
8
 The Functional Role of Structures 

in Bourbaki
Gerhard Heinzmann and Jean Petitot

1. Introduction

From antiquity to the 19th century and even up to now, the following two theses 
are among the most debated in the philosophy of mathematics:

 a) According to the Aristotelian tradition, mathematical objects such as num-
bers, quantities, and figures are entities belonging to different kinds.

 b) Mathematical objects are extralinguistic entities that exist, independently 
of our representations, in an abstract world. They are conceived by analogy 
with the physical world and designated by singular terms of a mathemat-
ical language.

The Aristotelian thesis and that of ontological “Platonism” were countered by 
nominalism and early tendencies of algebraic formalization; but they became 
even more problematic when mathematicians, such as Niels Abel, thought of re-
lations before their relata or when they, as Hermann Hankel (1867) pointed out, 
posited that mathematics is a pure theory of forms whose purpose is not that of 
treating quantities or combinations of numbers (see Bourbaki 1968, 317). In the 
1930s, Bourbaki finally defended the view that mathematics does not deal with 
traditional mathematical objects at all, but that objectivity is solely based on the 
stipulation of structures and their development in a hierarchy.

In the history of 20th- century mathematical structuralism, the figure of 
Bourbaki is prominent; sometimes he is even identified with the philosoph-
ical doctrine of structuralism. However, the Bourbaki group consisted of pure 
mathematicians— among them the greatest of their generation— most of whom 
had a conflicted relationship to philosophy. This chapter proposes to explore 
this tension, following the current philosophical interest in scientific practice. 
The problem with properly assessing Bourbaki’s importance is that he was at the 
same time the collective author of a monumental and long- lasting treatise (in a 
golden age of more than 30 years) and a pleiad of individual geniuses (including 
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five Fields medalists:  Schwartz, Serre, Grothendieck, Connes, Yoccoz). The 
former had to faithfully conform to initial editorial choices, while the latter were 
at the cutting edge of innovation and creativity.1 So it makes no sense to think 
that Bourbaki was not aware of mathematical advances, since his members were 
among the main agents in these advances.

Quite often interpreters focus only on Bourbaki’s formal definition of struc-
ture, so as then to dismiss it. Our approach will be quite different. Our thesis is 
that the use of the concept of structure in Bourbaki is not so much logical and, in 
a philosophical sense, foundational as pragmatic and functional— “functional” 
not in the mathematical sense, but in a sense analogous to the relationship be-
tween structure and function in biology. We will illustrate the functional role 
of structures in Bourbaki’s work, starting with Hilbert’s axiomatics, which was 
developed to perfection by the Bourbaki group, and going up to category theory, 
thus to a higher level of structuralism, a path that Bourbaki initiated without yet 
actually engaging in it.2

2. Bourbaki, the Éléments, and the Séminaires

Nicolas Bourbaki was the pseudonym of a “collective mathematician,”3 formed 
in 1934– 35 by a group of young French mathematicians who graduated (with 
the exception of Mandelbrojt) from the École Normale Supérieure in Paris, 
who did research abroad, primarily in Germany (but also in Denmark, Italy, 
Hungary, Sweden, Switzerland, and the United States), and who taught mostly in 
Strasbourg, Nancy, and Clermont- Ferrand.4 This group included Henri Cartan, 

 1 Other mythical examples of such groups in French history include, in the middle of the 16th cen-
tury, La Pléiade, which completely transformed the norms of poetic language (Du Bellay, Ronsard, 
Jodelle, Belleau, de Baïf, Peletier du Mans, de Tyard, etc.); and in the second part of the 18th century, 
the Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers (Diderot, d’Alembert, 
de Jaucourt, d’Holbach, Dumarsais, Quesnay, Turgot, etc., related to Montesquieu, Voltaire, Buffon, 
Mably, Condillac, Helvétius, etc.).
 2 For a philosophical discussion of the role of Bourbaki’s concept of structure in the interpretation 
of category theory, see Krömer (2007).
 3 See Chevalley and Guedj (1985). The name of the French general Bourbaki, defeated in 
the French- German war of 1870– 71, was part of the anti- militarist folklore at the École Normale 
Superieure long before the group chose it (Beaulieu 1989, 278ff).
 4 For a detailed bibliography and rich archive, see the site http:// archives- bourbaki.ahp- 
numerique.fr of the Archives Henri- Poincaré, compiled by Liliane Beaulieu (supplemented by Ch. 
Eckes and G. Ricotier) and the site http:// sites.mathdoc.fr/ archives- bourbaki/ feuilleter.php of the 
Association des Collaborateurs de Nicolas Bourbaki. An introduction to the corresponding history 
is Maurice Mashaal’s Bourbaki: A Secret Society of Mathematicians (2006). Another interesting his-
torical source is Amir Aczel’s The Artist and the Mathematician: The Story of Nicolas Bourbaki, the 
Genius Mathematician Who Never Existed (2006). The two books were reviewed in 2007 by Michael 
Atiyah in the Notices of the AMS. At a theoretical level, a well- known reference is the 1992 essay by 
Leo Corry, “Nicolas Bourbaki and the Theory of Mathematical Structure.”
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Claude Chevalley, Jean Delsarte, Jean Dieudonné, Szolem Mandelbrojt, René de 
Possel, and André Weil, to which must be added Paul Dubreil and Jean Leray 
(who both, however, withdrew after some meetings), Jean Coulomb, and Charles 
Ehresmann (1935– 36).5 Their goal was “to define for 25 years the syllabus for the 
certificate in differential and integral calculus by writing, collectively, a treatise 
on analysis. Of course, this treatise will be as modern as possible” (Beaulieu 1989, 
28). This was a revolt against the dominant French mathematics of the 1930s.

The initial group had no money nor any official administrative structure. Each 
draft of a chapter of their famous multi- form treatise, Éléments de Mathématique 
(the expression “Mathématique” in the singular emphasizes the unity of mathe-
matics), was discussed largely in the group and had to be accepted unanimously 
by those present at the regular Bourbaki meetings.6 Elected by consensus, after 
age 50 a Bourbakist had to leave the group, whose list of members was an (open) 
secret. Among the most prominent later Bourbakists were Hyman Bass, Armand 
Borel, Pierre Cartier, Alain Connes, Michel Demazure, Jacques Dixmier, Samuel 
Eilenberg, Roger Godement, André Gramain, Alexander Grothendieck, Jean- 
Louis Koszul, Serge Lang, Pierre Samuel, Laurent Schwartz, Jean- Pierre Serre, 
John Tate, Bernard Teissier, Jean- Louis Verdier, and Jean- Christophe Yoccoz, all 
also pursuing their own individual work.

