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 Noether as Mathematical Structuralist

Audrey Yap

1. Introduction

Emmy Noether’s student B. L van der Waerden wrote of her that the maxim by 
which she always let herself be guided was that “all relations between numbers, 
functions, and operations become clear, generalizable, and truly fruitful only 
when they are separated from their particular objects and reduced to general 
concepts.” This chapter will show how Noether’s emphasis on abstraction and 
generalization of frameworks and results contributed to the abstract conception 
of structure found in contemporary mathematics. Doing so will demonstrate her 
contribution to structuralist methodology, though she did not herself advocate 
many philosophical views that we now associate with articulations of structur-
alism, such as the idea that structures are the real objects of mathematical study. 
Instead, Noether can be seen as exemplifying what Reck and Price (2000) have 
called methodological structuralism, as opposed to philosophical structuralism. 
The former approach notes that many of the entities studied in mathematics, 
such as various different number systems and geometrical spaces, are studied 
primarily in terms of their structural features, and considers this to be the proper 
approach to mathematical practice. Further, it contends that it is of no real math-
ematical concern what the intrinsic nature of such mathematical entities might 
be above and beyond such structural features. What distinguishes this approach 
from philosophical structuralism is that the methodological structuralist is only 
purporting to make claims about how we ought to do mathematics, namely 
confining the scope of the view to mathematical practice. Philosophical struc-
turalism goes beyond the claims about correct practice to ask what the further 
implications of a structuralist methodology might be:

The way many contemporary philosophers of mathematics (as well as 
philosophers of language and metaphysicians) specify it further is this: How 
are we supposed to think about reference and truth along these lines, e.g., in 
the case of arithmetic? And what follows about the existence and the nature of 
the natural numbers, as well as of other mathematical objects, even if the an-
swer doesn’t matter mathematically? Put more briefly, what are the semantic 
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and metaphysical implications of a structuralist methodology? (Reck and Price 
2000, 346– 347)

We might answer these semantic and metaphysical questions in a variety of dif-
ferent ways, from “thin” views that reject the very question of the real nature of 
mathematical entities, perhaps in favor of a formalist or inferential characteriza-
tion, to “thick” Platonist views that consider structures to be real, if nonphysical, 
entities. While a lot of focus in contemporary structuralism has to with these 
philosophical questions, they rest on a characterization of mathematical practice 
that is nevertheless underpinned by methodological structuralism. While one 
can articulate a methodological structuralist view without committing oneself to 
any particular version of philosophical structuralism, the converse would seem 
like a strange move. After all, endorsing philosophical structuralism without also 
believing it to be the correct, or at least an appropriate, way of doing mathematics 
would suggest that the correct answers to the philosophical questions rest on 
an ill- advised methodology. This, while perhaps logically consistent as a view, 
seems nonetheless to be self- undermining.

To return to Noether, then, the purpose of this chapter is to demonstrate how 
she contributes to this philosophical tradition by enabling the very mathemat-
ical developments that make it possible to be a methodological structuralist in 
the first place. I will do this by tracing her development as a mathematician and 
seeing the ways in which she came to exemplify a structuralist approach to math-
ematical practice and lay the technical groundwork for further work on math-
ematical structure. This biographical look at Noether will follow the periods 
into which Hermann Weyl divided her career and methodological styles when 
he delivered her obituary. First, in Noether’s early work, she worked in an algo-
rithmic, constructive style, having begun her career studying under Paul Gordan. 
But she truly grew into her own as an algebraist, having been encouraged to study 
abstract algebra by Ernst Fischer. In the second period Weyl identifies, Noether 
worked on invariant theory, some of which comprised her habilitation work, 
but then turned to the theory of ideals, which is arguably one of her most im-
portant mathematical contributions, and the most important for structuralism. 
This chapter will focus primarily on Noether’s middle and later work rather than 
her work under Gordan, which she had a tendency to dismiss later on in life. 
Though in many ways, her contributions to ideal theory are generalizations of 
work that had already been done by others, most notably Dedekind, it is exactly 
her emphasis on generalization that embodies her pioneering approach to ab-
stract algebra and contributed to the abstract conception of structure used in 
contemporary mathematics. For example, Noether’s work on commutative rings 
was similar to Dedekind’s Theory of Algebraic Integers, but proved the results 
for arbitrary integral domains and domains of general rings. And her work on 
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non- commutative rings generalized work in representation theory. I also point 
out that it was not just in Noether’s own work, but also in her influence on her 
students such as Mac Lane and van der Waerden, who went on to provide their 
own significant contributions to algebra, in which her structural approach to 
mathematics can be seen.

Several themes will emerge in outlining the development of Noether’s 
methodological structuralism. One will be a commitment to abstraction and 
generalization— consistently finding ways to treat objects from a perspective that 
showcases the underlying concepts rather than relying on features of individual 
number systems. Another will be the use of axiomatic methods; indeed, the 
structural approach is often associated with the axiomatic approach in the his-
torical literature, and in Noether’s case in particular, we can see her use of axioms 
as exemplifying her commitment to working with structural definitions. Indeed, 
according to a well- known classification of axioms due to Feferman (1999), the 
type of axioms that Noether primarily uses are called structural axioms. These 
organize the practice of mathematics by providing the definitions of well- known 
and recurring types of structures. They can be contrasted with foundational ax-
ioms, which are taken to be universal throughout mathematics by providing 
definitions for fundamental concepts such as number and set. Finally, we can 
see what Koreuber (2015) has called “conceptual mathematics,” an approach that 
has been described by Stein (1988) as follows: “The role of a mathematical theory 
is to explore conceptual possibilities— to open up the scientific logos in general, in 
the interest of science in general” (Stein 1988, 252). This point of view is often as-
sociated with Cantor’s and Dedekind’s advocating free creation in mathematics, 
but can be seen in Noether’s methodology as well. We can see that she is not too 
preoccupied with the extent to which the concepts she studies are instantiated, 
preferring instead to focus on the relationships between them.

