structuralism.
 51 Compare again Marquis on this point: “Working with the transformations amounts to working 
with types instead of working with tokens. Notice, though, that the transformations are applied 
to tokens of these types and clearly the existence of the latter depends directly on the existence, or 
should we say the presence, of the former. Thus, a transformation group indicates the presence of ge-
ometric types whose existence depends on the existence of geometric tokens” (Marquis 2009, 21).
 52 Notice that this definition of abstraction is again relative to a given choice of a group of transform-
ations. Thus, what counts as an abstract type of a figure differs relative to different groups. To give a simple 
example: ellipses, parabola, and hyperbola are figure types relative to Euclidean geometry and the group 
of isometries. In contrast, in projective geometry, these types are reduced to the single, more general type 
‘conic’, given the fact that ellipses, parabola, and hyperbola are equivalent in the projective setting.
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is formulated in a group- theoretic framework: a transfer is a structure- preserving 
mapping between two manifolds that induces an isomorphism between the 
group of transformations acting on the manifolds. As Klein shows, this fact 
induces a translation between the theorems of the two geometries in question. 
While his own discussion of transfer principles remains rather schematic in his 
1872 article, one can give the following reconstruction of his approach:

Definition 4 (Equivalent geometries):  Two geometries <M, G> and < ′>′M G,  
are equivalent if there exists a bijection F: M → ′M  and a group isomorphism 
α: G G→ ′ induced by F such that for all x ∈ M and for all g ∈ G: F(g(x)) = (α(g))
(F(x)).

A transfer principle in this group- theoretic sense is thus a mapping between 
two manifolds that allows one to construct an isomorphism between two trans-
formations groups that preserves the group actions on the respective manifolds 
(see Figure 2).53

Given Klein’s approach, two points of commentary are in order here. First, 
notice that by identifying geometries based on their isomorphic transformation 
groups, one clearly abstracts from the particular nature of the basic objects of 
a geometry and instead focuses on its general invariant form. The abstraction 
involved here is more general, however, than the one described in the previous 
section. It concerns not the specific character of particular figures in a given 
manifold, but rather the manifolds themselves. In order to grasp the “real con-
tent” of a given geometry, Klein argues, the specific character of the spatial elem-
ents in the domain is irrelevant. What is relevant is the structural content of a 
geometry characterized by its transformations group.54

 53 Given that α is a group isomorphism, also the composition of transformations as well as the in-
verse function on transformations are preserved.
 54 Compare Marquis (2009) for a similar assessment of Klein’s approach.
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Moreover, given Klein’s indifference to the basic ontology of geometrical 
objects, his account of transfer principles can be viewed as a general criterion 
for the structural equivalence of geometries. To use one of his own examples, 
the theory of binary forms and the projective geometry of points on a conic are 
taken to be equivalent in the sense that they share the same structural content, 
independent of their particular geometrical domains. This sameness of structure 
is expressed by the fact that their corresponding groups or transformations are 
isomorphic (or, in Klein’s terms, “similar”).

How is the structuralism implicit in Klein’s account of transfer principles re-
lated to contemporary philosophy of mathematics? Surprisingly, there is still yet 
little discussion on possible criteria of the structural equivalence of mathematical 
theories in the present debate. As we saw in the previous section, structuralists 
are mainly concerned with questions regarding the nature of abstract structures 
and, to a lesser degree, with the question of when two structures should be taken 
to be equivalent.55 Nevertheless, there is a close connection between Klein’s ap-
proach and subsequent developments in category theory. In fact, category theory 
is often considered as a “conceptual extension” or “generalization” of Klein’s pro-
gram. Consider, for instance, the following well- known passage from Eilenberg 
and Mac Lane’s article “General Theory of Natural Equivalences” of 1945:

This may be regarded as a continuation of the Klein Erlanger Programm, in the 
sense that a geometrical space with its group of transformations is generalized 
to a category with its algebra of mappings. (237)

The relation between the study of categories and Klein’s program expressed here 
seems to be this: in Klein’s account, the structure of a geometry is expressed in 
terms of the group of transformations acting on a given manifold. Similarly, cat-
egory theory can be understood as the study of particular categories in terms 
of their objects and structure preserving mappings.56 As in Klein’s account, the 
category- theoretic study of objects such as graphs or monoids can be under-
stood as the study of the invariant properties expressible in terms of structure- 
preserving mappings between these objects.

I cannot develop any further here the question in what sense category theory 
can be viewed as a generalization of Klein’s group- theoretic approach in geom-
etry.57 However, it will be interesting to point to two connections between Klein’s 
conceptual approach and an account of mathematical structuralism motivated 

 55 See, in particular, Resnik (1997) and Shapiro (1997) on the characterization of the equivalence 
of mathematical structures based on the notion of definitional equivalence.
 56 See Awodey (2010) for a textbook presentation of category theory.
 57 See, in particular, Marquis (2009) for an extensive study of this question and the historical de-
velopment of category theory more generally.
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by category theory.58 A first point of contact between Klein’s account and catego-
rical structuralism concerns the indifference with respect to the nature of mathe-
matical objects considered. Categorical structuralists explicitly share Klein’s view 
that what matters in mathematics are not the particular mathematical objects 
or their set- theoretic representations but rather their “invariant form.” Thus, the 
objects in a particular category are not supposed to have any properties other 
than those specifiable in terms of mappings between them. Compare Awodey on 
this structuralist conception of objects:

This lack of specificity or determination [of particular objects] is not an acci-
dental feature of mathematics. . . . Rather it is characteristic of mathematical 
statements that the particular nature of the entities involved plays no role, but 
rather their relations, operations, etc.— the “structures” that they bear— are 
related, connected, and described in the statements and proofs of theorems. 
(2004, 59)

The second point of contact concerns the notion of the structural equivalence 
of theories. We saw that Klein’s motivation for his Erlangen program was not to 
study geometries in isolation but to compare different geometries investigated at 
the time in terms of their transformation groups. Similarly, research in category 
theory is usually not confined to the isolated study of particular mathematical 
categories but mainly concerns the study of relations between different catego-
ries. The central concept used for this task is that of a functor, i.e., a structure- 
preserving mapping between categories:

Definition 5 (Functor): A functor between categories C and D is a mapping F: C 
→ D of objects to objects and arrows to arrows such that

(a) F f A B F f F A F B( : ) ( ) : ( ) ( )→ = →

(b) F A F A( ) ( )1 1=

(c) F g f F g F f( ) ( () ) =

A functor is a mapping between two categories that leaves invariant the do-
main and codomains of mappings, the identity mappings, and the composi-
tion of mappings. Consequently, each categorical property specifiable in the 

 58 See, for instance, Awodey (1996) and McLarty (2004) for different versions of categorical 
structuralism.
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one category will be transferred by the functor into a categorical property of the 
objects in the second category (see Awodey 2010, 8– 9).

It seems natural to think of functors as a mathematical generalization of 
Klein’s notion of transfers. We saw earlier that Klein’s Erlangen program gives 
an account of the “essential sameness” of geometries in terms of transfer prin-
ciples. A plausible category- theoretic reconstruction of this Kleinian notion of 
inter- theoretic equivalence can be given in terms of the concept of categorical 
equivalence:

Definition 6 (Equivalence of categories): An equivalence of categories C and D 
consists of a pair of functors E: C → D and F: D → C such that there are natural 
isomorphisms:59

 E F D ≅ 1  

 F E C ≅ 1  

Given the conceptual similarity between Klein’s program and category theory 
as a general framework for structural mathematics, one can consider this no-
tion of categorical equivalence as a generalization of Klein’s notion of structural 
equivalence.60 In both cases, the structure of a given theory is determined by the 
algebraic properties of mappings or transformations. Moreover, two theories are 
considered to be identical on a structural level in case there exists a mapping that 
allows one to transfer the algebraic structure of one theory to the other theory.61

5. Conclusion

Klein’s Erlangen program of 1872 presents a landmark contribution to algebraic 
reasoning in geometry and, more generally, to the gradual implementation of 
a structural approach in modern mathematics. The aim in this chapter was to 
further substantiate these claims and to specify Klein’s particular version of geo-
metrical structuralism. As we saw, his account is based on the systematic use of 

 59 Notice that this notion is more general than the isomorphism of categories: functors E and F 
are not required to be inverses of each other, but only “pseudo- inverses.” This means that for any D ∈ 
D: E ◦ F(D) ≅ D, not necessarily E ◦ F(D) = D. See Awodey (2010).
 60 See again Marquis (2009) for a closer discussion of the relation between Klein’s work and 
modern category theoretic concepts.
 61 See Barrett and Halvorson (2016) for a recent proposal to explicate the equivalence of scientific 
theories in terms of the notion of categorical equivalence.
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transformation groups in order to specify the invariants of configurations in a 
manifold as well as the structural content of geometries.

The chapter focused on two thematic points:  the first one was an impor-
tant strand of the mathematical background of Klein’s program, namely dif-
ferent proposals to generalize the principle of duality in 19th- century geometry. 
This included Plücker’s purely analytic study of dualities between geometrical 
configurations of any dimension. It was shown how his approach led to the for-
mulation of different transfer principles in projective geometry. Moreover, Klein 
developed his own account of geometry in direct continuation with these “struc-
turalist” methods of Plücker and Hesse. Specifically, his approach presents a gen-
eralization by group- theoretic means of two ideas first developed in preceding 
geometrical research, namely (i) the use of structure- preserving mappings in rec-
iprocity and transfer principles and (ii) the focus on invariant form in the analytic 
presentation of geometrical figures and their properties.

The second aim in this chapter was to connect Klein’s conception of geometry 
with current debates on structuralism. As we saw, there are at least two points of 
contact between his ideas and more recent philosophical work. The first concerns 
Klein’s approach to specify geometrical properties and the notion of congruence 
(or equivalence) of configurations relative to a given group of transformations. 
This approach clearly mirrors recent work on structural properties and struc-
tural identity conditions for mathematical objects in non- eliminative structur-
alism. More specifically, building on recent work by Marquis, we saw that Klein’s 
approach can be interpreted as a version of in re structuralism for geometry, ac-
cording to which the real subject matter of a geometry consists of abstract figure 
types specifiable in terms of a congruence relation.

The second point of contact concerns Klein’s proposal to specify the struc-
tural equivalence of two geometries based on transfer principles. This approach 
is closely related to later attempts to think about mathematical objects (and the 
equivalence of theories) in category- theoretic terms. In particular, a natural gen-
eralization of Klein’s “transfer by mapping” approach can be given in terms of 
the notion of categorical equivalence of categories of theories. This analogy with 
modern category theory also suggests to treat Klein’s specific geometrical struc-
turalism as a precursor of more recent accounts of categorical structuralism, that 
is, attempts by Awodey and others to capture the philosophers’ talk about mathe-
matical structures in the language of category theory.
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