The creation in 1962, by Grothendieck, of the group of algebraic geometry at 
the “Institut des Hautes Études Scientifiques,” a “European Princeton Institute of 
Advanced Studies” (Bolondi 2009, 701) located in the Paris suburb Bures- sur- 
Yvette, was at the same time a continuation and an improvement of the Bourbaki 
perspective in mathematics in France and around the world. In a certain sense, 
the monumental Éléments de Géométrie Algébrique by Grothendieck and 
Dieudonné (1960– 67) can be considered as a systematization of the same type 
as the Éléments de Mathématique: driven by the desire to optimize the frame-
work of demonstration of great theorems and to attack major conjectures, es-
pecially the Weil conjectures. Indeed, its language was no longer that of classes 
of structures in a universe of set theory but that of full- fledged category theory.7 
But, as communicated by Jean- Pierre Ferrier, the project was a resurgence of the 
Bourbaki project, equally ambitious and original, greatly renewing mathematical 

 5 Beaulieu (1989, 12– 13). Beaulieu’s dissertation is the most extensive description of the origin 
and the first 10 years of activity of the group. It is the sourcebook of all biographically oriented studies 
on Bourbaki (for works on Bourbaki see Beaulieu 2013). See also Weil (1992) for Weil’s memories.
 6 The first publication of the Éléments was released in 1939 (Bourbaki 1939). An interesting doc-
ument on Bourbaki’s birth is the first issue of the Journal de Bourbaki handwritten by Jean Delsarte 
on November 15, 1935. Composed with a touch of humor, it refers to the creation of the group at the 
“congress” held at Besse- en- Chandesse in July and presents a first division of labor between Cartan, 
Delsarte, Dieudonné, Chevalley, Mandelbrojt, de Possel, and Weil (http:// sites.mathdoc.fr/ archives- 
bourbaki/ PDF/ deljb_ 001.pdf).
 7 On Grothendieck and the shift to category theory, see McLarty (2008), as well as the contribu-
tion, also by Colin McLarty, on Saunders Mac Lane and category theory in this volume.
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thinking, as Bourbaki did in his time, and overcoming many difficulties raised by 
Bourbaki’s initial choices.

In this essay we do not only report on the Éléments and its content. Bourbaki is a 
collective author, but, again, also a pleiad of unique individual masterminds who 
took up the most difficult mathematical challenges. This is confirmed by its en-
cyclopedic Séminaire, which was unparalleled and continues until today. Started 
in 1948, it reached its 1,118th talk in June 2016. Almost all great mathematical 
results have been presented in it. As creative mathematicians, the members of 
Bourbaki were not only interested in the context of justification but also, and 
even more, in the context of discovery. Their conception of structures must be 
understood in this light. In particular, they were all working on very complex 
conceptual proofs of “big problems,” and for them there existed a complemen-
tarity between general relevant structures and specific hard problems. One could 
say that this complementarity found its material expression in the complemen-
tarity of the Éléments and the Séminaire: the function of the Éléments was to offer 
to working mathematicians an extremely wide toolbox of axiomatized devices 
(structures), to be used as conceptual apparatuses in complex proofs, while the 
function of the Séminaire was to inform, in preview, about mathematical prog-
ress, thus being a preferred place to host creation.

Many controversial aspects of Bourbaki are well known, e.g., its overly for-
malist and algebraic setting or its lack of interest in logic. The first has been 
strongly criticized from the start by some great mathematicians who refused to 
be members of Bourbaki, while belonging to the same generation of the École 
Normale Supérieure as its founders. This is the case, e.g., for René Thom (1970), 
who accused Bourbaki of destroying geometric intuition, or for Roger Apéry, 
a constructivist mathematician inspired by the French constructivist school of 
Poincaré, Borel, Lebesgue, Fréchet, and Denjoy and opposed to Hilbertian for-
malism and axiomatics. The second aspect has been denounced, e.g., by Adrien 
Mathias in his 1992 paper “The Ignorance of Bourbaki,” which analyzes the 
inadequate reflections of Bourbaki on foundational issues in set theory. For 
Matthias, Bourbaki’s Set Theory “appeared to be the work of someone who had 
read Grundzüge der Mathematik by Hilbert and Ackermann,8 and Leçons sur les 
nombres transfinis by Sierpinski, both published in 1928, but nothing since.”9 
A lot of things have also been written about the folklore of Bourbaki, his legend, 
his dictatorial power, his dramatic impact on education with the introduc-
tion of “modern mathematics” in schools (see again Thom 1970). Our purpose 

 8 It seems that Mathias means to refer to Grundzüge der theoretischen Logik.
 9 Mathias (1992, 5). Sometimes the ignorance seems to be intentional and polemical:  thus 
Dieudonné says explicitly that his neglect of Gödel’s result concerning a consistency proof for formal 
systems is not a consequence of ignorance, but of a “philosophical” position (see Heinzmann 2018).
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here is quite different. We will try to explain the functionality of Bourbaki’s 
structuralism.

3. Traditional Mathematical Objects versus Structures

Bourbaki inaugurated an axiomatic- structural point of view that could seem-
ingly work without the need of metamathematics in Hilbert’s sense. Indeed, 
given that metamathematics is “finitist” and contentual, it would be an exception 
to the slogan that mathematics is only about formal structures. The hypothetical- 
deductive foundations of Bourbaki were explicitly designed to be neutral with 
respect to philosophical foundations. However, it can engaged with along the 
lines of the philosophical interest in scientific practices that has been renewed 
recently: foundations as structural systematization.

The “working mathematician”10 Henri Cartan, one of the founders of 
Bourbaki, wrote in 1943: “The mathematician does not need a metaphysical defi-
nition; he must only know the precise rules to which are subject the use he has in 
mind. . . . But who decides upon the rules?”11 This may sound Wittgensteinian, 
but is not so in reality. According to Cartan, mathematical reasoning in a given 
area intuitively obeys certain rules at first; and if difficulties arise, the use is 
adapted, etc. Consequently, a mathematical reality is created through practice. 
What is the criterion for the practice and for the rules that result? In a historical 
notice on set theory, Bourbaki writes:

[It was] recognized that the “nature” of mathematical objects is ultimately of 
secondary importance, and that it matters little, for example, whether a re-
sult is presented as a theorem of a “pure” geometry or as a theorem of algebra 
via analytical [Cartesian] geometry. In other words, the essence of math-
ematics .  .  . appeared as the study of relations between objects which do not 
of themselves intrude on our consciousness, but are known to us by means of 
some of their properties, namely those which serve as the axiom at the basis of 
their theory. (Bourbaki 1968, 316– 317)

Bourbaki considered “the problem of the nature of beings” or of “mathemat-
ical objects” as deriving from a “naive point of view,” “half- philosophical, half- 
mathematical” (Bourbaki 1948, 40). Indeed, it would be naive to presuppose that 
we can have a well- defined mathematical object at all, i.e., that it can be identified 

 10 An expression used by Bourbaki (1949).
 11 Cartan (1943), transl. by Gerhard Heinzmann.



192 Gerhard Heinzmann and Jean Petitot

completely by specifying a property that characterizes it. It is only apparently 
well- defined according to the traditional theory of definition.12

Bourbaki henceforth abandoned the philosophical problem of object- 
individuation in favor of a premise that seems to have the same meaning 
today: the unity of mathematics (Houzel 2002, 3). The tool to achieve this unity 
was Hilbert’s axiomatic method: it provides clarity and rigor in the register of 
reasoning (see Dieudonné 1939, 232b) by using a systematization of mathe-
matical theories (Bourbaki 1948, 37). It allows one to obtain all kinds of axiom 
systems; not for all of classical mathematics, however, but only those domains 
that correspond to the hierarchy of structures classified as “simple,” “complex,” 
and “mixed.” Indeed, to define a simple structure, we take a set “of elements 
whose nature is not specified,” provide it with certain relationships, and formu-
late the axioms that satisfy them. And we define the structure as algebraic “if the 
relationships are the laws of composition,” as topological “if the relations concern 
the intuitive concepts of neighborhood, limit and continuity,” and as an order 
structure if the relations are of that type.