What follows, though, will be organized biographically rather than themat-
ically, as we shall see how these tendencies emerge in Noether’s thought as she 
develops as a mathematician. The next two sections will discuss the three epochs 
into which Weyl divided her work. The first will briefly discuss Noether’s early 
work on invariant theory, starting with the formal and algorithmic approach 
influenced by Gordan, and moving on to her adoption of the Hilbert- style ap-
proach to invariants. The second section will consider her work in algebra and 
the development of the general theory of ideals as well as her contributions to 
non- commutative algebras. Throughout each of these periods we can see ways 
in which the themes of generality and axiomatization inform her approach. 
I will conclude the chapter by relating Noether’s methodological structuralism 
to some contemporary philosophical structuralist views articulated by Schiemer 
(2014), Landry (2011), and Awodey (1996, 2004), and considering the extent to 
which they are compatible with each other.
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2. Invariant Theory

Emmy Noether’s doctoral dissertation was written under Paul Gordan at 
Erlangen, entitled “On Complete Systems of Invariants for Ternary Biquadratic 
Forms.” Invariant theory is a branch of algebra whose early systematization can 
be attributed to Arthur Cayley, but which is now often associated with the work 
of Hilbert and Gordan. The development of Noether’s structural approach to 
mathematics can be seen in her departure from Gordan- style work on invariants 
in favor of a Hilbert- style approach. As we will see, she did not start out as a 
methodological structuralist, having been trained in systems of complex sym-
bolic calculations and equations by her supervisor.

Briefly, the study of invariants considers transformations of polynomial forms. 
An invariant of a polynomial form is an expression in its coefficients that changes 
only by a factor determined in a fixed manner by the transformation. This area 
of mathematical research arose from the work of Cayley, James Sylvester, and 
others, on the algebraic relationships that hold between the coefficients of 
higher- degree polynomial forms (Kosmann- Schwarzbach 2011, 29– 30). To 
put this more precisely,1 a polynomial form is a homogenous polynomial— one 
whose nonzero terms all have the same degree. This might be done by adding an 
extra variable. The discriminant of a polynomial is a fixed quantity determined 
by an equation on its coefficients. For example, the quadratic form is given by

 F Ax B xy Cyx y( , ) = + +2 2  

and its discriminant is given by ∆F B AC= −2 . Now suppose that we transform 
our initial polynomial form by substituting the variables x y,  with linear combin-
ations of new variables ′ ′x y,  and substitution coefficients α β γ δ, , , :

 x x y= ′ + ′α β  

 y = ′+ ′γ δx y . 

This transformation defines a new form ′ ′ ′F x y( , ) each of whose coefficients 
′ ′ ′A B C, ,  depends on the substitution coefficients as well as the initial coefficients 

A B C, , . In general, an invariant of F x y( , ) is an expression IF in the coefficients of 
F such that any transformation of F  into a form ′F , such as

 F x y F x y x y F x y( , ) ( , ) ( , ),= ′ + ′ ′ + ′ = ′ ′ ′α β γ δ  

 1 This exposition is largely drawn from McLarty (2012).
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is such that IF ′ = −( )αδ βγ nIF . So the analogous expression IF ′  in the coefficients 
of ′F  is the product of IF and some power of an expression in the substitution 
coefficients. As it happens, for the quadratic form, the discriminant ∆F = B2 − 
AC is an invariant— and in fact, all of its invariants are powers of the discrimi-
nant. This in some sense lets us think of the discriminant as providing a complete 
system of invariants for the quadratic form.

Gordan’s best- known contribution to invariant theory was the solution of his 
eponymous problem: given any polynomial form in two variables of arbitrary 
degree, he was able to develop a method for calculating a finite complete system 
of invariants for that form. That is, he found a routine through which such a fi-
nite basis for the invariants of any binary polynomial form could be calculated. 
Its main drawback, however, was that actually carrying out these calculations for 
forms of higher degree proved to be relatively infeasible. A lot of Gordan- style 
mathematics involved applying symbolic transformation rules to complex equa-
tions; this frequently involved prohibitively long lists of formulas, and the devel-
opment of routines that were impractical actually to carry out.

Noether did work on Gordan- style problems using these very methods for 
some time, but would abandon his algorithmic approach in favor of a new ap-
proach to invariant theory developed by David Hilbert. This is likely due to the 
influence of one of Gordan’s successors, Ernst Fischer, who was a proponent of 
the Hilbert- style approach to invariants, and had a clear influence on Noether’s 
development. This eventually led to her being invited to Göttingen by Hilbert 
and Felix Klein. The dramatic differences between Hilbert’s and Gordan’s respec-
tive approaches to invariant theory can be seen in Hilbert’s own solution of the 
Gordan Problem, in which he provided a proof by contradiction of the exist-
ence of a finite basis for certain invariants. This means that he did not produce 
an actual finite basis, nor a procedure through which one could be determined. 
Instead, his proof by contradiction simply demonstrated that one must exist, 
whatever it may look like.

Upon reading the proof, Gordan is said to have remarked, “Das ist nicht 
Mathematik; das ist Theologie [This is not mathematics; this is theology]” 
(Kimberling 1981, 11), though it has been pointed out that the extent of Gordan’s 
resistance to Hilbert’s proof is often exaggerated (McLarty 2012). Certainly a 
non- constructive proof would have seemed illegitimate from the perspective of 
Gordan’s algorithmic methodology, and he did not initially find Hilbert’s proof 
to be clear. But our interest here lies in the fact that for his student Noether, this 
marked a turn toward such non- constructive approaches to invariant theory, 
and to mathematics more generally.

Noether’s subsequent work in differential invariant theory, some of which 
constituted her 1919 habilitation work, proved to be extremely significant in 
theoretical physics—  a connection she was able to develop further in Göttingen 
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working with Hilbert, who had already discussed with Einstein the possibility of 
enlisting Noether’s help on some open problems with general relativity. In par-
ticular, conservation laws such as the law of conservation of energy did not seem 
to work the same way within the framework of general relativity as they did in 
classical mechanics. Some connections between invariant theory and the con-
servation of quantities had already been made by mathematicians such as Joseph 
Lagrange, but, as Kosmann- Schwarzbach (2011) argues, it was with Noether that 
these connections were made in their full generality. Differential invariants are 
sought in the case of forms whose coefficients are functions; when they are not 
constant functions, their derivatives are found in the transformed expressions. In 
her approach to differential invariants, we can already see evidence of Noether’s 
conceptual approach to mathematical problems:

The second study, Invariante Variationsprobleme, which I have chosen to pre-
sent for my habilitation thesis, deals with arbitrary, continuous groups, finite or 
infinite, in the sense of Lie, and derives the consequences of the invariance of a 
variational problem under such a group. These general results contain, as par-
ticular cases, the known theorems concerning first integrals in mechanics and, 
in addition, the conservation theorems and the identities among the field equa-
tions in relativity theory. (Noether 1919, quoted in Kosmann- Schwarzbach 
2011, 49)

What this quotation illustrates is that the conservation laws in physics for which 
she is famous are special cases of more general theorems that she was able to 
prove about Lie groups. As Kosmann- Schwarzbach (2011) points out, the sym-
bolic Gordan- style method of calculating these invariants could find solutions, 
but did not reveal any general connections. Instead, Noether’s more conceptual 
view, in which the invariants in the conservation laws are seen as special cases of 
something more general, was the first full treatment of this problem. But beyond 
this important work that was crucial to modern physics, she did not continue 
this line of research for much longer, and turned instead to work in algebra and 
the theory of ideals, a domain that would further showcase her ability to think in 
terms of general concepts and the relationships between them, and continue the 
development of her methodological structuralism.

3. Rings and Ideals

The second period of Noether’s mathematical work that I will explore covers her 
work in abstract algebra, especially her groundbreaking contributions to ideal 
theory in the 1920s. The important pieces here are her 1921 paper “Idealtheorie 
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in Ringbereichen” and subsequent 1926 paper “Abstrakter Aufbau der 
Idealtheorie.” Many of the foundations for ideal theory were laid well before then 
by Ernst Kummer, working on factorization problems in the cyclotomic integers, 
and further developed by Leopold Kronecker so that they could be extended 
to systems of complex numbers. However, a contrasting approach, explicitly 
rejecting Kummer’s and Kronecker’s more algorithmic methods, was taken by 
Richard Dedekind in several versions of his theory of algebraic integers, and it 
is the latter’s work that is taken up and generalized by Noether, to become what 
we now think of as ideal theory proper. We will see through this history how 
Dedekind’s structural approach was further refined and generalized by Noether.

In 1846, Kummer introduced ideal prime factors for the cyclotomic integers, 
which had turned out to be quite useful in the study of higher reciprocity laws.2 
Cyclotomic integers are integers of the form

 a a an
n

0 1+ + +θ θ... ,  

where the ai ∈ ℤ and θ is a primitive p- th root of unity, a complex number ≠ 1 
such that θp = 0. For such integers, Kummer discovered that unique factoriza-
tion fails for p = 23, and published this result in 1844. This means that in rings of 
cyclotomic integers ℤ[θ], where θ is a primitive p- th root of unity as previously 
described, Kummer was able to find distinct decompositions of some ring elem-
ents into irreducible factors. Kummer’s development, then, of the notion of ideal 
prime factors was intended to restore some, albeit weakened, form of unique fac-
torization to the rings he was studying.3 But what he defined when he introduced 
them were not the ideal prime factors themselves, but rather the multiplicity by 
which they divided cyclotomic integers in the rings in question. The idea was 
that if we conjecture the existence of the divisors, we can provide rules for calcu-
lating divisibility by them. The methods for determining the calculations were 
also limited in their application, which sufficed for Kummer’s purposes, since he 
was studying reciprocity laws rather than aiming to develop a theory of ideals in 
his own right (Edwards 1980, 1992). But for further applications, it was useful to 
develop a more general description of divisibility by these ideal factors, for which 
we turn to Kronecker. In Kummer’s 1859 paper on reciprocity laws, in which the 
most general version of his own theory appeared, he wrote that

 2 At the time, Kummer just regarded these as a special kind of complex number, but now we have 
a geometrical interpretation of these kinds of integers which warrants the use of the term “cyclotomic 
integers,” since the roots of cyclotomic polynomials lie on the unit circle in the complex plane.
 3 Though as it turned out, his work in this area was also applied to Fermat’s last theorem. See 
Edwards (1977) for more details on Kummer’s theory and its applications in that area.
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Kronecker would very soon (nächstens) publish a work “in which the theory of 
the most general complex numbers” [meaning, surely, the most general alge-
braic number field] “is completely developed with marvelous simplicity in its 
connection with the theory of decomposable forms of all degrees.” (Edwards 
1992, 7)

No such theory appeared until 1881, when Kronecker published his Grundzüge 
einer arithmetischen Theorie der algebraischen Grössen. In this work, Kronecker 
developed a theory of divisors, which did generalize Kummer’s theory to some 
extent, applicable as it was to general algebraic number fields (though Kronecker, 
as a constructivist, would likely not have accepted several algebraic number 
fields that we do today). While Kronecker’s theory, like Kummer’s, was based on 
a divisibility test, the main difference between the two is that Kronecker’s does 
not test for divisibility by an ideal prime factor, but for divisibility by the greatest 
common divisor, which may be ideal or prime (or both). Further, Kronecker 
does not make use of the notion of a prime because primality is relative to the 
particular field in question, while the idea of a greatest common divisor is not 
(Edwards 1980, 353). Then in Kronecker’s version of divisor theory, he is able 
to determine, independent of the underlying field, whether or not the greatest 
common divisor of some numbers divides an algebraic integer, in a more general 
fashion than Kummer’s theory can.