4. The Unity of Mathematics:      
Structures and Entangled Problems

Let us focus now on how structures were used by Bourbaki, in a process of 
clarification and unification, to further the discovery of new and unexpected 
results— as common to several systems of objects of very different origins, as in-
dicative of deep and fruitful analogies between theories far removed from each 
other, and as a powerful heuristic for proofs. As two examples, Cartan’s filters 
and Weil’s uniform structures are among the greatest inventions of Bourbaki. 
The first illuminates the analogy between the convergence of sequences and that 
of functions, while the second illuminates the analogy between a metric and a 
family of pseudometrics. A third example produced directly a new result: the so- 
called Banach- Alaoglu compactness theorem (for the weak topology) of the dual 
unit ball of a normed space, which is also due, in the form that we know today, to 

 12 H. Cartan gives the following example: “According to Lebesgue, the quantity
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is a well- defined number, when C is a well- defined real number, for example, Euler’s constant. 
However, this quantity is equal to 0 if C is irrational, 1 if C is rational; and we are still today ig-
norant whether Euler’s constant is rational or irrational. Thus, if C is Euler’s constant, we obtain a 
well- defined number, but we do not know if it is equal to 0 or to 1” (Cartan 1943, 5; transl. Gerhard 
Heinzmann).
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Bourbaki.13 Everything in it is owed to the clarification by means of weak topolo-
gies, which revived a problem that could not be correctly formulated until then.

This functional aspect of structures, on which Bourbaki continually dwelt, is 
governed by the principle of the unity of mathematics, that is to say, by the very 
strong ability to translate pieces of one mathematical theory into another theory. 
Besides the deductive “vertical” dimension internal to every theory, taking into 
account the relevant structures can reveal a host of “horizontal” connections 
between different theories.14 The resulting “horizontal” navigation between 
different theories involves (at least) two processes. On the one hand, there are 
analogies, intuitive at first, between structures of the same type in different areas, 
i.e., structures whose clarification and systematization often lead to new discov-
eries. On the other hand, there is the encounter of different structures within the 
same “crossroads” area, which allow for the unification of theories. We need both 
to tackle the complex proofs of intricate problems. (We will come back to this 
issue later.)

Let us clarify the importance of the unity of mathematics according Bourbaki 
further. In terms of category theory, many connections between theories cor-
respond to the existence of functors and natural transformations of functors 
between categories (for example, between topological spaces and groups in al-
gebraic topology); but many others are not simply functorial. In fact, conceptu-
ally complex proofs are very uneven, with rough and rugged multi- theoretical 
routes in a sort of “Himalayan chain” whose peaks seem inaccessible. They 
cannot be understood without the thesis of the unity of mathematics, because 
they are in some sense holistic. This holistic aspect of complex proofs has al-
ways been emphasized by Bourbaki. Thus, in his Panorama des Mathématiques 
pures: le choix bourbachique (1977, xii), Jean Dieudonné classifies theorems into 
six classes:

 1. “Dead- born problems [les problèmes mort- nés]”: particular problems for 
which a certain theoretical approach has failed.

 2. “Problems without posterity [les problèmes sans postérité]”:  problems 
whose resolution did not generate any other problems.

 3. “Problems bringing forth a method [les problèmes qui engendrent une 
méthode]”: e.g., analytic number theory or finite group theory.

 13 Leon Alaoglu proved his generalization of Banach’s 1932 theorem in 1940, but Jean Dieudonné 
claimed that it was already announced in Bourbaki in 1938. The point is controversial.
 14 Cf. Cavaillès’ terminology of the “thematic” and “horizontal” construction of concepts 
(Cavaillès 1947, 27).
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 4. “Problems clustering around a general, fertile, and vibrant theory [les 
problèmes qui s’ordonnent autour d’une théorie générale, féconde et 
vivante]”: e.g., Lie group theory or algebraic topology.

 5. “Declining theories [les théories en voie d’étiolement]”: e.g., the theory of 
invariants.

 6. “Theories on the way to dilution [les théories en voie de délayage]”: problems 
that try to modify the axioms of already known rich theories.

It is the third and fourth classes that deserve special attention in our context, 
since they manifest the enigmatic unity of mathematics. A typical example given 
by Dieudonné of difficult key results involving this unity, by intertwining several 
very heterogeneous theories, is that of modular forms:

The theory of automorphic and modular forms has become an extraordinary 
crossroads where the most varied theories are reacting to each other: analytic 
geometry, algebraic geometry, homological algebra, non- commutative har-
monic analysis, and number theory. (Dieudonné 1977, 87)

The notion of “crossroads” (carrefour) is crucial: “big problems” are problems 
where many structures of different type interact and became entangled. 
The systematization of structures in the Éléments can be thought of as a 
“disentanglement.”

A spectacular confirmation of Dieudonné’s claim has been the proof by 
Andrew Wiles and Richard Taylor, in 1993– 95, of the Shimura- Taniyama- Weil 
conjecture (implying Fermat’s Last Theorem via a theorem of Ribet). This proof 
uses modular forms in a central way, and it is the prototype of a complex proof 
whose deductive parts are widely scattered in the global unity of the mathemat-
ical universe.15 Its holistic status has been emphasized by many specialists. For 
example, Israel Kleiner writes:

Behold the simplicity of the question and the complexity of the answer! The 
problem belongs to number theory— a question about positive integers. But 
what area does the proof come from? It is unlikely one could give a satisfactory 
answer, for the proof brings together many important areas— a characteristic of 
recent mathematics. (2000, 33)

 15 For a summary of the proof, see Petitot (1993).



The Functional Role of Structures in Bourbaki 195

Similarly, Barry Mazur writes:

The conjecture of Shimura- Taniyama- Weil is a profoundly unifying 
conjecture— its very statement hints that we may have to look to diverse 
mathematical fields for insights or tools that might leads to its resolution. 
(1991, 594)

To use the complementarity in physics between observed phenomena and meas-
uring apparatuses as a metaphor, we could put it this way: For the Bourbakists, 
“big problems” and hard conjectures (the distribution of primes, linked to the 
zeroes of the zeta function and the Riemann hypothesis, etc.) were treated as 
key mathematical “given” phenomena that had to be looked at using appropriate 
formal “apparatuses”; and axiomatized structures are precisely such devices. 
Thus mathematics is at the same time holistic and modular.16 Structures are mod-
ular, but key phenomena are holistic, since they have to be “observed” by using 
many completely different “apparatuses.” The “scattered” character of complex 
proofs is due to this holistic/ modular complementarity.

This complementarity illuminates some aspects of the axiomatic method that 
Bourbaki inherited from Hilbert: (i) the fact that axioms can be freely chosen 
and are prescriptive principles, as opposed to being descriptive of objects (in the 
physical metaphor, to treat structures as objects would be a confusion between 
objects and apparatuses); (ii) the fact that many genetically different mathemat-
ical objects can be analyzed using the same structures; (iii) the fact that, in order 
to avoid an irrelevant axiomatic game, relevant “interesting” structures must be 
discovered through a reflexive process from the practice.

5. René Thom and Bourbaki

It is interesting to return here to the evaluation of the Éléments by René Thom, 
a colleague of the Bourbakists first at the École Normale Supérieure (he was 
a PhD student of Henri Cartan, together with Jean- Pierre Serre) and, after 
1963, at the Institut des Hautes Études Scientifiques. A  good reference is 
Thom’s 1970 paper, “Les mathématiques modernes: une erreur pédagogique 
et philosophique ?” (translated in 1971 for the American Scientist). Thom criti-
cized the idea that axiomatization can be at the same time a tool for systemati-
zation and for discovery.

 16 “Modular” not in the mathematical sense, but in a sense analogous to “modularity” in program-
ming languages or in cognitive science (“modularity of mind”).
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During the last few years many such opinions were being put forward about 
the importance of axiomatization as an instrument both of systematization and 
of discovery. Instrument of systematization for sure; but whether of discovery, 
that is a much more doubtful affair. (Bolondi 2009, 705)

And he based his critique of Bourbaki precisely on this point:

It is characteristic that from the immense effort at systematization by Nicolas 
Bourbaki (which is not a formalization anyway, since Bourbaki uses a non- 
formalized meta- language) no new theorem of any importance has resulted. 
And if researchers in mathematics make reference to Bourbaki, they find food 
much more often in the exercises— where the author has repelled the concrete 
material— than in the deductive body of the text. (Thom 1971, 697– 698)

Thus for Thom the Éléments offers a systematized toolbox of axiomatized 
structures whose real interest for mathematical practice lies outside of it, in “con-
crete problems.” We agree; but we will see later that, in fact, Bourbaki himself was 
perfectly aware of this and thought that the purpose of the Éléments was to help 
in the resolution of concrete “big” problems.

In addition, Thom attributed to Bourbaki, and criticized, the idea that 
structures can be derived from set theory:

The old Bourbakist hope, to see the mathematical structures emerge natu-
rally from the hierarchy of sets, from their subsets and their combination, is 
no doubt a chimera. Reasonably, one can hardly escape the impression that im-
portant mathematical structures (algebraic structures, topological structures) 
appear as data fundamentally imposed by the external world, and that their ir-
rational diversity finds its only justification in their reality. (Thom 1971, 699)

Here again, Bourbaki was in fact aware of this point and held, as we already 
pointed out, that relevant “interesting” structures must be discovered in a re-
flexive way from the practice and from the search for solutions to given “big” 
problems. Hence Thom’s criticism is justified for a restricted formal concep-
tion of structures, but not for a more general approach emphasizing their 
functional role.

From this perspective, we will now comment further on (i)  the restricted 
formal definition of structures in Bourbaki; and (ii) their functional role in a 
more general structuralist context. The latter ranged from Hilbert’s axiomatic 
approach to Grothendieck’s categorical approach, and it involved discovery and 
complex proofs.
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6. Formal Definition of Structures:      
Set Theory and Category Theory

Initially, the key notion of structure in Bourbaki was supposed to be a noncon-
troversial concept; but the members of the group did not agree on the impor-
tance and priority it should be given. Especially the question of its definition was 
not conceived by everyone in the same manner. The options were to give either 
(1) a vague account of how to define a structure, formulated in the metatheory 
(Bourbaki had done so from the beginning), or (2) an explicit and general defini-
tion, to be referred to whenever a new structure is introduced. Liliane Beaulieu’s 
PhD thesis bears witness to the hesitations of the first members of Bourbaki, in 
the 1930s, with respect to a formal definition of structure.17 The definition was 
finally published 20 years later, 18 but was hardly respected or used in the released 
mathematical corpus, despite the principle to publish only what was unani-
mously accepted by the group.

Indeed, as pointed out by Leo Corry already (1992, 327), Bourbaki made a 
very revealing comment in this context. It can be found in the Fascicule de 
résultats (Summary of Results) of the treatise Théorie des Ensembles,19 3rd edition 
(1958), originally released as the first publication by Bourbaki (1939). In it, an in-
formal definition of “structure” is used— well before the publication of  chapter 4 

 17 In the first plenary meeting in Besse, on July 1935, one can read in a resolution: “We warn the 
reader, once and for all, that the operations that will be applied to sets can be axiomatized and jus-
tified, provided that they are only carried out on sets we study in a mathematical theory” (Beaulieu 
1989, 233). There is also a project, probably discussed during the 1936 plenary meeting of Chançay, 
entitled “Projet Laïus Scurrile” (the group used the term “scurrile” mostly for “what has to be done 
without enthusiasm, which leads to nothing, or what has a philosophical content.” Thus, we find in 
the minutes of the Bourbaki meetings or in his writings the expressions “laius scurrile” (Beaulieu 
1989, 228, note 37).) In the project description we can read: “The subject of a mathematical theory is 
a structure organizing a set of elements: the words ‘structure’, ‘set’, ‘elements’ are not likely definable, 
but constitute the basic concepts for all mathematicians. They take on clearer form once we have had 
the opportunity to define structures, as will be done from this chapter one. Thanks to a structure, one 
has the right to say that elements or parts of the set considered in a theory have some relationships 
between them or possess certain properties: the words ‘part’, ‘relationship’, ‘property’ are likely unde-
finable too, and are also basic notions. According to our principles, we should state the axioms that 
satisfy these notions: these axioms are those of set theory, and of any mathematical theory. Given the 
difficulties, until now not overcome, which stand in the way of the formulation of such axioms, we 
will assign temporarily to these words the meaning they have in ordinary language, and we will give 
in what follows general rules governing their use and how to switch from one to another. . . . We say 
that one has defined a structure on a fundamental set if properties of the (or relationships between 
the) elements of this set are given, or if one of those can be deduced by a combination of the above op-
erations, and, eventually, by previously given auxiliary fundamental sets” (Beaulieu 1989, 561; transl. 
Gerhard Heinzmann).
 18 See  chapter 4 of Théorie des Ensembles (Bourbaki 1957). The Fascicule de résultats of this volume 
had already been published in 1939, i.e., 18 years earlier!
 19 The Summaries are in principle attached to every volume of Éléments de Mathématique, and 
their goal is to give a “rough idea” of an entire book either for orientation before reading or for a hur-
ried reader (Bourbaki 1939, vi).
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of Théorie des Ensembles itself (1957). And in section 8 of the Fascicule, devoted 
to scales of sets and structures (échelles d’ensembles et structures), Bourbaki 
comments in a footnote:

The reader may have observed that the indications given here are left rather 
vague; they are not intended to be other than heuristic, and indeed it seems 
scarcely possible to state general and precise definitions for structures out-
side of the framework of formal mathematics (see Chapter IV). (Bourbaki 
1968, 384)20

In the Fascicule de résultats, four pages “summarize,” or better anticipate, the 69 
pages on the notion of structure in the fourth chapter of Théorie des Ensembles; 
and the footnote indicates that Bourbaki put  chapter 4, entitled “Structures,” in 
the “framework of formal mathematics,” which is developed in  chapter 1. This is 
even clearer in the introduction to  chapter 4:

The purpose of this chapter is to describe once and for all a certain number 
of formative constructions and proofs (cf. chapter I, §1, no. 3 and §2, no. 2)21 
which arise very frequently in mathematics. (Bourbaki 1968, 259)

Bourbaki will never resort to such formal “structures” in his other books. 
Indeed, as also noted by Corry, until the publication of  chapter 4 in 1957 the 
only references are to the Fascicule de résultats, which gives simply an informal 
definition:

Given for example, three distinct sets E, F, G, we may form other sets from them 
by taking their sets of subsets, or by forming the product of one of them by itself, 
or again by forming the product of two of them taken in a certain order. In this 
way we obtain twelve new sets. If we add these to the three original sets E, F, G, 
we may repeat the same operations on these fifteen sets, omitting those which 
give sets already obtained; and so on. In general, any one of the sets obtained by 
this procedure (according to an explicit scheme) is said to belong to the scale of 
sets on E, F, G as base. (Bourbaki 1968, 383)

 20 This footnote is the only change from previous editions with respect to section 8 (“Structures”); 
we therefore quote always the most accessible English edition of 1968.
 21 By “formative constructions and proofs,” Bourbaki understands in  chapter  1, entitled 
“Description of Formal Mathematics,” the definition of a formula- calculus (“règles d’assemblages”)— 
“terms are assemblings which represent objects, and relations are assemblings which represent 
assertions which can be made about these objects (20)—  together with a formal description of 
derivations, defined as sequences of relations.
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The discussion is rounded off in the following way:

Thus being given a certain number of elements of sets in a scale, relations be-
tween . . .22 elements of these sets, and mappings of subsets of these sets into 
others, all comes down in the final analysis to being given a single element of one 
of the sets in the scale.