However, in the interim period between Kummer’s announcement and the 
appearance of Kronecker’s Grundzüge, Richard Dedekind went through sev-
eral versions of his own theory of ideals, which would lay some important 
foundations for Noether’s own work in the area. In contrast with Kummer and 
Kronecker, Dedekind’s approach to ideal theory was to explicitly define the 
ideal divisors in terms of sets of numbers in the domain. So he does not focus, as 
Kummer and Kronecker do, on the multiplicity by which a given ideal divides a 
number. Rather, he focusses on the properties possessed by collections of num-
bers that are divisible by some given factor. In other words, for any algebraic in-
teger a in our domain, we consider the collection of all multiples of a, denoted by 
i(a). This is called the principal ideal (Hauptideal) generated by a. It is easy to see 
that these ideals satisfy certain closure properties. Namely,

 (1) If b and c both belong to i(a), then both b + c and b − c belong to i(a).
 (2) If b belongs to i(a), then for any c in the domain, bc also belongs to i(a).

But now, we realize that a did not have to be an algebraic integer in the first 
place. Even if it was one of Kummer’s ideal prime factors, i(a) would still satisfy 
(1) and (2). And indeed, these two conditions turn out to be both necessary and 
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sufficient for characterizing the ideal numbers, as each algebraic integer can be 
identified with its unique principal ideal.

Now, Dedekind comments several times on his dissatisfaction with Kummer’s 
theory and his reasons for developing his own theory in such a different way. In 
particular, he writes that

the greatest circumspection is necessary to avoid being led to premature 
conclusions. In particular, the notion of product of arbitrary factors, actual 
or ideal, cannot be exactly defined without going into minute detail. Because 
of these difficulties, it has seemed desirable to replace the ideal number of 
Kummer, which is never defined in its own right, but only as a divisor of actual 
numbers ω in the domain 𝖔, by a noun for something which actually exists. 
(Dedekind 1877, 94)

So an improvement of Dedekind’s theory over Kummer’s is that the ideal divisors 
are now identified with things that actually exist and are defined in their own 
right. Dedekind also writes that it was this very consideration— that the mathe-
matical objects should form the basis of the theory— that led him to develop his 
theory of ideals in his distinctive way. While Kummer (and Kronecker) have a 
divisibility test at the heart of their theory, at the heart of Dedekind’s theory is the 
set- theoretic notion of an ideal. To obtain unique factorization, each ideal cor-
responds to a well- defined list of “prime ideals,” each of which divides it with a 
particular multiplicity. The concepts of multiplication and division are also given 
set- theoretic interpretations.

An ideal A is a multiple of B, or is divisible by B, exactly when every number 
in A is also in B, or when A is a subset of B. Yet alongside that notion, we also 
have the definition of multiplication for ideals such that for ideals A and B, their 
product AB is defined to be the set of all numbers ab and their sums such that 
a ∈ A and b ∈ B. Now, one way to see the central problem of the work is as the 
task of showing that divisibility in this sense coincides with multiplication in this 
sense. For Dedekind writes that we see immediately that AB is divisible by both 
A and B, but “establishing the complete connection between the notions of di-
visibility and multiplication of ideals succeeds only after we have vanquished the 
deep difficulties characteristic of the nature of the subject” (Dedekind 1877, 60). 
For certainly, the definition of multiplication suggests an alternate notion of di-
visibility (analogous to that in the integers) such that A is divisible by B exactly 
when there is another ideal R such that A = BR. And what Dedekind aimed at 
showing is that the two notions of divisibility coincide. The difference between 
Dedekind and Kummer’s approaches to divisibility is an excellent illustration of 
the difference between the conceptual approach that we will see in Noether, and 
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the algorithmic approach that Kronecker employed. As part of his criticism of 
Kummer, Dedekind wrote that

Kummer did not define ideal numbers themselves, but only the divisibility of 
these numbers. If a number α has a certain property A, to the effect that α sat-
isfies one or more congruences, he says that α is divisible by an ideal number 
corresponding to the property A. While this introduction of new numbers is 
entirely legitimate, it is nevertheless to be feared at first that the language which 
speaks of ideal numbers being determined by their products, presumably in 
analogy with the theory of rational numbers, may lead to hasty conclusions and 
incomplete proofs. And in fact this danger is not always completely avoided. 
On the other hand, a precise definition covering all the ideal numbers that 
may be introduced in a particular numerical domain 𝖔, and at the same time 
a general definition of their multiplication, seems all the more necessary since 
the ideal numbers do not actually exist in the numerical domain 𝖔. To satisfy 
these demands it will be necessary and sufficient to establish once and for all the 
common characteristic of the properties A,B,C, . . . that serve to introduce the 
ideal numbers, and to indicate, how one can derive, from properties A,B cor-
responding to particular ideal numbers, the property C corresponding to their 
product. (Dedekind 1877, 57)