In general, consider a set M in a scale of sets whose base consists, for the sake 
of example, of three sets E, F, G. Let us give ourselves a certain number of ex-
plicitly stated properties of [an]23 element of M, and let T be the intersection of 
the subsets of M defined by these properties. An element s of T is said to define 
a structure of the species T on E, F, G. The structures of species T are therefore 
characterized by the schema of formation of M from E, F, G, and by the proper-
ties defining T, which are called the axioms of these structures. We give a spe-
cific name to all the structures of the same species. Every proposition which is a 
consequence of the proposition “s ∈ T” (i.e. of the axioms defining T) is said to 
belong to the theory of the structures of species T. (Bourbaki 1968, 383)

Bourbaki assumed not only to have written the previous chapters to meet these 
specifications, which remained an outline of the formal content of  chapter 4, 
but was also working on filling them out. In addition, he needed to introduce 
structures with morphisms to talk about derived structures.

Nevertheless, Bourbaki did not wait until this chapter was written, because 
the expectations were clear. In particular, he had a clear idea of the three main 
types of structures, i.e., the “mother structures”: algebraic structures, topolog-
ical structures, and order structures. Thus in the introduction to the volume on 
Algebra it is noted:

In conformity with the general definitions (Théorie des Ensembles, IV, §1, no. 4 
[entitled “Espèces de structures”], being given on a set one or several laws of 
composition or laws of action defines a structure on E; for the structure defined 
in this way we preserve precisely the name algebraic structures and it is the 
study of these which constitutes Algebra.

There are several species (Théorie des Ensembles, IV, §1, no. 4) of algebraic 
structures, characterized, on the one hand, by the laws of composition or laws of 
action which define them and, on the other hand, by the axioms to which these 
laws are subjected. Of course, these actions have not been chosen arbitrarily, 
but are just the properties of most of the laws which occur in applications, such 

 22 The available translation is “between generic elements,” but “generic” is not in the original 
French text. We skip it because “generic” has a specific mathematical content that does not apply here.
 23 We skip again the word “generic” here.
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as associativity, commutativity, etc. Chapter I is essentially devoted to the expo-
sition of these axioms and the general consequences which follow from them; 
also there is a more detailed study of the two most important species of alge-
braic structure: that of group (in which only one law of composition occurs), 
and that of a ring (with two laws of composition) of which a field structure is a 
special case. (Bourbaki 1974, xxii)

As we have seen, Bourbaki ranked the structures in a hierarchy at the base 
of which are the three “mother structures”: algebraic structures are character-
ized by “laws of composition,” as van der Waerden had already done24; order 
structures by an order relation; and the topological structures, again, by “an 
abstract mathematical formulation of the intuitive concepts of neighborhood, 
limit, and continuity, to which we are led by our idea of space” (Bourbaki 1948, 
227). These basic structures are followed by “multiple structures” involving two 
or more mother structures (e.g., topological algebra), and at the top of the hi-
erarchy are placed the “theories properly particular.” The criteria of Bourbaki’s 
hierarchy of structures for each kind of structures are simplicity, generality, and 
the number of axioms (229).

Actually, it is a contradiction to speak of a hierarchy within a particular struc-
ture. At most Bourbaki can compare the species of one kind of structure using 
the same scale, i.e., the same data for which the axioms set down properties. 
Thus groups are more general than commutative groups, which require an addi-
tional axiom while possessing the same scale. But groups and topological groups 
cannot be compared; the first are not more general than the latter: they are not 
defined on the same data (scales), and Bourbaki had to use what is now called 
the “forgetful” functor to reduce the scale of topological groups to the scale of 
mere groups. However, topological groups can be treated as mixed structures, 
i.e., as topological spaces provided in addition with a group structure whose op-
erations are continuous. It is sufficient to consider the huge project of Lie groups 
here (where one uses the structure of a differentiable manifold in addition). But 
it is not clear whether, for Bourbaki, mixed structures were also full- fledged sui 
generis structures, which would be the case from a categorical perspective (the 
category of topological groups is a specific category). In any case, the categorical 
formalism necessary to compare species of structure was not yet fully available 
to Bourbaki. He began with structured sets and isomorphisms, so as then to add 
the most general relations between structured sets that amount to morphisms. 
This means in fact placing them in a category, but without using the term. The 
issue of the relationship between species of structures is not really addressed, 

 24 From the beginning, for Bourbaki, Modern Algebra by B. L. van der Waerden (1930– 31) was a 
model for the program in analysis, and then for mathematics as a whole (see Beaulieu 1989, 164).
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which would mean considering formally functors, natural transformations, 
and categories of categories. In other words, in his pre- categorical framework 
Bourbaki introduced many categorical objects and constructions: morphisms, 
sub- objects, quotients, Cartesian products, projective and inductive limits, uni-
versal problems, and (implicitly) functorial objects, like the fundamental group 
π1(X, x) of a (pointed and arc- connected) topological space (X, x ∈ X), but all in a 
universe of set theory and without the formal machinery of later category theory. 
For Bourbakists, categorical notions and operations became relevant and even 
inescapable in the 1950s (we only have to look at Cartan’s seminar from 1948 
onward); but for the Treatise category theory would have been too important 
an editorial transformation and, moreover, it was not really a foundational issue.

Why was the discrepancy between the formal definition of structure in 
 chapter 4 of Théorie des Ensembles and the actual practice in applications never 
fixed by Bourbaki? And why was he not more interested in corresponding met-
amathematical questions (such as the question of consistency)? There is both 
a historical- mathematical and a systematic- philosophical explanation. The 
historical- mathematical explanation is that, even before being released, the 
chapter on structures had already been superseded, since it would have needed 
to consider categories.25 Some members of Bourbaki did not agree with it, but 
Bourbaki could also not revise it for a silly material reason:  Everything that 
had been printed so far would have to be thrown away.26 Bourbaki confined 
itself, initially, to print just the Fascicule de résultats on the subject; and this is 
precisely because nothing else was needed for the main books of the Élements. 
Actually, the distance between the rest of the Éléments and its formal definition 
of structures was even greater. It also treated structures accurately defined but 
not in the formal sense of  chapter 4. For example, in  chapter 9 of his General 
Topology Bourbaki defines a normed space as a vector space “endowed with the 
structure defined by a given norm” (Bourbaki 1966, 170, 1st edition 1958), thus 
as a mixed structure (see the example of topological groups earlier). But, as com-
municated by Jean- Pierre Ferrier, there is no explicit reference to the formal def-
inition of “structure” here; in fact, it is not explained in  chapter 4 (1957) what 
the structure defined by a given norm is and what exactly “morphisms” between 
normed spaces could be.

 25 We emphasize: as already noted above, many categorical concepts are used more or less implic-
itly by Bourbaki. Categories were present between the writing of Élément des Mathématiques in 1939 
and its publication in 1957. But the framework of Éléments is set theory and not category theory, 
because otherwise it would have meant a complete rewriting. Algebraic topology has been the main 
source of category- like reflections for Bourbakists, but, strangely enough, they postponed the writing 
of the volume Algebraic Topology ( chapters 1– 4) until 2016!
 26 A fuller historical account of this debate can be found in Krömer (2006).
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But there is also a systematic- philosophical explanation. Namely, in some 
ways Bourbaki remained closer than his rhetoric suggests to the “geometric 
structuralism” of Poincaré than to that of Hilbert. According to both Hilbert and 
Poincaré, geometrical axioms and axiom schemas are not propositions, i.e., true 
or false, and there are no special (“ontologically” specific) objects that geometry 
should have to study. Rather, geometry is just a system of relations that can be ap-
plied to many kinds of objects. For Poincaré, the metric postulates in geometric 
systems are “apparent hypotheses” that are neither true nor false, i.e., they are 
conventions (see Poincaré 1898). For Hilbert, the axioms and axiom schemas 
in geometric systems are expressions that, again, are neither true nor false. But 
according to Hilbert, mathematical formalism requires a “finitist” metamathe-
matics in order to demonstrate the consistency of formal mathematical systems. 
The failure of this program is well known (Gödel) and was known to Bourbaki 
(cf. note 9). In contrast, for Poincaré it is necessary to explain the hypotheses 
with respect to an informal standard that involves the unity of mathematics and 
preexists intuitively in our mind (at a first stage transformation groups, later the 
qualitative structure of topological spaces); and he takes a structuralist posi-
tion without disengaging meaning and knowledge completely from ostension.27 
Poincaré’s concept of structure is thus not the new Hilbertian one derived from 
his axiomatization of geometry, but constitutes a development of the traditional 
idea of geometrical invariances. For Bourbaki too, the mother structures have an 
informal background. And he also incorporates the metamathematical problems 
into mathematics, as it were, by adopting an empirical position and by sharing 
Poincaré’s concern for the unity of mathematics. From a philosophical point of 
view, it is clearly the status of Hilbert’s metamathematics (invalidated by Gödel) 
that makes it distinct from the shared position of Bourbaki and Poincaré.

From a practical point of view one can ask, finally, whether Bourbaki’s “mother 
structures” are “natural” in the sense of common- sense habits. Here we agree with 
Piaget’s analysis: “No subject, before he has learnt it, has the ‘concepts’ of what a 
group, lattice, topological homeomorphism etc. is: and in most cultural milieus, 
we do not come across such concepts before university or the upper classes of 
secondary school. Thus, it is not in the domain of reflective thought, considered 
from the subject’s view- point, to ask whether these structures are ‘natural’ ” (Beth 
and Piaget 1966, 167). In other words, to put such structures at the beginning 
of the mathematical edifice is not justified by socio- psychological practice, al-
though elements of them can be used to describe parts of both mathematical 
practice and socio- psychological practice. Hence Bourbaki’s mother structures 
are a sort of mix of normative standards and empirically confirmed tools.

 27 Compare here the contribution on Poincaré, by Janet Folina, in the present volume.
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7. The Function of Structures: An Example from Weil

It must be emphasized that, maybe not for Bourbaki as a collective author 
but undoubtedly for Bourbaki as a pleiad of mathematical masterminds, 
structures and axiomatics were deeply linked with analogies and intuitions. 
This is remarkable since these two domains seem completely different, the first 
belonging to the formal world and the second, in this case, to creative imag-
ination. However, the link is not so surprising if one takes into account that 
analogies are fundamental for discovering ways of solving “big problems.” To 
explain this point further, let us consider one of the main examples of such 
problem- solving, namely the way in which André Weil— “primus inter pares” 
in Bourbaki— tackled the Riemann hypothesis. In his celebrated letter written 
in jail to his sister Simone (March 26, 1940), he described his procedure in 
natural language, thus leaving a rare and precious testimony of his way of 
thinking. Considering it will take us from Dedekind and Weber in the 19th to 
Alain Connes in the 21st century.28

7.1 The Initial Analogy by Dedekind- Weber

At the end of the 19th century, Richard Dedekind29 and Heinrich Weber estab-
lished a deep analogy between the theory of algebraic numbers and Riemann’s 
theory of algebraic functions on algebraic curves over the field C of complex 
numbers (compact Riemann surfaces); see in particular their celebrated 1882 
paper, “Theorie der algebraischen Funktionen einer Veränderlichen.” One of 
their main ideas was to consider integers n as kinds of “polynomial functions” 
over the set P of primes, i.e., as “functions” globally defined and having a value 
and an order at every “point” p of P. The “value” is n modulo p, and the “order” is 
the power of p in the decomposition of n into prime factors. If the value at p is not 
0, the order is 0, and if the value is 0, the order is at least 1. This is evident because, 
if we write n in base p, we get n p a a p a pn

k
k= + + +order

0 1
( ) ( ... ) with coefficients 

ak  between 0 and p –  1, a0 ≠ 0 For smooth functions on manifolds in the ordi-
nary sense, the values and the orders at the points are local concepts. To find the 
equivalent of these concepts in the analogy, Dedekind and Weber had to define 
localization in a purely algebraic manner. This is the origin of the modern (cru-
cial) concepts of spectrum and scheme in algebraic geometry.

 28 For more details, see Petitot (2017).
 29 Dedekind is one of the founders of axiomatic and structural methods in mathematics: cf. Sieg 
and Schlimm (2017), and also the contribution on Dedekind, by José Ferreirós and Erich Reck, to the 
present volume.
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In his letter to Simone, Weil describes this analogy very well:

[Dedekind] discovered that an analogous principle enabled one to establish, by 
purely algebraic means, the principal results, called “elementary,” of the theory 
of algebraic functions of one variable, which were obtained by Riemann using 
transcendental [analytic] means. (Weil, [1940] 2005, 338).

He adds:

At first glance, the analogy seems superficial. . . . [But] Hilbert went further in 
figuring out these matters. (228)

The simplest elements of the analogy can be summarized in table 1.

7.2 Hensel’s p- adic Numbers

The analogy becomes deeper when we introduce a local/ global dialectic. On C, 
we have analytic functions with Taylor expansions in the neighborhood of any 
point z. To extend this fact to arithmetic, it was necessary to find the equiva-
lent of the Taylor expansion of a “function” in the neighborhood of a “point” p. 
For integers, the situation is very simple. In the same way as a polynomial is its 
own Taylor expansion at every point, an integer is its own “Taylor expansion” 
(its expansion in base p) at every prime p. But there are more functions than 
polynomials, which have different and infinite Taylor series at different points. 
To find an equivalent in the Dedekind- Weber analogy, one has to consider 
expansions in base p of infinite length, i.e., generalized numbers n = porder(ñ)(a0 
+ a1p + . . . + akp

k + . . .). Of course, such series are divergent (and therefore have 
no rigorous meaning) for the standard Archimedean metric on the integers. 
But they become defined and tractable if one introduces a new, quite strange, 
metric where the norm of pk is 1/ pk and tends toward 0 when k goes to ∞.

This was the great achievement by Hensel with the invention of p- adic num-
bers. And exactly as R is the completion of Q for the natural Archimedean metric 
(via limits of equivalent Cauchy sequences), the p- adic numbers constitute a 
field Qp of characteristic 0 that is the completion of Q for a specific ultrametric, 
non- Archimedean, p- adic metric. In Bourbaki’s manifesto, “L’Architecture des 
mathématiques” (1948) Dieudonné emphasized (with a rather a posteriori con-
ception of history) Hensel’s unifying analogy:

[In an] astounding way, topology invades a region which had been until then 
the domain par excellence of the discrete, of the discontinuous, viz. the set of 
whole numbers. (Bourbaki 1948, 228)
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Table 1 The analogy between prime numbers and points on a Riemann surface

Primes ⇔ Points

Integers ⇔ Polynomials

Divisibility of integers ⇔ Divisibility of polynomials

Rational numbers      
(quotients of integers)

⇔ Rational functions      
(quotients of polynomials)

Algebraic numbers ⇔ Algebraic functions

7.3 Mixing Algebraic and Topological Structures

Of course, with any of its natural metrics Q is naturally embedded, as a topolog-
ical subfield, in its corresponding completions Qp and R (remember the analogy 
with polynomials that are their own Taylor expansion at every point). With its 
induced topology, it is by construction a dense subfield of all its completions; 
but it must be strongly emphasized that all these topologies on Q are completely 
heterogeneous: as a set endowed with an algebraic structure of a field, Q is eve-
rywhere the same. Yet as a topological space it is completely different for every 
metric, since the relations of neighborhood are completely different. We meet 
here a very good example of mixed structure: a single algebraic system compat-
ible with an infinite number of different metric topologies. And we see how rich 
the “mixing” of structures of different types can be.