Then the methodological issue that Dedekind has with the Kummer- style al-
gorithmic approach is that it might lead to imprecise definitions or perhaps in-
coherent ones. Given that Dedekind is not a mathematical Platonist (though 
Kummer and Kronecker are no Platonists either), the importance of precise 
definitions in ensuring the proper, legitimate creation of mathematical objects 
is not to be underestimated. The underpinnings for Dedekind’s structuralism 
are arguably based in the potential for precise logical definition (Reck 2003; Yap 
2009), and this approach is continued by Noether in her own work (Yap 2017).4

Noether’s paper “Idealtheorie in Ringbereichen” (Noether 1921) generalizes 
Dedekind’s unique factorization results for the algebraic integers into the more 
abstract setting of arbitrary rings. Given the introduction of the ring axioms be-
tween Dedekind’s work and Noether’s, this was a natural extension of the con-
ceptual approach that both favored. In Noether’s case, the focus on finding the 
best definitions possible for the concepts was characteristic of her methodolog-
ical structuralist approach. Now, since Noether’s work greatly resembles and 
builds on Dedekind’s, I will not go through many of the details here, though they 
are discussed in other places (Corry 2004; Yap 2017). She also defines ideals as 

 4 Avigad (2006) and (Reck and Ferreirós, this volume) provide more in- depth treatments of 
Dedekind on ideal theory in particular, so we will return again to Noether.



176 Audrey Yap

sets, rather than focusing on ideal divisors, and defines concepts such as divis-
ibility and decomposition in terms of set- theoretic concepts like inclusion and 
intersection.

The main difference between Noether’s and Dedekind’s contributions to 
ideal theory is in their generality, one of our central themes, though it is better 
described as an extension of Dedekind’s methodological trajectory than as a 
change. In writing about Dedekind’s own work on ideal theory, Avigad (2006) 
notes among the advantages of the axiomatic method that it allows for greater 
generality, and that it allows for a smoother transference of prior results. While 
other treatments of ideals, including Dedekind’s, had relied on properties of al-
gebraic integers that can be taken for granted, Noether was defining ideals in a 
more arbitrary setting. Rather than being able to rely on known facts about con-
crete mathematical entities, the decomposition theorems that Noether proved 
had to follow from general defining properties of sets of elements in a ring. The 
main thing in Noether (1921) that was taken for granted as a property of ideals 
was the ascending chain condition (a.c.c), which states that every chain of ideals 
ordered by inclusion has a maximal element. More precisely, if we have a chain 
of ideals I1 ⊆ I2 ⊆ I3 ⊆  . . .  , then there is an index n after which all the ideals 
are equal, so In = In+1 =  . . .  . This condition was explicitly used to prove her de-
composition results, but in 1921 was simply stated without proof. In contrast, 
Noether (1926) made it explicit that the a.c.c. was simply a condition on rings 
that Noether was interested in.

Her 1926 “Abstrakter Aufbau der Idealtheorie” made the axiomatic approach 
(another central theme) even more explicit and laid out the structural conditions 
that rings might satisfy at the outset. In this case, the a.c.c. was just one of the 
conditions that rings might or might not satisfy. Others included a multiplica-
tive unit element and a lack of zero divisors. But in contrast to 1921, these were 
not assumed, but treated as contingent. This means that throughout the work, 
Noether considered rings that satisfied different conditions, so that we discover 
what follows from each one. Frequently over the course of the work, she will 
specify what type of ring ℜ is intended to be: whether it need only be a ring of 
some kind or whether it also needs to satisfy some other properties such as the 
a.c.c. These rings, then, are seen simply as instances of mathematical entities that 
satisfy various conditions. The use of the axiomatic method, then, is to facilitate 
the use of merely structural definitions of objects. It also allowed Noether to gen-
eralize, in that she could abstract away from different standardly assumed prop-
erties of mathematical entities, to consider more general cases of objects.

One other example of abstracting away from a standardly assumed property 
is commutativity. Though it is a standard property of algebraic integers, Noether 
in 1926 is careful to specify when a ring under discussion needs to be commuta-
tive, and when it only needs to satisfy the basic ring axioms or other conditions. 
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That approach was sufficiently fruitful that she eventually worked seriously on 
theories of non- commutative rings, as part of her continuing research trajectory 
toward studying entities of greater and greater generality. But even before her 
published work on the subject in the 1930s, we can see the structural approach 
at work, in which commutativity is only presupposed when it is required and 
theorems are proved with as much generality as possible. For instance, the theory 
of integers is initially introduced in terms of a commutative ring with no zero 
divisors and a multiplicative unit (Noether 1926, 29), while various isomorphism 
theorems presuppose nothing beyond the ring axioms (Noether 1926, 39).

The move toward the non- commutative setting, however, is importantly 
modern. In giving up commutativity for multiplication, we take a step away from 
the intended interpretation of ideals as ideal divisors for the algebraic integers, 
to consider what else rings as structures could be used to represent, allowing 
for a wider domain of application. The concept of module that she used in her 
work on ideals turned out to be a helpful device when it came to representation 
theory, a branch of algebra that uses vector spaces as representations of groups. 
Since the vector spaces used in representation theory can be seen as special cases 
of modules over rings, Noether was once again able to provide a more general 
structure to use as a mathematical tool (Noether 1929). The work on represen-
tation theory in hypercomplex numbers was also further extended into the do-
main of non- commutative algebras (Noether 1933).

Noether’s move to a more general setting such as the theory of rings yielded 
the ability to make use of tools that describe very general relationships between 
structures, such as homomorphisms and isomorphisms. In 1926, she explicitly 
assumes only ring properties (and module properties, respectively), without any 
other axioms, in order to prove several isomorphism theorems, and theorems 
relating rings to their quotients. These results are then used for calculations with 
relatively prime ideals and subsequent decomposition results. Such theorems, as 
Noether herself notes, can be seen in Dedekind as well, but only as special cases 
of her own results (Noether 1926, 41). We will also see in the next section that 
this use of morphisms is further developed by some of Noether’s students who 
went on to lay the foundations of category theory.