7.4 Places and Weil’s “Birational” Approach

From this perspective, Q appears as what is called a global field with an infinite 
number of incommensurable completions, while Qp and R are called local fields. 
In this context, R is often interpreted as Q∞, that is, as the completion of Q for an 
“infinite” prime. This is of course just a manner of speaking. To conceptualize 
this remarkable geometrical intuition of “points” for finite and “infinite” primes 
in arithmetic, the specialists have coined the term “place” and speak of finite and 
infinite places.30

 30 The geometrical lexicon of Hensel’s analogy can be rigorously justified by using the concept 
of scheme that we have already evoked: (i) finite primes p are the (closed) points of the spectrum 
Spec(Z) of the ring Z; (ii) the local rings Z(p) of rationals without any power of p in the denominator 
are the fibers of the structural sheaf O of Spec(Z); (iii) the finite prime fields Fp are the residue fields 
of the fibers of O; (iv) integers n are global sections of O; (v) Q is the field of rational functions on 
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The Dedekind- Weber analogy between arithmetic and geometry goes much 
further. The spectrum Spec(Z) of Z, i.e., the space whose (closed) points are the 
primes p, is an affine space and not a projective space. If one wants to extend to 
arithmetic the analogy with projective (birational) algebraic geometry of com-
pact Riemann surfaces and transfer some of its results (the Riemann- Roch the-
orem, the Severi- Castelnuovo inequality, etc.), one has to work with all places at 
the same time. Indeed, in projective geometry the point ∞ is on a par with the 
other points. Weil emphasized this insight strongly from the start. Already in his 
1938 paper, “Zur algebraischen Theorie des algebraischen Funktionen,” he writes 
that he wants to reformulate Dedekind- Weber in a birationally invariant way. In 
his letter to Simone, he explains the problem as follows:

In order to reestablish the analogy [lost by the singular role of ∞ in Dedekind- 
Weber], it is necessary to introduce, into the theory of algebraic numbers, 
something that corresponds to the point at infinity in the theory of functions. 
(Weil [1940] 2005, 339)

7.5. The Adelic Perspective

Unifying Archimedean and p- adic places is the origin of Weil’s “adelic” approach. 
The problem is to consider families of local data indexed by all places together 
and to look at the possibility of gluing them into global entities. A first simple 
idea would be to take the elements of the infinite Cartesian product Π of all the 
completions Qp and R. This would be a good example of a complex structure 
constructed as a product of simpler structures; but this idea turns out not to be 
so interesting. As Qp and R are fields, Π is a ring; and as Qp and R are normed 
fields, Π is a topological ring (it is another example of mixed structures); but its 
topology is rather pathological in the sense that it is not locally compact, where 
one says that a topological space is locally compact when every point has compact 
neighborhoods. We meet here a typical example of a Bourbakian reflection on 
what can be a relevant “good” structure: it is not the most formally general struc-
ture, but the most functionally general structure suitable for a particular purpose.

Spec(Z) (i.e., of global sections of the sheaf of fractions of O); and (vi) Spec(Z) plus the infinite place 
∞ is like the “projectivization” of Spec(Z). In this context, Zp and Qp correspond to local restrictions 
of global sections around the “point” p of Spec(Z), analogous to what are called germs of sections in 
classical differential, analytic, or algebraic geometry. (For the Riemann surface C, they would corre-
spond, respectively, to holomorphic functions on small disks around a point z and on small punc-
tured disks around z.)
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The lack of local compactness can be fixed using the concept of adele, a no-
tion derived from the notion of idele introduced by Claude Chevalley in class 
field theory and coined by Weil (adele = additive idele, and the multiplicative 
group IQ of ideles is recovered as the group GL1(AQ)). The core idea is to use the 
“restricted” product AQ of the Qp and R, where “restricted” means that almost all 
components, except a finite number, of an adele are p- adic integers. (Restricted 
products were already used by Chevalley for the ideles.) AQ is a topological sub-
ring of Π, which has the fundamental advantage of being locally compact, be-
cause the ring Zp of p- adic integers is compact in the locally compact field Qp. Of 
course, the global field Q is naturally embedded diagonally in AQ. (One associates 
to any rational r the adele a all of whose components are r; a is actually an adele 
since, for all p not dividing its denominator, r is a p- adic integer.) Due to the het-
erogeneity of the topologies induced on Q by its different completions, however, 
Q is naturally embedded in AQ as a discrete subfield.

7.6. Locally Compact Structures

Now, why is being locally compact so important? The pragmatic reason is that 
the additive structure of AQ is an abelian (i.e., commutative) locally compact top-
ological group,31 and such groups are naturally endowed with Haar measures 
(generalizing the Lebesgue measure on R), which allow integration and har-
monic analysis. According to a theorem of Iwasawa,32 this property belongs to 
the characterization of Q as a global field, the arithmetic of Q being correlated 
to the analysis of AQ. As Alain Connes writes, referring to Weil (1967) and Tate 
(1950) in his “Essay on the Riemann Hypothesis” (2015, 5):

It opens the door to a whole world which is that of automorphic forms and 
representations, starting .  .  . with Tate’s thesis [“Fourier Analysis in Number 
Fields and Hecke’s Zeta- Function,” 1950] and Weil’s book Basic Number Theory.

In  chapter 9 of Modern Algebra and the Rise of Mathematical Structures (2004), 
Leo Corry discusses the fact that Weil’s preference for a theory of integration 
à la Lebesgue on locally compact groups restrained the development of prob-
ability theory à la Kolmogorov. Indeed, the latter uses, e.g., for Brownian mo-
tion, measures, and integration theory on non- locally compact groups. In his 

 31 Moreover, AQ has the deep property of being “self- dual” for Pontryagin duality, i.e., it is isomor-
phic to the group of its characters.
 32 The fact that the topological ring AK of adeles of a field K is locally compact, semi- simple (with 
trivial Jacobson ideal), K being cocompact in it, characterizes global fields.
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autobiography, Laurent Schwartz testimonies that “Bourbaki stepped away from 
probability, rejected it, considered it to be unrigorous” (quoted in Corry 2004, 
119). We see in this example how the selection of “good” relevant structures can 
depend heavily upon the “big problems” aimed at: the Riemann hypothesis is not 
Brownian motion.