And although we find little in the way of autobiographical reflection on her 
approach to mathematics, Noether’s colleagues and students provide a fairly uni-
form picture.5 With respect to Noether’s use of generalization as a way of de-
veloping mathematically fruitful connections, Weyl observes in his memorial 
address,

 5 Dedekind as well does not do much philosophical writing, and many of the philosophical 
positions we now attribute to him are extrapolated from his criticisms of other approaches and ge-
neral methodological comments. So it seems fair to take a similar interpretive stance with respect to 
Noether.
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She possessed a most vivid imagination, with the aid of which she could visu-
alize remote connections; she constantly strove toward unification. In this she 
sought out the essentials in the known facts, brought them into order by means 
of appropriate general concepts, espied the vantage point from which the whole 
could best be surveyed, cleansed the object under consideration of superfluous 
dross, and thereby won through to so simple and distinct a form that the ven-
ture into new territory could be undertaken with the greatest prospect of suc-
cess. (Weyl 1981, 147)

This quotation could be taken to apply to both ideal theory and representation 
theory, as branches of algebra in which Noether was able to develop this more 
general vantage point. In the case of ideal theory, Noether was able to connect 
Fraenkel’s definition of a ring to Dedekind’s work on algebraic integers in order 
to give a more general treatment of the latter’s factorization theorems. And in the 
case of representation theory, she connected work from Frobenius and Dickson 
in order to develop a general treatment of non- commutative algebras. Also, the 
full quotation that opened this chapter can be found in another of Noether’s obit-
uaries, in which her student van der Waerden writes,

One could formulate the maxim by which Emmy Noether always let herself 
be guided as follows: All relations between numbers, functions, and operations 
become clear, generalizable, and truly fruitful only when they are separated from 
their particular objects and reduced to general concepts. For her this guiding 
principle was by no means a result of her experience with the importance of 
scientific methods, but an a priori fundamental principle of her thoughts. 
She could conceive and assimilate no theorem or proof before it had been ab-
stracted and thus made clear in her mind. She could think only in concepts, 
not in formulas, and this is exactly where her strength lay. In this way she was 
forced by her own nature to discover those concepts that were suitable to serve 
as bases of mathematical theories. (van der Waerden 1981, 101)

Both Weyl and van der Waerden are consistent in their assessment of Noether as 
fundamentally committed to what I have called methodological structuralism; she 
was a mathematician who, at least in her mature work, preferred to think about 
the relationships between concepts rather than developing formulas or doing 
calculations. So while the generality of her thinking and fruitful use of axiomatics 
is apparent, situating Noether within a taxonomy of modern structuralist views 
is to some extent speculative, given the lack of her own philosophical writing. 
Nevertheless, we can consider which philosophical structuralisms are compatible 
with Noether’s own methodological structuralism, and the extent to which her 
methodological views could support one philosophical picture over another.
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4. Structuralism, Categories, and Invariants

There is no such thing as a single canonical philosophical structuralist view. They 
tend to at least have in common a view of mathematical objects as defined or 
determined by the structures to which they belong and some commitment to 
methodological structuralism. Sometimes, this means that mathematical objects 
are seen as “thin” or “incomplete” in the sense that they have no distinguishing 
properties other than those they possess in virtue of belonging to a particular 
mathematical structure. While mathematical objects may have other proper-
ties, such as the fact that the number one might have the property of being the 
number of moons of Earth, this is an accidental property that the number has, 
rather than one making it the thing that it is.

Within these relatively broad constraints, there are a range of positions, as 
well as a variety of different classifications of such views.6 For our purposes, 
it will be most useful to compare Noether’s mathematical methodology to 
two views that are closely connected to the areas of mathematics in which she 
worked:  category- theoretic structuralism, as articulated by Awodey (1996, 
2004)  and Landry (2011), and invariant- based structuralism as outlined by 
Schiemer (2014). Noether’s connection to category theory comes directly 
through her students and others who worked with her. For instance, Saunders 
Mac Lane, credited as one of the founders of category theory, studied with 
Noether in Göttingen, and is also an important figure in the history of struc-
turalism (McLarty, this volume). Invariant- based structuralism builds on much 
of the work done by category- theoretic structuralists, but also accounts for is-
sues raised for structuralism by, e.g., Carter (2008). Both are explicitly based 
on the idea of structure as it can be captured by various branches of abstract 
mathematics.

The reason for bringing in categories and invariants is the fact that the very 
concept of structure as it is used in mathematics can be hard to pin down as a 
single unified concept. Category theory has sometimes been discussed as a po-
tential foundation for mathematics generally, but as Awodey describes it, it can 
also be used as a way to understand what we mean when we talk about mathe-
matics as a field that deals essentially with structures. This might not be an easy 
task, because of the wide variety of mathematical structures and the number of 
different areas in mathematics that use them. The appeal of category theory as 
a kind of foundation for mathematics, then, is appealing because of its gener-
ality and flexibility in characterizing different kinds of mathematical structures. 
Landry (2011), for instance, gives a list of different categories that can be used to 

 6 See Reck and Price (2000); Parsons (1990); Hellman (2005) for various classifications of different 
structuralist positions.
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organize the mathematical structure involved in the concepts of group, set, and 
topological space, among others. All that we need to do is assign different kinds 
of entities to be objects and morphisms.

However, in offering categories as a means for the analysis of structure, the 
kind of foundation that category theory offers is not a foundation in the tradi-
tional sense— what Awodey calls “bottom up.” Rather,

The “categorical- structural” [approach] we advocate is based instead on the 
idea of specifying, for a given theorem or theory only the required or rel-
evant degree of information or structure, the essential features of a given 
situation, for the purpose at hand, without assuming some ultimate know-
ledge, specification, or determination of the “objects” involved. (Awodey 
2004, 56)

What this means is that the categorical foundations only need to be foundations 
insofar as they allow us to specify what is essential about the objects that we 
are interested in. So categories can serve as a foundation for mathematics be-
cause of the flexible way in which they permit the characterization of a diverse 
range of mathematical structures. This alternative approach also results in a 
different interpretation of the schematic nature of mathematical theories. I can 
illustrate this in terms of Noether’s 1926 work, in which she is very careful to 
specify which properties of rings she is assuming in each section, for which 
definitions. For example, when Noether begins her introduction of prime and 
primary ideals, she simply says to let ℜ be a commutative ring, and is clear that 
no other assumptions are required. We can read this hypothetically, as stating 
that the definitions and theorems apply if an object satisfies the properties for 
being a commutative ring.

But this is unlike an eliminative structuralist view, or one in which we remove 
reference to individual mathematical objects by reinterpreting mathematical 
statements as being implicitly universally quantified. For in order for them to be 
interpreted in terms of universal quantification, there must be a preexisting do-
main over which we quantify. Rather, Awodey (2004) advocates for the indeter-
minacy in the objects being taken seriously, rather than taking a modal approach 
as does, for instance, Hellman (1989). Further, rather than the focus being on 
the relations between objects (as a focus on the relations presupposes the relata), 
morphisms in categories are a perfectly good autonomous concept on which to 
base the analysis of structure (Awodey 2004, 61). They are also a natural exten-
sion of the isomorphisms and homomorphisms on modules that Noether uses 
in 1926. In this more general situation, so long as the category of rings is suffi-
cient to model the different types of rings, commutative, Dedekindian, etc., that 
Noether is interested in, it can form a perfectly good basis for her definitions. In 
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that case, these various rings would simply be objects in the category ring, while 
ring homomorphisms are its morphisms.7

So even though Noether’s work on ideals and rings preceded the develop-
ment of categories, the top- down approach to category- theoretic foundations 
that Awodey and Landry advocate are a natural philosophical overlay atop 
Noether’s mathematical structuralism. I have already noted Noether’s deft use 
of axioms in her work on the theory of rings, and the extent to which it matured 
over time to place increased emphasis on the conceptual and structural of rings. 
For instance, the later work, such as her 1926 paper, focused on the connections 
between the properties of various rings and the theorems that could be proved 
about them, and this meshes nicely with many characterizations of mathemat-
ical practice to which category- theoretic structuralism claims to be faithful:

The structural perspective on mathematics codified by categorical methods 
might be summarized in the slogan: The subject matter of pure mathematics 
is invariant form, not a universe of mathematical objects consisting of logical 
atoms. This trivialization points to what may ultimately be an insight into the 
nature of mathematics. The tension between mathematical form and substance 
can be recognized already in the dispute between Dedekind and Frege over the 
nature of the natural numbers, the former determining them structurally, and 
the latter insisting that they be logical objects. (Awodey 1996, 235)

The connection between Noether and Dedekind was famously emphasized 
by Noether herself, who was said to have remarked, “Es steht alles schon bei 
Dedekind (It is all already in Dedekind)” (quoted in Corry 2004, 250). While in 
this case she was talking about the decomposition results that she had proved, 
Awodey’s characterization of his structuralist position suggests applying this re-
mark to Noether’s methodological views as well. After all, not only did Noether 
extend Dedekind’s results to a more general setting, she also arguably extended 
his use of structural methods by treating the concept of mathematical structure 
with a greater degree of abstraction (Yap 2017). In fact, this very same move was 
arguably employed to extend Noether’s work to more general settings by her stu-
dent and category theorist Mac Lane (see McLarty, this volume), which makes 
category- theoretic structuralism a natural philosophical view to consider along-
side Noether’s methodological view. It is, after all, in category theory that many 
of the concepts that Noether worked with so fruitfully, such as morphisms, get 
treated in thoroughly general terms.

There are, however, some criticisms of structuralism that we might want 
to consider as well, which apply to both philosophical and methodological 

 7 While I  have argued in this chapter for the importance of morphisms to Noether’s work, 
precursors for such ideas are also arguably in Dedekind (Reck and Ferreirós, this volume).
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structuralisms. In particular, Carter (2008) considers the methodological claim 
that mathematics is the study of structure, arguing that this is inaccurate when 
considered as an overall view of mathematical practice. While she certainly 
agrees that mathematics deals with structures, it is unclear that there is any single 
sense of “structure” that will suffice and that can accurately be captured by a 
structuralist account. This ambiguity about the sense of “structure” can even be 
traced to the Noether school, at least according to some of its members. Mac 
Lane (1996) notes that the word “structure” was used in various informal ways by 
algebraists such as Noether and her students in the 1930s, and given the extent of 
its ambiguity, might not be able to form the basis of a philosophy of mathematics. 
Carter, following Mac Lane’s discussion, gives examples of two distinct uses of 
structure that can be found in mathematical practice.

 1. Structure over sets that is used to compute invariants of this set.
 2. A case where “structure” is extracted in order to change relations between 

objects. (Carter 2008, 123)

In the first use of “structure,” we want to obtain some information about a cer-
tain kind of mathematical object. In the case of Galois theory, we might want 
to determine whether a given polynomial is solvable by radicals. A permutation 
group based on invariance of the roots can be associated with this polynomial, 
which is called its Galois group. If the Galois group is solvable,8 then the polyno-
mial is also called solvable by radicals. So this is a case in which we obtain infor-
mation about an object because of a certain structure that is associated with it, 
which we might say is a structure that the object or set has.