7.7. The Rosetta Stone

His remarkable conceptual deepening of the Dedekind- Weber analogy enabled 
Weil to find a strategy for proving the Riemann hypothesis (RH) not for arith-
metic, but for an analogous, more geometric world. Indeed, in characteristic 0 
the only global fields are finite extensions K of Q (i.e., algebraic number fields). 
But there exist a lot of other global fields defined in characteristic p. They are the 
fields K of rational functions on algebraic curves over a finite field Fq = Z/ qZ with 
q = pn, p prime. It is therefore natural, on the one hand, to try to transfer to these 
fields questions concerning algebraic number fields: Weil did it for RH. On the 
other hand, algebraic curves over a finite field must have something to do with 
algebraic curves over C, and it is also very natural to try to translate RH to their 
case. It is for this intermediate third world that Weil succeeded in proving RH. 
This was one of his greatest achievements. He overcame what he considered to 
be the main difficulty in the Dedekind- Weber analogy, namely: that the theory of 
Riemann surfaces is “too rich” and “too far from the theory of numbers,” and that 
“one would be totally blocked if there were not a bridge between the two” (Weil 
[1940] 2005, 340). Hence his celebrated metaphor of the “Rosetta stone”:

My work consists in deciphering a trilingual text; of each of the three columns 
I have only disparate fragments; I have some ideas about each of the three lan-
guages: but I know as well there are great differences in meaning from one 
column to another, for which nothing has prepared me in advance. In the sev-
eral years I have worked at it, I have found little pieces of the dictionary. (Weil 
[1940] 2005, 340)

7.8. The Riemann Hypothesis: From Hasse to Weil, 
Grothendieck, Deligne, and Connes

Before Weil, Emil Artin and Friedrich Karl Schmidt had already transferred the 
Riemann- Dirichlet- Dedekind zeta and L- functions from the arithmetic side to 
the side of algebraic curves over Fq. In this new context, Helmut Hasse proved 
RH for elliptic curves. Then Weil proved it for all algebraic curves over finite 
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fields using mixed technical tools, such as divisors, the Riemann- Roch theorem 
for the curves and their squares, intersection theory, the Severi- Castelnuovo 
inequality coming from the classical geometric side (characteristic 0), and cru-
cially, Frobenius maps coming from characteristic p (see Cartier 1993). It is well 
known that the attempts to generalize to higher dimensions Weil’s proof of RH 
for curves over finite fields led him to his celebrated conjectures; and to find a 
strategy for proving them has been at the origin of the monumental program 
of Grothendieck (schemes, sites, topoi, etale cohomology, etc.), culminating in 
1973 with Deligne’s proof.

But the original Riemann hypothesis remained, and still remains, un-
solved. A few years ago, Alain Connes proposed a new strategy, consisting in 
constructing a new geometric framework for arithmetics in which Weil’s proof in 
the intermediary case of curves over finite fields could be transferred by analogy. 
His fundamental discovery is that a way forward could be to work in a new “new 
world,” namely the strange world of “tropical algebraic geometry in character-
istic 1.” In his 2015 essay he explains that the strategy is

to find a geometric framework for the Riemann zeta function itself, in which 
the Hasse- Weil formula, the geometric interpretation of the explicit formulas, 
the Frobenius correspondences, the divisors, principal divisors, Riemann- 
Roch problem on the curve and the square of the curve all make sense. (Connes 
2015, 8)

8. Conclusion: Structures and Mathematical Discovery

From Weil to Grothendieck and Deligne, and from Grothendieck to Connes, we 
see how crucial and permanent the long- term functional role of structural analo-
gies as a method of discovery is. As Weil strongly stressed from the outset in his 
letter to Simone:

If one follows it in all of its consequences, the theory alone permits us to reestab-
lish the analogy at many points where it once seemed defective: it even permits 
us to discover in the number field simple and elementary facts which however 
were not yet seen. (Weil [1940] 2005, 339)

Thus, a structural clarification of an analogy yields more understanding and 
allows to go further.

Indeed, structures enable us to imagine strategies for solving hard problems. 
It is amusing to see how Weil used a lot of military metaphors— “find an opening 
for an attack (please excuse the metaphor),” “open a breach which would permit 
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one to enter this fort (please excuse the straining of the metaphor),” “it is neces-
sary to inspect the available artillery and the means of tunneling under the fort 
(please excuse, etc.)”— when explaining to his sister that finding a proof is actu-
ally a strategy. He added:

It is hard for you to appreciate that modern mathematics has become so ex-
tensive and so complex that it is essential, if mathematics is to stay as a whole 
and not become a pile of little bits of research, to provide a unification, which 
absorbs in some simple and general theories all the common substrata of the 
diverse branches of the science, suppressing what is not so useful and necessary, 
and leaving intact what is truly the specific detail of each big problem. This is 
the good one can achieve with axiomatics (and this is no small achievement). 
This is what Bourbaki is up to. It will not have escaped you (to take up the mil-
itary metaphor again) that there is within all of this great problems of strategy. 
(Weil [1940] 2005, 341)

This illustrates that Bourbaki’s structures concern much more than mere “simple 
and general” abstractions. They have a functional role, a strategic and crea-
tive function, namely “leaving intact what is truly the specific detail of each big 
problem.”

This pragmatic functionality of structures is really the key point for our 
purposes. Bourbaki was a group of creative mathematicians, not of philosophers. 
The true philosophical meaning of their structuralist approach is rooted deeply 
in their practice and must be extracted from there. To evaluate it, it is not suffi-
cient to criticize their more or less clever or educated philosophical claims. The 
fundamental relation between, on the one hand, their holistic and “organic” 
conception of the unity of mathematics and, on the other hand, their thesis 
that some analogies and crossroads can be creative and lead to essential discov-
eries is a leitmotiv for Bourbaki since the 1948 manifesto, “L’Architecture des 
mathématiques.” The continued insistence on the “immensity” of mathematics 
and on its “organic” unity; the claim that “to integrate the whole of mathematics 
into a coherent whole” (222) is not a philosophical question, as it was for Plato, 
Descartes, Leibniz, or “logistics”; the constant criticism of the reduction of 
mathematics to a tower of Babel juxtaposing separated “corners”— these are not 
vanities of philosophically ignorant mathematicians. They have a very precise 
technical function: to construct complex proofs navigating in this holistic, con-
ceptually coherent world.

Hence:  “The ‘structures’ are tools for the mathematician”; “each struc-
ture carries with it its own language”; and to discover a structure in a concrete 
problem “illuminates with a new light the mathematical landscape” (Bourbaki 
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1948, 227) (compare again the example of the locally compact adelic ring). Leo 
Corry has formulated this key point well:

In the L’Architecture des mathématiques manifesto, Dieudonné also echoed 
Hilbert’s belief in the unity of mathematics, based both on its unified meth-
odology and in the discovery of striking analogies between apparently far- 
removed mathematical disciplines. (Corry 2004, 304)

And indeed, Dieudonné claimed:

Where the superficial observer sees only two, or several, quite distinct theories, 
lending one another “unexpected support” through the intervention of math-
ematical genius, the axiomatic method teaches us to look for the deep- lying 
reasons for such a discovery. (Bourbaki 1948, 230)

Structures are guides for intuition and allow to overcome “the natural difficulty 
of the mind to admit, in dealing with a concrete problem, that a form of intui-
tion, which is not suggested directly by the given elements, . . . can turn out to be 
equally fruitful” (Bourbaki 1948, 230). Thus for Bourbaki “more than ever does 
intuition dominate in the genesis of discovery” (228). And intuition is guided by 
structures.

After his 1948 manifesto, Bourbaki deepened this vision considerably. The 
structural systematization made by the Éléments allowed clarification of many 
difficulties, opened up good prospects, and led to fruitful angles of attack, which 
helped to solve difficult and entangled problems. In the combination of, on the 
one hand, systematizing and clarifying formal operations in the context of jus-
tification and, on the other hand, implementing proof strategies in the context 
of discovery rests, in our opinion, Bourbaki’s main contribution. Thus the phil-
osophical scope of Bourbaki’s concept of structure goes far beyond its formal 
presentation in Théorie des Ensembles. Its coherence has to be found not in 
foundational issues, but in the extraordinary corpus of technical results the 
Bourbakists produced and inspired. To understand Bourbaki’s “philosophy,” 
one has to take seriously, and discuss philosophically, the statements, reflections, 
and testimonials concerning how they thought about the operational practice 
involving structures for the creative imagination in pure mathematics. Very few 
philosophers have addressed these issues.33

 33 A  remarkable exception was Albert Lautman; cf. Heinzmann (2019) and Petitot (1987). 
Compare also Zalamea (2012) and Chevalley (1987).
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