In the second use of “structure,” we can consider cases in which we have to dis-
cover some information about certain structures in order to situate them among 
more general ones. For instance, we might have to determine how to treat some 
structures category- theoretically, and in order to do so, need to determine which 
category they should be subsumed under. In doing so, however, we in effect move 
objects from one structure to another, which has the following consequences:

The fact that objects or “places” are moved between structures seems to go against 
the dictum that “places have no distinguishing features except those determined 
by the structure in which they have a place” which is taken as implying the claim 
that “places from different structures can not be identical.” Firstly, we have seen 
that the properties of places or objects can be determined by different structures 

 8 A solvable group is one that has a normal series whose normal factors are abelian.
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that they are part of. Secondly, the properties of an object in a given structure can 
be used to consider the object as part of another structure. (Carter 2008, 130)

To clarify, some features of mathematical practice seem at odds with some 
central structuralist claims about the identity of objects. If objects technically 
have different properties in different structures, then it is hard to make sense of 
moving objects between structures. So this suggests that there is something more 
to being a particular object than the structure to which it belongs. Carter, how-
ever, does not deny that structures are extremely important in mathematics, or 
even that they are central to mathematical practice, simply that structures cannot 
be all there is. And this does speak to some extent against Noether’s tendency 
to generalize existing results to more abstract domains. After all, the category- 
theoretic way of modeling structure represents somewhat more of a differ-
ence between algebraic integers and abstract rings than might be warranted by 
Noether’s remarks that it was all already in Dedekind.

I will now turn to an alternative characterization of structuralism based on 
abstract mathematics, namely Schiemer’s structuralism based on invariants. The 
invariants that Schiemer considers are more general than isomorphisms; rather, 
they determine equivalence relations on objects that have a certain common 
property. The purpose of introducing them can be related to some of the issues 
that Carter raises with structuralist views, such as determining what counts as 
a structural property of mathematical objects in the first place, given that we 
might sometimes move an object to a different structure. Schiemer’s solution to 
this is to give up on the idea of defining a structural property on its own, in-
stead defining them relative to some invariant. This relates to Carter’s first use of 
structure in mathematical practice, in which we might work with invariants to 
determine a property of an object or a set. But of course, different invariants can 
determine different property structures, where a pair < >S P,  (or simply set P) is a 
property structure of S iff

 (i) there exists an invariant f: S → N and an equivalence relation R ⊆ S × S such 
that f determines R; and

 (ii) P is the partition of S induced by R, i.e., P = S/ R. (Schiemer 2014, 84)

So this is what it means for a set P to be a property structure of another set S rel-
ative to an invariant f on S. This is, for instance, the idea behind the Galois group 
of a polynomial.

For Schiemer, this ultimately has the effect of defining structure in a higher- 
order set- theoretic fashion, in which structures are identified as classes of equiv-
alence classes determined by some invariant on the objects. Now, whether or not 
this provides a solution to the problems with structuralism that Carter raises 
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remains open. It does, however, provide a characterization of mathematical 
structure alternative to category- theoretic structuralism, but one that is never-
theless based in abstract mathematics and a formal definition of structure. One 
of the differences, however, is that this characterization of structure based in set 
theory relies on some background interpreted theory such as Zermelo- Fraenkel 
set theory, as opposed to a category- theoretic approach that, to borrow a turn of 
phrase from Landry, is structuralist “all the way down.”

Schiemer’s philosophical structuralism is not as obviously connected to 
Noether’s methodological structuralism as its category- theoretic counterpart, as 
the latter has direct connections to her ongoing mathematical legacy, while her 
work on invariants was relatively early in her career. But it does mesh nicely with 
several aspects of Noether’s view. For example, Noether’s tendency toward taking 
a more general perspective on mathematical structures can be accommodated 
nicely, since these definitions lend themselves to comparisons between property 
structures, and one structure being more fine- grained than another. This is cer-
tainly one way to think of the relationship between ideals in the algebraic integers 
as Dedekind defined them and ideals on general rings as Noether defined them. 
If we want to talk about the sense in which the results that Noether proved are 
the same as Dedekind’s, despite being in a different setting, we could consider 
them as being analogous results in a coarser- grained structure. Rings of algebraic 
integers are instances of rings that Noether considered, but in the latter setting, 
they are seen as a more general kind of mathematical object.

5. Conclusion

Ultimately, what version of philosophical structuralism, if any, to which Noether 
would have subscribed is speculative. While her methodological views are 
consistently described in structural and conceptual terms by her students, she 
did not articulate a considered philosophical position in her published work. 
However, of the various structural views in the literature, two good candidates 
that we can connect to Noether’s work are characterizations of structure based 
on category theory and invariants. Both articulate the concept of structure in 
terms of areas of mathematics that Noether either contributed to (in the case of 
invariant theory) or directly influenced (in the case of category theory). So re-
gardless of the exact field of mathematics that she might have considered to best 
articulate the concept of structure that she wanted to work with, a formal char-
acterization of structure would likely have been appealing. Given her tendency 
to articulate concepts as precisely as possible, a metatheoretical articulation of 
the structure concept in terms of formal mathematics would be natural for her, 
philosophically.
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Noether’s methodological inclinations, which we can see borne out in her 
choices of areas to research, were to generalize given results to more abstract 
settings. This certainly influenced her students, many of whom went on to de-
velop branches of abstract algebra such as category theory. So when we situate 
Noether within the history of structuralism as a view, not only can we see her as 
an excellent example of someone who used structural and axiomatic methods 
very successfully, we can also see her contributions to some of the mathemat-
ical theories underlying contemporary structuralist views, namely to methodo-
logical structuralism. In that case, even if it is somewhat open just what kind of 
structuralist Noether herself would have been, we at least know that she helped 
made it possible for others even to hold certain kinds of structuralist positions.
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